Antibacterial Profile of a Microbicidal Agent Targeting Tyrosine Phosphatases and Redox Thiols, Novel Drug Targets
Abstract
:1. Introduction
2. Results and Discussion
2.1. NPBD Is Broadly Active against Clinically Significant Bacterial Species
2.2. Plasma Binds NPBD, Lowering the Bioavailability of NPBD
2.3. Thiol Reduction of NPBD Decreases Antimicrobial Activity
2.4. NPBD Shows Varying Bactericidal Action on Rapidly Growing, Slowly Growing and Non-Growing Bacteria
2.5. NPBD Has Low Level Interactions with Bacteriostatic and Bactericidal Antibiotics
2.6. NPBD Does Not Induce or Select for Resistant Variants in Antibiotic-Resistant Species
3. Materials and Methods
3.1. Chemicals, Reagents, Bacterial Strains
3.2. MIC and MBC Broth Microdilution Assays
3.3. Time-Kill Assays
3.4. Effect of NPBD on Population Growth under Optimal and Growth Limiting Conditions
3.5. NPBD Interaction with Antibiotics
3.6. Development of Resistance on Continuous Exposure to NPBD
4. Patents
- Denisenko, P.P.; Sapronov, N.S.; Tarasenko, A.A. Antimicrobial and radioprotective compounds. US Pat 9,045,452, 2 June 2015.[Claim: A method for the treatment of a gastrointestinal infection]
- Denisenko, P.P.; Sapronov, N.S.; Tarasenko, A.A. Antimicrobial and radioprotective compounds. US Pat 8,569,363, 29 October 2013.[Claim: A method for the therapeutic treatment of a skin or soft tissue infection]
- Denisenko, P.P.; Sapronov, N.S.; Tarasenko, A.A. Antimicrobial and radioprotective compounds. US Pat 7,825,145, 2 November 2010.[Claim: A method of treating vulvo-vaginitis]
- Nicoletti, A.; White, K. Protein tyrosine phosphatase modulators. WO/2008/061308, 29 May 2008.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, H.-C.; Qi, R.Z.; Paudel, H.; Zhu, H.-J. Regulation and Function of Protein Kinases and Phosphatases. Enzym. Res. 2011, 2011, 794089. [Google Scholar] [CrossRef] [Green Version]
- Tonks, N.K. Protein tyrosine phosphatases—From housekeeping enzymes to master regulators of signal transduction. FEBS J. 2012, 280, 346–378. [Google Scholar] [CrossRef] [Green Version]
- Mijakovic, I.; Grangeasse, C.; Turgay, K. Exploring the diversity of protein modifications: Special bacterial phosphorylation systems. FEMS Microbiol. Rev. 2016, 40, 398–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Ji, B.; Kolar-Znika, L.; Boskovic, A.; Jadeau, F.; Combet, C.; Grangeasse, C.; Franjević, D.; Talla, E.; Mijakovic, I. Evolution of Bacterial Protein-Tyrosine Kinases and Their Relaxed Specificity Toward Substrates. Genome Biol. Evol. 2014, 6, 800–817. [Google Scholar] [CrossRef]
- Dustin, C.M.; E Heppner, D.; Lin, M.-C.J.; van der Vliet, A. Redox regulation of tyrosine kinase signalling: More than meets the eye. J. Biochem. 2020, 167, 151–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallenbeck, K.; Turner, D.M.; Renslo, A.R.; Arkin, M.R. Targeting Non-Catalytic Cysteine Residues through Structure-Guided Drug Discovery. Curr. Top. Med. Chem. 2016, 17, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, K.; Jakob, U. The role of thiols in antioxidant systems. Free. Radic. Biol. Med. 2019, 140, 14–27. [Google Scholar] [CrossRef]
- Sajid, A.; Arora, G.; Singhal, A.; Kalia, V.C.; Singh, Y. Protein Phosphatases of Pathogenic Bacteria: Role in Physiology and Virulence. Annu. Rev. Microbiol. 2015, 69, 527–547. [Google Scholar] [CrossRef] [PubMed]
- Garcia, T.G.; Poncet, S.; Derouiche, A.; Shi, L.; Mijakovic, I.; Noirot-Gros, M.-F. Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria. Front. Microbiol. 2016, 7, 184. [Google Scholar] [CrossRef]
- Yagüe, P.; Gonzalez-Quiñonez, N.; Fernández-García, G.; Alonso-Fernández, S.; Manteca, A. Goals and Challenges in Bacterial Phosphoproteomics. Int. J. Mol. Sci. 2019, 20, 5678. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Pei, D. Trans-β-Nitrostyrene Derivatives as Slow-Binding Inhibitors of Protein Tyrosine Phosphatases. Biochemistry 2004, 43, 15014–15021. [Google Scholar] [CrossRef] [PubMed]
- White, K.S.; Nicoletti, G.; Borland, R. Nitropropenyl Benzodioxole, an Anti-Infective Agent with Action as a Protein Tyrosine Phosphatase Inhibitor. Open Med. Chem. J. 2014, 8, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfarisi, S.; Santoso, M.; Kristanti, A.N.; Siswanto, I.; Puspaningsih, N.N.T. Synthesis, Antimicrobial Study, and Molecular Docking Simulation of 3,4-Dimethoxy-β-Nitrostyrene Derivatives as Candidate PTP1B Inhibitor. Sci. Pharm. 2020, 88, 37. [Google Scholar] [CrossRef]
- Berner, O.M.; Tedeschi, L.; Enders, D. Asymmetric michael additions to nitroalkenes. Eur. J. Org. Chem. 2002, 2002, 1877–1894. [Google Scholar] [CrossRef]
- Nicoletti, G.; Cornell, H.J.; Hügel, H.M.; White, K.S.; Nguyen, T.; Zalizniak, L.; Nugegoda, D. Synthesis and Antimicrobial Activity of Nitroalkenyl Arenes. Anti-Infect. Agents 2013, 11, 179–191. [Google Scholar] [CrossRef]
- Cornell, H.; Nguyen, T.; Nicoletti, G.; Jackson, N.; Hügel, H. Comparisons of Halogenated β-Nitrostyrenes as Antimicrobial Agents. Appl. Sci. 2014, 4, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.; Liu, X.; Yang, F.; Li, R.; Xiong, Y.; Fu, C.; Li, G.; Liu, S.; Zheng, C. Single and joint toxic effects of four antibiotics on some metabolic pathways of zebrafish (Danio rerio) larvae. Sci. Total Environ. 2020, 716, 137062. [Google Scholar] [CrossRef]
- Nicoletti, A.; White, K. Protein tyrosine phosphatase modulators. WO/2008/061308, 29 May 2008. [Google Scholar]
- O’Hara, C.M.; Brenner, F.W.; Miller, J.M. Classification, Identification, and Clinical Significance of Proteus, Providencia, and Morganella. Clin. Microbiol. Rev. 2000, 13, 534–546. [Google Scholar] [CrossRef]
- Blanco, P.; Hernando-Amado, S.; Reales-Calderon, J.A.; Corona, F.; Lira, F.; Alcalde-Rico, M.; Bernardini, A.; Sanchez, M.B.; Martinez, J.L. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants. Microorganisms 2016, 4, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harms, A.; Maisonneuve, E.; Gerdes, K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 2016, 354, aaf4268. [Google Scholar] [CrossRef]
- Römling, U.; Galperin, M.Y.; Gomelsky, M. Cyclic di-GMP: The First 25 Years of a Universal Bacterial Second Messenger. Microbiol. Mol. Biol. Rev. 2013, 77, 1–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gannoun-Zaki, L.; Pätzold, L.; Huc-Brandt, S.; Baronian, G.; Elhawy, M.I.; Gaupp, R.; Martin, M.; Blanc-Potard, A.-B.; Letourneur, F.; Bischoff, M.; et al. PtpA, a secreted tyrosine phosphatase from Staphylococcus aureus, contributes to virulence and interacts with coronin-1A during infection. J. Biol. Chem. 2018, 293, 15569–15580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musumeci, L.; Bongiorni, C.; Tautz, L.; Edwards, R.A.; Osterman, A.; Perego, M.; Mustelin, T.; Bottini, N. Low-Molecular-Weight Protein Tyrosine Phosphatases of Bacillus subtilis. J. Bacteriol. 2005, 187, 4945–4956. [Google Scholar] [CrossRef] [Green Version]
- Petranovic, D.; Michelsen, O.; Zahradka, K.; Silva, C.; Petranovic, M.; Jensen, P.R.; Mijakovic, I. Bacillus subtilis strain deficient for the protein-tyrosine kinase PtkA exhibits impaired DNA replication. Mol. Microbiol. 2007, 63, 1797–1805. [Google Scholar] [CrossRef]
- Palmer, K.L.; Godfrey, P.; Griggs, A.; Kos, V.N.; Zucker, J.; Desjardins, C.; Cerqueira, G.; Gevers, D.; Walker, S.; Wortman, J.; et al. Comparative Genomics of Enterococci: Variation in Enterococcus faecalis, Clade Structure in E. faecium, and Defining Characteristics of E. gallinarum and E. casseliflavus. mBio 2012, 3, e00318-11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, Z.; Harvey, R.M.; Paton, J.C.; Standish, A.J.; Morona, R. Role of Streptococcus pneumoniae OM001 operon in capsular polysaccharide production, virulence and survival in human saliva. PLoS ONE 2018, 13, e0190402. [Google Scholar] [CrossRef]
- Eshi, L.; Epigeonneau, N.; Eventroux, M.; Ederouiche, A.; Bidnenko, V.; Mijakovic, I.; Noirot-Gros, M.-F. Protein-tyrosine phosphorylation interaction network in Bacillus subtilis reveals new substrates, kinase activators and kinase cross-talk. Front. Microbiol. 2014, 5, 538. [Google Scholar] [CrossRef] [Green Version]
- Mijakovic, I.; Petranovic, D.; Macek, B.; Cepo, T.; Mann, M.; Davies, J.; Jensen, P.R.; Vujaklija, D. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res. 2006, 34, 1588–1596. [Google Scholar] [CrossRef]
- Derouiche, A.; Shi, L.; Bidnenko, V.; Ventroux, M.; Pigonneau, N.; Franz-Wachtel, M.; Kalantari, A.; Nessler, S.; Noirot-Gros, M.; Mijakovic, I. Bacillus subtilis SalA is a phosphorylation-dependent transcription regulator that represses scoC and activates the production of the exoprotease AprE. Mol. Microbiol. 2015, 97, 1195–1208. [Google Scholar] [CrossRef] [Green Version]
- Ge, R.; Shan, W. Bacterial Phosphoproteomic Analysis Reveals the Correlation between Protein Phosphorylation and Bacterial Pathogenicity. Genom. Proteom. Bioinform. 2011, 9, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Karthik, M.; Meenakshi, S.; Munavar, M. Unveiling the molecular basis for pleiotropy in selected rif mutants of Escherichia coli: Possible role for Tyrosine in the Rif binding pocket and fast movement of RNA polymerase. Gene 2019, 713, 143951. [Google Scholar] [CrossRef]
- Pan, X.; Chen, X.; Su, X.; Feng, Y.; Tao, Y.; Dong, Z. Involvement of SpoVG in hemolysis caused by Bacillus subtilis. Biochem. Biophys. Res. Commun. 2014, 443, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Schulthess, B.; Meier, S.; Homerova, D.; Goerke, C.; Wolz, C.; Kormanec, J.; Berger-Bächi, B.; Bischoff, M. Functional Characterization of the σ B -Dependent yabJ—SpoVG Operon in Staphylococcus aureus: Role in Methicillin and Glycopeptide Resistance. Antimicrob. Agents Chemother. 2009, 53, 1832–1839. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Pandey, S.; Dhamija, E.; Jaiswal, S.; Yabaji, S.; Srivastava, K.K. ATP synthase, an essential enzyme in growth and multiplication is modulated by protein tyrosine phosphatase in Mycobacterium tuberculosis H37Ra. Biochimie 2019, 165, 156–160. [Google Scholar] [CrossRef]
- Tyagi, P.; Dharmaraja, A.T.; Bhaskar, A.; Chakrapani, H.; Singh, A. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide. Free. Radic. Biol. Med. 2015, 84, 344–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manicheva, O.A.; Vishnevskiĭ, B.I.; Miakotina, E.N. Accelerated determination of the Mycobacterium tuberculosis drug re-sistance with a semiliquid culture medium. Klin. Lab. Diagn. 2003, 7, 50–52. [Google Scholar]
- Zeitlinger, M.A.; Derendorf, H.; Mouton, J.W.; Cars, O.; Craig, W.A.; Andes, D.; Theuretzbacher, U. Protein Binding: Do We Ever Learn? Antimicrob. Agents Chemother. 2011, 55, 3067–3074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imber, M.; Pietrzyk-Brzezinska, A.J.; Antelmann, H. Redox regulation by reversible protein S-thiolation in Gram-positive bacteria. Redox Biol. 2019, 20, 130–145. [Google Scholar] [CrossRef]
- Mouton, J.W.; Vinks, A. Pharmacokinetic/Pharmacodynamic Modelling of Antibacterials in Vitro and In Vivo Using Bacterial Growth and Kill Kinetics. Clin. Pharmacokinet. 2005, 44, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A.; Gollan, B.; Helaine, S. Persistent bacterial infections and persister cells. Nat. Rev. Genet. 2017, 15, 453–464. [Google Scholar] [CrossRef]
- McCall, I.C.; Shah, N.; Govindan, A.; Baquero, F.; Levin, B.R. Antibiotic Killing of Diversely Generated Populations of Nonreplicating Bacteria. Antimicrob. Agents Chemother. 2019, 63, e02360-18. [Google Scholar] [CrossRef] [Green Version]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. In Virulence Mechanisms of Bacterial Pathogens; Kudva, I.T., Cornick, N.A., Plummer, P.J., Zhang, Q., Nicholson, T.L., Bannantine, J.P., Bellaire, B.H., Eds.; ASM Press: Washington, DC, USA, 2016; pp. 481–511. [Google Scholar]
- Meletiadis, J.; Pournaras, S.; Roilides, E.; Walsh, T.J. Defining Fractional Inhibitory Concentration Index Cutoffs for Additive Interactions Based on Self-Drug Additive Combinations, Monte Carlo Simulation Analysis, and In Vitro—In Vivo Correlation Data for Antifungal Drug Combinations against Aspergillus fumigatus. Antimicrob. Agents Chemother. 2010, 54, 602–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ocampo, P.S.; Lázár, V.; Papp, B.; Arnoldini, M.; Wiesch, P.A.Z.; Busa-Fekete, R.; Fekete, G.; Pál, C.; Ackermann, M.; Bonhoeffer, S. Antagonism between Bacteriostatic and Bactericidal Antibiotics Is Prevalent. Antimicrob. Agents Chemother. 2014, 58, 4573–4582. [Google Scholar] [CrossRef] [Green Version]
- Chukwudi, C.U. rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines. Antimicrob. Agents Chemother. 2016, 60, 4433–4441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belenky, P.; Ye, J.D.; Porter, C.B.; Cohen, N.R.; Lobritz, M.A.; Ferrante, T.; Jain, S.; Korry, B.J.; Schwarz, E.G.; Walker, G.C.; et al. Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage. Cell Rep. 2015, 13, 968–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coulson, G.B.; Johnson, B.K.; Zheng, H.; Colvin, C.J.; Fillinger, R.J.; Haiderer, E.R.; Hammer, N.D.; Abramovitch, R.B. Targeting Mycobacterium tuberculosis Sensitivity to Thiol Stress at Acidic pH Kills the Bacterium and Potentiates Antibiotics. Cell Chem. Biol. 2017, 24, 993–1004.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, X.; Jiang, L.; Han, W.; Xie, X.; Jin, Y.; He, X.; Wu, R. Novel Mutation Sites in the Development of Vancomycin- Intermediate Resistance in Staphylococcus aureus. Front. Microbiol. 2017, 7, 2163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, Y.; Cui, L.; Katayama, Y.; Kozue, K.; Hiramatsu, K. Impact of rpoB Mutations on Reduced Vancomycin Susceptibility in Staphylococcus aureus. J. Clin. Microbiol. 2011, 49, 2680–2684. [Google Scholar] [CrossRef] [Green Version]
- Barriere, S.L. Clinical, economic and societal impact of antibiotic resistance. Expert Opin. Pharmacother. 2014, 16, 151–153. [Google Scholar] [CrossRef] [Green Version]
- Lazo, J.S.; McQueeney, K.E.; Sharlow, E.R. New Approaches to Difficult Drug Targets: The Phosphatase Story. SLAS Discov. Adv. Life Sci. R&D 2017, 22, 1071–1083. [Google Scholar] [CrossRef] [Green Version]
- Ruddraraju, K.V.; Zhang, Z.-Y. Covalent inhibition of protein tyrosine phosphatases. Mol. BioSyst. 2017, 13, 1257–1279. [Google Scholar] [CrossRef]
- Stanford, S.M.; Bottini, N. Targeting Tyrosine Phosphatases: Time to End the Stigma. Trends Pharmacol. Sci. 2017, 38, 524–540. [Google Scholar] [CrossRef] [PubMed]
- Bocian-Ostrzycka, K.M.; Grzeszczuk, M.J.; Banaś, A.M.; Jagusztyn-Krynicka, E.K. Bacterial thiol oxidoreductases—From basic research to new antibacterial strategies. Appl. Microbiol. Biotechnol. 2017, 101, 3977–3989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Faria, N.C.G.; Martins, M.D.L.; Chan, K.L.; Campbell, B.C. Enhancement of Antimycotic Activity of Amphotericin B by Targeting the Oxidative Stress Response of Candida and Cryptococcus with Natural Dihydroxybenzaldehydes. Front. Microbiol. 2012, 3, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavangar, F.; Sepehri, H.; Jazi, M.S.; Asadi, J. Amphotericin B potentiates the anticancer activity of doxorubicin on the MCF-7 breast cancer cells. J. Chem. Biol. 2017, 10, 143–150. [Google Scholar] [CrossRef]
- CLSI. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved standard M11; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2007. [Google Scholar]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; CLSI standard M07; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2009. [Google Scholar]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Denisenko, P.P.; Sapronov, N.S.; Tarasenko, A.A. Antimicrobial and radioprotective compounds. WO/2002/102789, 14 June 2002. [Google Scholar]
- Nguyen, L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch. Toxicol. 2016, 90, 1585–1604. [Google Scholar] [CrossRef] [Green Version]
- Bach, H.; Wong, D.; Av-Gay, Y. Mycobacterium tuberculosis PtkA is a novel protein tyrosine kinase whose substrate is PtpA. Biochem. J. 2009, 420, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Beresford, N.J.; Mulhearn, D.; Szczepankiewicz, B.; Liu, G.; Johnson, M.E.; Fordham-Skelton, A.; Abad-Zapatero, C.; Cavet, J.S.; Tabernero, L. Inhibition of MptpB phosphatase from Mycobacterium tuberculosis impairs mycobacterial survival in macrophages. J. Anitmicrob. Chemother. 2009, 63, 928–936. [Google Scholar] [CrossRef] [Green Version]
- Beer, J.; Wagner, C.C.; Zeitlinger, M. Protein Binding of Antimicrobials: Methods for Quantification and for Investigation of its Impact on Bacterial Killing. AAPS J. 2009, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Eng, R.H.; Cherubin, C.; Smith, S.M.; Buccini, F. Inoculum effect of beta-lactam antibiotics on Enterobacteriaceae. Antimicrob. Agents Chemother. 1985, 28, 601–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas, J.R.; Jaberi-Douraki, M.; Wen, X.; Volkova, V.V. Mathematical modeling of the ‘inoculum effect’: Six applicable models and the MIC advancement point concept. FEMS Microbiol. Lett. 2020, 367, fnaa012. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Chen, B.Y.; Tian, S.F.; Chu, Y.Z. The inoculum effect of antibiotics against CTX-M-extended-spectrum β-lactamase-producing Escherichia coli. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Phylum a | |||||
---|---|---|---|---|---|
Order (Family) | |||||
Species | MIC100 b | ±SD | MBC99.9 b | ±SD | |
Firmicutes/Actinobacteria (Gram-positive) | |||||
Bacillales (Bacillaceae) | |||||
Bacillus subtilis ATCC6633 | 8 | 0 | 16 | 0 | |
B. cereus RMIT 30/7 | 9.2 | 6.6 | 12.1 | 4.4 | |
Enterococcus faecalis ATCC 29212 * | 16 | 0 | >512 | ||
E. faecalis antibiotic resistant clinical strains (7) | 16 | 0 | >512 | ||
E. faecium VRE 345/19-1 & VRE/19 | 25.4 | 9.2 | >512 | ||
Bacillales (Staphylococcaeae) | |||||
Staphylococcus aureus ATCC 29213 * | 4.8 | 1.9 | ≥512 | ||
S. aureus antibiotic resistant clinical strains (12) | 5.0 | 1.9 | ≥512 | ||
S. epidermidis ATCC 35984 | 5.0 | 2 | ≥512 | ||
Lactobacillalles (Streptococcceae) | |||||
Streptococcus pneumoniae ATCC 49619 * | 16.0 | 0 | 32 | 0 | |
S. pyogenes ATCC 19615 | 2.8 | 1.2 | 5.7 | 2.3 | |
S. pyogenes clinical strains (10) | 2.7 | 1 | 3.4 | 0.85 | |
Lactobacillalles (Lactobacillaceae) | |||||
Lactobacillus casei RMIT 190/3 | 49 | 21.5 | 338 | 200 | |
Clostridiales (Peptostreptococcaceae) | |||||
Clostridium difficile ATCC 9689 (Clostridiodes difficile, Peptoclostridium difficile) | 8 | 0 | 16 | 0 | |
C. difficile (Clinical isolate) | 6 | 2 | 10 | 5 | |
Clostridiales (Clostridiaceae) | |||||
C. perfringens NCTC 8237 | 5 | 2 | 10 | 5 | |
C. sporogenes RMIT 52/4 | 1 | 0 | 1 | 0 | |
C. tetani RMIT 52/5 | 1 | 0 | 1 | 0 | |
Corynebacteriales (Corynebacteriaceae) | |||||
Corynebacterium xerosis RMIT53/5 | 8 | 0 | 16 | 0 | |
Average | 10.5 | 4.7 | 281.6 | 40.9 | |
Proteobacteria (α,β,γ) (Gram-negative, non-enteric, lipo-oligosaccharide) | |||||
Pasteurellales (Pasteurellaceae) | |||||
Haemophilus influenzae (γ) ATCC 49247 | 0.125 | 0 | 0.125 | 0 | |
Pasteurella multocida (γ) RMIT 284/1-2 | 2.2 | 0.8 | 3.2 | 1.0 | |
Neisseriales (Neisseriaceae) | |||||
Neisseria gonorrhoeae (β) RMIT 240/2 | 5 | 2.3 | 5 | 2.3 | |
N. gonorrhoeae WHO strain VI | 2 | 0 | 2 | 0 | |
N. meningitidis ATCC 13090 | 0.5 | 0 | 0.5 | 0 | |
Rhizobiales (Brucellaceae) | |||||
Brucella abortus (α) RMIT 33/1 48 h | 42 | 17 | 76 | 32 | |
Pseudomonadales (Moraxellaceae) | |||||
Acinetobacter calcoaceticus var. anitratus (γ) RMIT3131 | 128 | 0 | 256 | 0 | |
Moraxella catarrhalis (γ) RMIT 211/2 | 16 | 0 | 32 | 0 | |
Average | 24.5 | 4.9 | 46.8 | 8.9 | |
Proteobacteria (γ,ε) (Gram-negative, enteric, lipo-oligosaccharide) | |||||
Campylobacteriales (Campylobactereaceae) | |||||
Campylobacter jejuni (δ/ε) ATCC 43446 (0:19) | 202 | 74 | 323 | 148 | |
C. jejuni NCTC11168 | 203 | 66.1 | 431 | 128 | |
C. jejuni 54/1-2 | 203 | 66 | 431 | 128 | |
C. jejuni 331 | 161 | 73.9 | 362 | 181 | |
C. jejuni antibiotic resistant strain (6) | 276 | 82.79 | 424 | 171 | |
C. coli | 202 | 74 | 406 | 148 | |
C. laridis | 128 | 0 | 256 | 0 | |
C. sputorum | 128 | 0 | 256 | 0 | |
C. foetus | 203 | 74 | 512 | 0 | |
C. hyointestinalis | 128 | 0 | 256 | 0 | |
Average | 183.5 | 33.73 | 365.6 | 75.4 | |
Bacteroidales (Bacteriodaceae) | |||||
Bacteroides fragilis NCTC9343 | 23 | 14 | 39 | 16 | |
Enterobacterales (Yersiniaceae) | |||||
Yersinia enterocolitica (γ) ATCC 23715 | 16 | 0 | 32 | ||
Y. enterocolitica ATCC 70020 | 16 | 0 | 32 | ||
Average | 18.3 | 5.90 | 34.3 | 14.3 | |
Proteobacteria (γ) (Gram-negative, enteric, lipopolysaccharide) | |||||
Enterobacterales (Morganellaceae) | |||||
Proteus mirabilis RMIT 281/1 | 180 | 74 | >512 c | ||
P. mirabilis clinical strains (6) | 64 | 0 | >512 | ||
P. vulgaris RMIT 281/3 | 53 | 16 | 181 | 73 | |
P. vulgaris ATCC13315 | 8 | 0 | 25 | 9 | |
Average | 76.3 | 30.44 | 103.0 | 36.8 | |
Enterobacterales (Enterobacteriaceae) | |||||
Enterobacter aerogenes | 512 | ≥512 c | |||
Escherichia coli ATCC 27853 | 323 | 132.2 | ≥512 c | ||
E. coli ATCC 25922 * | 512 | >512 c | |||
E. coli RMIT 1110/1-5 (5) | >512 | ||||
Klebsiella aerogenes (Areobacter) ATCC 13048 | >512 | >512 c | |||
K. oxytoca RMIT 180/4 | ≥512 | >512 c | |||
K. pneumoniae ATCC13833 | ≥512 | ||||
K. pneumoniae RMIT 180/2-6 | ≥512 | ||||
Salmonella Typhimurium ATCC 700720 | 512 | 0 | >512 c | ||
S. enterica Typhimurium ATCC14028 | 512 | >512 c | |||
Serratia marcescens RMIT | >512 | >512 c | |||
Pseudomonadales (Pseudomonadaceae) | |||||
Pseudomonas aeruginosa ATCC 27853 | >512 | >512 c |
CAMHB Control | Cysteine (mM) | Dithiothreitol (DTT) (mM) | |||
---|---|---|---|---|---|
1 | 10 | 1 | 10 | ||
S. aureus ATCC 29213 | 4 | 4 | 6 | 11 | 304 |
E. faecalis ATCC 29212 | 10 | 10 | 23 | 32 | 362 |
B. subtilis ATCC 6633 | 5 | 7 | 10 | 21 | 362 |
P. vulgaris ATCC 13315 | 6 | 8 | 11 | 8 | 215 |
Mean ± SEM | 5.9 ± 2.6 | 6.8 ± 2.5 | 11.1 ± 7.3 | 15.6 ± 11 | 304 ± 69 |
FICI a and Median ΣFIC b (Range) for NPBD in Combination with Antibiotics: | |||||
---|---|---|---|---|---|
Erythromycin | Ciprofloxacin | Vancomycin | Tetracycline | ||
S. aureus | FICI | 1.4 ± 0.4 | 0.99 ± 0.25 | 1.15 ± 0.3 | 0.92 ± 0.25 |
ΣFICmin | 0.88 (0.75–1.02) c | 1 (0.27–1.03) | 1 (0.56–1.01) | 0.76 (0.52–1) c | |
ΣFICmax | 1.38 (1.25–1.5) c | 1.25 (1.01–4.5) | 1.5 (1.25–4) | 1.38 (1.25–1.5) c | |
E. faecalis | FICI | 0.75 ± 0.22 | 1.09 ± 0.16 | 1.03 ± 0.29 | 0.51 ± 0.12 |
ΣFICmin | ND | 0.75 (0.56–1) | 0.5 (0.38–1.03) | 0.19 * (0.19–0.25) | |
ΣFICmax | ND | 1.13 (1.13–2.13) | 1.13 * (1.02–1.5) | 1.03 * (0.56–1.06) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, K.; Nicoletti, G.; Cornell, H. Antibacterial Profile of a Microbicidal Agent Targeting Tyrosine Phosphatases and Redox Thiols, Novel Drug Targets. Antibiotics 2021, 10, 1310. https://doi.org/10.3390/antibiotics10111310
White K, Nicoletti G, Cornell H. Antibacterial Profile of a Microbicidal Agent Targeting Tyrosine Phosphatases and Redox Thiols, Novel Drug Targets. Antibiotics. 2021; 10(11):1310. https://doi.org/10.3390/antibiotics10111310
Chicago/Turabian StyleWhite, Kylie, Gina Nicoletti, and Hugh Cornell. 2021. "Antibacterial Profile of a Microbicidal Agent Targeting Tyrosine Phosphatases and Redox Thiols, Novel Drug Targets" Antibiotics 10, no. 11: 1310. https://doi.org/10.3390/antibiotics10111310
APA StyleWhite, K., Nicoletti, G., & Cornell, H. (2021). Antibacterial Profile of a Microbicidal Agent Targeting Tyrosine Phosphatases and Redox Thiols, Novel Drug Targets. Antibiotics, 10(11), 1310. https://doi.org/10.3390/antibiotics10111310