In-Vitro Selection of Ceftazidime/Avibactam Resistance in OXA-48-Like-Expressing Klebsiella pneumoniae: In-Vitro and In-Vivo Fitness, Genetic Basis and Activities of β-Lactam Plus Novel β-Lactamase Inhibitor or β-Lactam Enhancer Combinations
Abstract
:1. Introduction
2. Results
2.1. Serial Transfer Study
2.2. Whole Genome Sequencing
2.3. In-Vivo Infectivity and Resistance
2.4. Susceptibility Profile of Serial Transfer Mutants to Combinations of Ceftazidime or Cefepime with β-Lactamase Inhibitors/β-Lactam Enhancer
3. Discussion
4. Materials and Methods
4.1. Media, Antibiotics and Strains
4.2. Antimicrobial Susceptibility Testing
4.3. Serial Transfer Studies
4.4. In-Vitro Growth Assessments of Mutants
4.5. Molecular Characterization of Resistance Mechanisms
4.6. Infectivity and Resistance Studies in Murine Peritonitis Model Employing Ceftazidime/Avibactam-Resistant Mutants
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pitout, J.D.D.; Peirano, G.; Kock, M.M.; Strydom, K.A.; Matsumura, Y. The Global Ascendency of OXA-48-Type Carbapenemases. Clin. Microbiol. Rev. 2019, 33, e00102-19. [Google Scholar] [CrossRef]
- Carrër, A.; Poirel, L.; Eraksoy, H.; Cagatay, A.A.; Badur, S.; Nordmann, P. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob. Agents Chemother. 2008, 52, 2950–2954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalpoe, J.S.; Al Naiemi, N.; Poirel, L.; Nordmann, P. Detection of an Ambler class D OXA-48-type β-lactamase in a Klebsiella pneumoniae strain in The Netherlands. J. Med. Microbiol. 2011, 60, 677–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirel, L.; Potron, A.; Nordmann, P. OXA-48-like carbapenemases: The phantom menace. J. Antimicrob. Chemother. 2012, 67, 1597–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankar, C.; Mathur, P.; Venkatesan, M.; Pragasam, A.K.; Anandan, S.; Khurana, S.; Veeraraghavan, B. Rapidly disseminating blaOXA-232 carrying Klebsiella pneumoniae belonging to ST231 in India: Multiple and varied mobile genetic elements. BMC Microbiol. 2019, 19, 137. [Google Scholar] [CrossRef]
- Shanthi, M.; Sekar, U.; Arunagiri, K.; Bramhne, H.G. OXA-181 Beta Lactamase is not a Major Mediator of Carbapenem Resistance in Enterobacteriaceae. J. Clin. Diagn. Res. JCDR 2013, 7, 1986–1988. [Google Scholar] [CrossRef]
- Lomovskaya, O.; Sun, D.; Rubio-Aparicio, D.; Nelson, K.; Tsivkovski, R.; Griffith, D.C.; Dudley, M.N. Vaborbactam: Spectrum of Beta-Lactamase Inhibition and Impact of Resistance Mechanisms on Activity in Enterobacteriaceae. Antimicrob. Agents Chemother. 2017, 61, e01443-17. [Google Scholar] [CrossRef] [Green Version]
- Haidar, G.; Clancy, C.J.; Chen, L.; Samanta, P.; Shields, R.K.; Kreiswirth, B.N.; Nguyen, M.H. Identifying Spectra of Activity and Therapeutic Niches for Ceftazidime-Avibactam and Imipenem-Relebactam against Carbapenem-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2017, 61, e00642-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alatoom, A.; Elsayed, H.; Lawlor, K.; AbdelWareth, L.; El-Lababidi, R.; Cardona, L.; Mooty, M.; Bonilla, M.-F.; Nusair, A.; Mirza, I. Comparison of antimicrobial activity between ceftolozane–tazobactam and ceftazidime–avibactam against multidrug-resistant isolates of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Int. J. Infect. Dis. 2017, 62, 39–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mushtaq, S.; Sadouki, Z.; Vickers, A.; Livermore, D.M.; Woodford, N. In Vitro Activity of Cefiderocol, a Siderophore Cephalosporin, against Multidrug-Resistant Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2020, 64, e01582-20. [Google Scholar] [CrossRef]
- Kidd, J.M.; Livermore, D.M.; Nicolau, D.P. The difficulties of identifying and treating Enterobacterales with OXA-48-like carbapenemases. Clin. Microbiol. Infect. 2020, 26, 401–403. [Google Scholar] [CrossRef]
- Mushtaq, S.; Vickers, A.; Doumith, M.; Ellington, M.J.; Woodford, N.; Livermore, D.M. Activity of β-lactam/taniborbactam (VNRX-5133) combinations against carbapenem-resistant Gram-negative bacteria. J. Antimicrob. Chemother. 2021, 76, 160–170. [Google Scholar] [CrossRef]
- Morrissey, I.; Magnet, S.; Hawser, S.; Shapiro, S.; Knechtle, P. In Vitro Activity of Cefepime-Enmetazobactam against Gram-Negative Isolates Collected from U.S. and European Hospitals during 2014–2015. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Thomson, K.S.; AbdelGhani, S.; Snyder, J.W.; Thomson, G.K. Activity of Cefepime-Zidebactam against Multidrug-Resistant (MDR) Gram-Negative Pathogens. Antibiotics 2019, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Humphries, R.M.; Yang, S.; Hemarajata, P.; Ward, K.W.; Hindler, J.A.; Miller, S.A.; Gregson, A. First Report of Ceftazidime-Avibactam Resistance in a KPC-3-Expressing Klebsiella pneumoniae Isolate. Antimicrob. Agents Chemother. 2015, 59, 6605–6607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shields, R.K.; Chen, L.; Cheng, S.; Chavda, K.D.; Press, E.G.; Snyder, A.; Pandey, R.; Doi, Y.; Kreiswirth, B.N.; Nguyen, M.H.; et al. Emergence of Ceftazidime-Avibactam Resistance Due to Plasmid-Borne blaKPC-3 Mutations during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections. Antimicrob. Agents Chemother. 2017, 61, e02097-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Räisänen, K.; Koivula, I.; Ilmavirta, H.; Puranen, S.; Kallonen, T.; Lyytikäinen, O.; Jalava, J. Emergence of ceftazidime-avibactam-resistant Klebsiella pneumoniae during treatment, Finland, December 2018. Eur. Surveill. 2019, 24, 1900256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haidar, G.; Clancy, C.J.; Shields, R.K.; Hao, B.; Cheng, S.; Nguyen, M.H. Mutations in bla(KPC-3) That Confer Ceftazidime-Avibactam Resistance Encode Novel KPC-3 Variants That Function as Extended-Spectrum β-Lactamases. Antimicrob. Agents Chemother. 2017, 61, e02534-16. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Shi, Q.; Hu, H.; Hong, B.; Wu, X.; Du, X.; Akova, M.; Yu, Y. Emergence of ceftazidime/avibactam resistance in carbapenem-resistant Klebsiella pneumoniae in China. Clin. Microbiol. Infect. 2020, 26, 124.e121–124.e124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livermore, D.M.; Warner, M.; Jamrozy, D.; Mushtaq, S.; Nichols, W.W.; Mustafa, N.; Woodford, N. In vitro selection of ceftazidime-avibactam resistance in Enterobacteriaceae with KPC-3 carbapenemase. Antimicrob. Agents Chemother. 2015, 59, 5324–5330. [Google Scholar] [CrossRef] [Green Version]
- Kazmierczak, K.M.; Bradford, P.A.; Stone, G.G.; de Jonge, B.L.M.; Sahm, D.F. In Vitro Activity of Ceftazidime-Avibactam and Aztreonam-Avibactam against OXA-48-Carrying Enterobacteriaceae Isolated as Part of the International Network for Optimal Resistance Monitoring (INFORM) Global Surveillance Program from 2012 to 2015. Antimicrob. Agents Chemother. 2018, 62, e00592-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livermore, D.M.; Mushtaq, S.; Doumith, M.; Jamrozy, D.; Nichols, W.W.; Woodford, N. Selection of mutants with resistance or diminished susceptibility to ceftazidime/avibactam from ESBL- and AmpC-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 3336–3345. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Nguyen, M.H.; Press, E.G.; Chen, L.; Kreiswirth, B.N.; Clancy, C.J. In Vitro Selection of Meropenem Resistance among Ceftazidime-Avibactam-Resistant, Meropenem-Susceptible Klebsiella pneumoniae Isolates with Variant KPC-3 Carbapenemases. Antimicrob. Agents Chemother. 2017, 61, e00079-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumbarello, M.; Trecarichi, E.M.; Corona, A.; De Rosa, F.G.; Bassetti, M.; Mussini, C.; Menichetti, F.; Viscoli, C.; Campoli, C.; Venditti, M.; et al. Efficacy of Ceftazidime-Avibactam Salvage Therapy in Patients With Infections Caused by Klebsiella pneumoniae Carbapenemase-producing K. pneumoniae. Clin. Infect. Dis. 2019, 68, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shields, R.K.; Potoski, B.A.; Haidar, G.; Hao, B.; Doi, Y.; Chen, L.; Press, E.G.; Kreiswirth, B.N.; Clancy, C.J.; Nguyen, M.H. Clinical Outcomes, Drug Toxicity, and Emergence of Ceftazidime-Avibactam Resistance Among Patients Treated for Carbapenem-Resistant Enterobacteriaceae Infections. Clin. Infect. Dis. 2016, 63, 1615–1618. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-Z.; Nikaido, H. Efflux-mediated drug resistance in bacteria: An update. Drugs 2009, 69, 1555–1623. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.B.; Singh, B.B.; Priyadarshi, N.; Chauhan, N.K.; Rajamohan, G. Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae. PLoS ONE 2014, 9, e96288. [Google Scholar] [CrossRef]
- Tsai, Y.-K.; Fung, C.-P.; Lin, J.-C.; Chen, J.-H.; Chang, F.-Y.; Chen, T.-L.; Siu, L.K. Klebsiella pneumoniae Outer Membrane Porins OmpK35 and OmpK36 Play Roles in both Antimicrobial Resistance and Virulence. Antimicrob. Agents Chemother. 2011, 55, 1485–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhagirath, A.Y.; Li, Y.; Patidar, R.; Yerex, K.; Ma, X.; Kumar, A.; Duan, K. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int. J. Mol. Sci. 2019, 20, 1781. [Google Scholar] [CrossRef] [Green Version]
- Both, A.; Büttner, H.; Huang, J.; Perbandt, M.; Belmar Campos, C.; Christner, M.; Maurer, F.P.; Kluge, S.; König, C.; Aepfelbacher, M.; et al. Emergence of ceftazidime/avibactam non-susceptibility in an MDR Klebsiella pneumoniae isolate. J. Antimicrob. Chemother. 2017, 72, 2483–2488. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, C.; Sørum, V.; Thomassen, A.M.; Johnsen, P.J.; Leiros, H.-K.S.; Samuelsen, Ø. OXA-48-Mediated Ceftazidime-Avibactam Resistance Is Associated with Evolutionary Trade-Offs. mSphere 2019, 4, e00024-19. [Google Scholar] [CrossRef] [Green Version]
- Egorov, A.; Rubtsova, M.; Grigorenko, V.; Uporov, I.; Veselovsky, A. The Role of the Omega-Loop in Regulation of the Catalytic Activity of TEM-Type beta-Lactamases. Biomolecules 2019, 9, 854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endimiani, A.; Perez, F.; Bonomo, R.A. Cefepime: A reappraisal in an era of increasing antimicrobial resistance. Expert Rev. Anti-Infect. Ther. 2008, 6, 805–824. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Castanheira, M.; Huband, M.; Jones, R.N.; Flamm, R.K. WCK 5222 (Cefepime-Zidebactam) Antimicrobial Activity against Clinical Isolates of Gram-Negative Bacteria Collected Worldwide in 2015. Antimicrob. Agents Chemother. 2017, 61, e00072-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moya, B.; Barcelo, I.M.; Cabot, G.; Torrens, G.; Palwe, S.; Joshi, P.; Umarkar, K.; Takalkar, S.; Periasamy, H.; Bhagwat, S.; et al. In Vitro and In Vivo Activities of β-Lactams in Combination with the Novel β-Lactam Enhancers Zidebactam and WCK 5153 against Multidrug-Resistant Metallo-β-Lactamase-Producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2019, 63, e00128-19. [Google Scholar] [CrossRef] [Green Version]
- Moya, B.; Bhagwat, S.; Cabot, G.; Bou, G.; Patel, M.; Oliver, A. Effective inhibition of PBPs by cefepime and zidebactam in the presence of VIM-1 drives potent bactericidal activity against MBL-expressing Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2020, 75, 1474–1478. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Hackel, M.A.; Bouchillon, S.K.; Sahm, D.F. In Vitro Activity of WCK 5222 (Cefepime-Zidebactam) against Worldwide Collected Gram-Negative Bacilli Not Susceptible to Carbapenems. Antimicrob. Agents Chemother. 2020, 64, e01432-20. [Google Scholar] [CrossRef]
- Drusano, G.L. Pharmacokinetic optimisation of β-lactams for the treatment of ventilator-associated pneumonia. Eur. Respir. Rev. 2007, 16, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Levison, M.E.; Levison, J.H. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect. Dis. Clin. N. Am. 2009, 23, 791-vii. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Schuch, R. Low Propensity of Resistance Development in vitro in Staphylococcus aureus with Lysin CF-301. In Proceedings of the ASM Microbe, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Finney, D. Probit Analysis; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
Isolate ID | β-Lactamases | Ceftazidime-Avibactam MIC (mg/L) |
---|---|---|
S465 | SHV-1, TEM-1, CTX-M-15, OXA-1, CMY-4, OXA-181 | 1 |
AI1547 | SHV-1, TEM-1, CTX-M-15, DHA-1, CMY-4, OXA-232 | 1 |
AI1235 | SHV-1, TEM-1, CTX-M-15, OXA-1, OXA-18, OXA-232 | 0.5 |
AI2040 | SHV-1, TEM-1, CTX-M-15, OXA-232 | 1 |
S471 | SHV-1, TEM-1, CTX-M-15, DHA-1, CMY-4, OXA-181 | 1 |
AI1646 | SHV-1, TEM-1, CTX-M-15, OXA-232 | 0.5 |
CMC387 | SHV-1, TEM-1, CTX-M-15, OXA-1, OXA-18, OXA-232 | 2 |
CMC432 | SHV-1, TEM-1, CTX-M-15, OXA-1, OXA-232 | 2 |
CMC309 | SHV-1, OXA-1, OXA-232 | 2 |
CMC307 | SHV-1, TEM-1, CTX-M-15, OXA-1, OXA-18, OXA-10, OXA-181 | 4 |
Isolate Name | Ceftazidime-Avibactam MIC (mg/L) | Mutated Gene | Gene Length (bp) | Mutation in DNA Sequence | Change in Protein | Probable Reason(s) of Ceftazidime/Avibactam Resistance |
---|---|---|---|---|---|---|
S465 | 1 | cmy-4 | 1146 | G535A | G179S | β-lactamase |
AI1547 | 1 | kpnG mdtA mdtB | 117311103123 | A304G A719T T1751G | K102E Q240L I584S | efflux |
AI1235 | 0.5 | mrdA cpxA | 19021374 | A1061C G271A | N354A E91K | efflux/impermeability |
AI2040 | 1 | rpoE | 576 | C497T | P166L | efflux/impermeability |
S471 | 1 | envZ ompk36 | 13561125 | A998T T1109A | H333L L370Q | impermeability |
AI1646 | 0.5 | acrD | 3114 | G862A | G288S | efflux |
CMC387 | 2 | acrB cpxA | 31471374 | T1897A G1243A | W633R G415S | efflux, efflux/impermeability |
CMC432 | 2 | envZ | 1356 | T116G | I39S | efflux/impermeability |
CMC309 | 2 | acrB | 3147 | T416G | V139G | efflux |
CMC307 | 4 | acrB | 3147 | A403C; T1196A | S135R V399E | efflux |
Isolate ID | Parent/ Mutant | CAZ | CAZ + AVI-4 | FEP | FEP + AVI-4 | FEP + REL-4 | FEP + TAN-4 | FEP + ZID 1:1 | FEP + VAB-8 | FEP + ENME-8 | MEM | IPM | IPM + REL-4 | IPM + AVI-4 | ZID | CAZ + REL-4 | CAZ + TAN-4 | CAZ + ZID 1:1 | CAZ + VAB-8 | CAZ + ENME-8 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S465 | Parent | >128 | 1 | 64 | 0.5 | 2 | 4 | 2 | 8 | 8 | 32 | 8 | 8 | 0.12 | 4 | 4 | 1 | 2 | 128 | >128 |
Day15 Mutant | >128 | 32 | 128 | 0.5 | 1 | 2 | 4 | 16 | 8 | 8 | 8 | 8 | 0.25 | 4 | 128 | 128 | 8 | >128 | >128 | |
AI 1547 | Parent | >128 | 1 | >128 | 1 | 4 | 1 | 1 | 16 | 8 | 32 | 4 | 2 | 0.25 | >128 | 8 | 4 | 1 | 64 | 32 |
Day15 Mutant | >128 | 128 | 128 | 1 | 4 | 2 | 1 | 16 | 16 | 32 | 8 | 8 | 0.25 | >128 | >128 | >128 | 1 | 0.25 | 32 | |
AI 1235 | Parent | >128 | 0.5 | >128 | 1 | 8 | 4 | 1 | 32 | 16 | 32 | 4 | 2 | 0.25 | 2 | 8 | 1 | 0.5 | 16 | 8 |
Day15 Mutant | >128 | 8 | >128 | 16 | 32 | 16 | 2 | 128 | 16 | 16 | 16 | 16 | 0.5 | 2 | 32 | 16 | 2 | 64 | 64 | |
AI 2040 | Parent | >128 | 1 | >128 | 1 | 4 | 2 | 2 | 16 | 32 | 32 | 4 | 2 | 0.12 | >128 | 4 | 2 | 2 | 8 | 8 |
Day15 Mutant | >128 | 64 | >128 | 16 | 64 | 64 | 8 | 128 | >128 | 128 | 32 | 16 | 0.5 | >128 | 128 | 128 | 8 | >128 | >128 | |
S 471 | Parent | >128 | 1 | >128 | 1 | 4 | 4 | 1 | 8 | 4 | 32 | 8 | 4 | 0.5 | >128 | 2 | 16 | 1 | 64 | >128 |
Day15 Mutant | >128 | 64 | >128 | 16 | >128 | 32 | 8 | >128 | >128 | 128 | 8 | 4 | 1 | >128 | >128 | 128 | 4 | >128 | >128 | |
AI 1646 | Parent | >128 | 0.5 | >128 | 0.25 | 2 | 1 | 0.5 | 16 | 8 | 32 | 4 | 4 | 0.06 | 1 | 2 | 1 | 0.5 | 8 | 4 |
Day15 Mutant | >128 | 16 | >128 | 0.25 | 1 | 0.25 | 0.5 | 32 | 4 | 0.5 | 0.25 | 0.5 | 0.5 | 0.5 | 16 | 16 | 0.5 | 32 | 16 | |
CMC 387 | Parent | >128 | 2 | >128 | 2 | 32 | 8 | 2 | 32 | 32 | 64 | 8 | 8 | 0.12 | >128 | 8 | 8 | 1 | 16 | 8 |
Day15 Mutant | >128 | 16 | 128 | 8 | 8 | 2 | 2 | 128 | 32 | 64 | 16 | 8 | 0.12 | >128 | 32 | 8 | 2 | 64 | 16 | |
CMC 432 | Parent | >128 | 2 | >128 | 2 | 8 | 8 | 1 | 32 | 32 | 32 | 8 | 4 | 0.5 | >128 | 4 | 4 | 1 | 16 | 8 |
Day15 Mutant | >128 | 16 | 128 | 8 | 16 | 8 | 1 | 32 | 16 | 32 | 4 | 2 | 1 | >128 | 16 | 16 | 1 | 32 | 16 | |
CMC 309 | Parent | 4 | 2 | 8 | 1 | 4 | 4 | 0.5 | 8 | 8 | 16 | 2 | 2 | 0.5 | >128 | 2 | 0.5 | 0.25 | 4 | 4 |
Day15 Mutant | 32 | 16 | 64 | 2 | 4 | 4 | 0.5 | 16 | 8 | 8 | 2 | 1 | 0.5 | >128 | 8 | 8 | 0.25 | 16 | 8 | |
CMC 307 | Parent | >128 | 4 | >128 | 2 | 16 | 8 | 2 | 64 | 32 | 64 | 16 | 8 | 0.06 | >128 | 16 | 8 | 2 | 64 | 64 |
Day15 Mutant | >128 | 64 | >128 | 8 | 32 | 8 | 2 | >128 | 16 | 64 | 8 | 8 | 8 | >128 | 64 | 32 | 2 | >128 | 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palwe, S.; Bakthavatchalam, Y.D.; Khobragadea, K.; Kharat, A.S.; Walia, K.; Veeraraghavan, B. In-Vitro Selection of Ceftazidime/Avibactam Resistance in OXA-48-Like-Expressing Klebsiella pneumoniae: In-Vitro and In-Vivo Fitness, Genetic Basis and Activities of β-Lactam Plus Novel β-Lactamase Inhibitor or β-Lactam Enhancer Combinations. Antibiotics 2021, 10, 1318. https://doi.org/10.3390/antibiotics10111318
Palwe S, Bakthavatchalam YD, Khobragadea K, Kharat AS, Walia K, Veeraraghavan B. In-Vitro Selection of Ceftazidime/Avibactam Resistance in OXA-48-Like-Expressing Klebsiella pneumoniae: In-Vitro and In-Vivo Fitness, Genetic Basis and Activities of β-Lactam Plus Novel β-Lactamase Inhibitor or β-Lactam Enhancer Combinations. Antibiotics. 2021; 10(11):1318. https://doi.org/10.3390/antibiotics10111318
Chicago/Turabian StylePalwe, Snehal, Yamuna Devi Bakthavatchalam, Kshama Khobragadea, Arun S. Kharat, Kamini Walia, and Balaji Veeraraghavan. 2021. "In-Vitro Selection of Ceftazidime/Avibactam Resistance in OXA-48-Like-Expressing Klebsiella pneumoniae: In-Vitro and In-Vivo Fitness, Genetic Basis and Activities of β-Lactam Plus Novel β-Lactamase Inhibitor or β-Lactam Enhancer Combinations" Antibiotics 10, no. 11: 1318. https://doi.org/10.3390/antibiotics10111318
APA StylePalwe, S., Bakthavatchalam, Y. D., Khobragadea, K., Kharat, A. S., Walia, K., & Veeraraghavan, B. (2021). In-Vitro Selection of Ceftazidime/Avibactam Resistance in OXA-48-Like-Expressing Klebsiella pneumoniae: In-Vitro and In-Vivo Fitness, Genetic Basis and Activities of β-Lactam Plus Novel β-Lactamase Inhibitor or β-Lactam Enhancer Combinations. Antibiotics, 10(11), 1318. https://doi.org/10.3390/antibiotics10111318