Emergence of Nosocomial Pneumonia Caused by Colistin-Resistant Escherichia coli in Patients Admitted to Chest Intensive Care Unit
Abstract
:1. Introduction
2. Material and Methods
2.1. Bacterial Strains
2.2. Sampling Process
2.3. Antibiotic Susceptibility Testing
2.4. Colistin Susceptibility Test
2.5. Detection of mcr Genes by Multiplex PCR
2.6. Detection of Extended-Spectrum β-Lactamase and Metallo β-Lactamase Production
2.7. Identification of Different E. coli Pathotypes by mPCR
Target Gene | Sequence (5′–3′) | Amplified Product (bp) | Reference |
---|---|---|---|
mcr-1 | AGTCCGTTTGTTCTTGTGGC AGATCCTTGGTCTCGGCTTG | 320 | [10] |
mcr-2 | CAAGTGTGTTGGTCGCAGTT TCTAGCCCGACAAGCATACC | 715 | |
mcr-3 | AAATAAAAATTGTTCCGCTTATG AATGGAGATCCCCGTTTTT | 929 | |
mcr-4 | TCACTTTCATCACTGCGTTG TTGGTCCATGACTACCAATG | 1116 | |
mcr-5 | ATGCGGTTGTCTGCATTTATC TCATTGTGGTTGTCCTTTTCTG | 1644 | [27] |
EPEC, ATEC, STEC escV | ATTCTGGCTCTCTTCTTCTTTATGGCTG CGTCCCCTTTTACAAACTTCATCGC | 544 | [26] |
EPEC bfpB | GACACCTCATTGCTGAAGTCG CCAGAACACCTCCGTTATGC | 910 | |
STEC stx1 | CGATGTTACGGTTTGTTACTGTGACAGC AATGCCACGCTTCCCAGAATTG | 244 | |
STEC stx2 | GTTTTGACCATCTTCGTCTGATTATTGAG AGCGTAAGGCTTCTGCTGTGAC | 324 | |
ETEC elt | GAACAGGAGGTTTCTGCGTTAGGTG CTTTCAATGGCTTTTTTTTGGGAGTC | 655 | |
ETEC estIa | CCTCTTTTAGYCAGACARCTGAATCASTG CAGGCAGGATTACAACAAAGTTCACAG | 157 | |
ETEC estIb | TGTCTTTTTCACCTTTCGCTC CGGTACAAGCAGGATTACAACAC | 171 | |
EIEC invE | CGATAGATGGCGAGAAATTATATCCCG CGATCAAGAATCCCTAACAGAAGAATCAC | 766 | |
EAEC astA | TGCCATCAACACAGTATATCCG ACGGCTTTGTAGTCCTTCCAT | 102 | |
EAEC aggR | ACGCAGAGTTGCCTGATAAAC AATACAGAATCGTCAGCATCAGC | 400 | |
EAEC pic | AGCCGTTTCCGCAGAAGCC AAATGTCAGTGAACCGACGATTGG | 1111 | |
uidA | ATGCCAGTCCAGCGTTTTTGC AAAGTGTGGGTCAATAATCAGGAAGTG | 1487 | |
blaIMP | GGAATAGAGTGGCTTAAYTCTC GGTTTAAYAAAACAACCACC | 232 | [28] |
blaNDM-1 | CAGCGCAGCTTGTCG TCGCGAAGCTGAGCA | 784 | [29] |
blaTEM | ATGAGTATTCAACATTTCCGTG TTACCAATGCTTAATCAGTGA | 861 | [30] |
blaSHV | TTATCTCCCTGTTAGCCACC GATTTGCTGATTTCGCTCGG | 795 | [31] |
blaCTX-M | SCSATGTGCAGYACCAGTAA CCGCRATATGRTTGGTGGTG | 544 | [32] |
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Zhao, X.; Che, J.; Xiong, Y.; Xu, Y.; Zhang, L.; Lan, R.; Xia, L.; Walsh, T.R.; Xu, J.; et al. Detection and dissemination of the colistin resistance gene, mcr-1, from isolates and faecal samples in China. J. Med. Microbiol. 2017, 66, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, R.A.; Gaynes, R.; Edwards, J.R.; System, N.N.I.S. Overview of nosocomial infections caused by gram-negative bacilli. Clin. Infect. Dis. 2005, 41, 848–854. [Google Scholar] [CrossRef]
- Li, J.; Nation, R.L.; Turnidge, J.D.; Milne, R.W.; Coulthard, K.; Rayner, C.R.; Paterson, D.L. Colistin: The re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect. Dis. 2006, 6, 589–601. [Google Scholar] [CrossRef]
- Ahmed, M.A.E.-G.E.-S.; Zhong, L.-L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.-B. Colistin and its role in the Era of antibiotic resistance: An extended review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacobbe, D.R.; Saffioti, C.; Losito, A.R.; Rinaldi, M.; Aurilio, C.; Bolla, C.; Boni, S.; Borgia, G.; Carannante, N.; Cassola, G.; et al. Use of colistin in adult patients: A cross-sectional study. J. Glob. Antimicrob. Resist. 2020, 20, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Kijima-Tanaka, M.; Ishihara, K.; Morioka, A.; Kojima, A.; Ohzono, T.; Ogikubo, K.; Takahashi, T.; Tamura, Y. A national surveillance of antimicrobial resistance in Escherichia coli isolated from food-producing animals in Japan. J. Antimicrob. Chemother. 2003, 51, 447–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.D.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Veldman, K.; van Essen-Zandbergen, A.; Rapallini, M.; Wit, B.; Heymans, R.; van Pelt, W.; Mevius, D. Location of colistin resistance gene mcr-1 in Enterobacteriaceae from livestock and meat. J. Antimicrob. Chemother. 2016, 71, 2340–2342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, L.M.; Gaballa, A.; Guldimann, C.; Sullivan, G.; Henderson, L.O.; Wiedmann, M. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible salmonella enterica serotype typhimurium isolate. mBio 2019, 10, e00853-19. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, A.R.; Bortolaia, V.; Kjeldgaard, J.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Hansen, I.M.; Guerra, B.; Malorny, B.; Borowiak, M.; Hammerl, J.A.; et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance 2018, 23, 17–00672. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Feng, Y.; Liu, L.; Wei, L.; Kang, M.; Zong, Z. Identification of novel mobile colistin resistance gene mcr-10. Emerg. Microbes Infect. 2020, 9, 508–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xavier, B.B.; Lammens, C.; Ruhal, R.; Kumar-Singh, S.; Butaye, P.; Goossens, H.; Malhotra-Kumar, S. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Eurosurveillance 2016, 21, 30280. [Google Scholar] [CrossRef]
- Yin, W.; Shaolin, W.; Shen, Y.; Liu, Z.; Wang, S.; Shen, Z.; Zhangqi, S.; Walsh, T.R.; Shen, J.; Wang, Y. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio 2017, 8, e00543-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadjadj, L.; Riziki, T.; Zhu, Y.; Linda, H.; Diene, S.M.; Rolain, J.-M. Study of mcr-1 gene-mediated colistin resistance in enterobacteriaceae isolated from humans and animals in different countries. Genes 2017, 8, 394. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Wang, Y.; Xiao, Y. Prevalence and transmission of mobilized colistin resistance (mcr) gene in bacteria common to animals and humans. Biosaf. Health 2020, 2, 71–78. [Google Scholar] [CrossRef]
- Torres, A.; Aznar, R.; Gatell, J.M.; Jiménez, P.; González, J.; Ferrer, A.; Celis, R.; Rodriguez-Roisin, R. Incidence, risk, and prognosis factors of nosocomial pneumonia in mechanically ventilated patients. Am. Rev. Respir. Dis. 1990, 142, 523–528. [Google Scholar] [CrossRef]
- Koulenti, D.; Tsigou, E.; Rello, J. Nosocomial pneumonia in 27 ICUs in Europe: Perspectives from the EU-VAP/CAP study. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1999–2006. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 388–416. [Google Scholar] [CrossRef]
- Boyle, V.J.; Fancher, M.E.; Ross, R.W. Rapid, modified Kirby-Bauer susceptibility test with single, high-concentration antimicrobial disks. Antimicrob. Agents Chemother. 1973, 3, 418–424. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Suppl. M100; CLSI: Pittsburgh, PA, USA, 2020; Volume 40, pp. 1–332. [Google Scholar]
- Prim, N.; Rivera, A.; Coll, P.; Mirelis, B. Is colistin susceptibility testing finally on the right track? Antimicrob. Agents Chemother. 2018, 62, e02067-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singhal, L.; Sharma, M.; Verma, S.; Kaur, R.; Britto, X.B.; Kumar, S.M.; Ray, P.; Gautam, V. Comparative evaluation of broth microdilution with polystyrene and glass-coated plates, agar dilution, E-test, vitek, and disk diffusion for susceptibility testing of colistin and polymyxin b on carbapenem-resistant clinical isolates of acinetobacter baumannii. Microb. Drug Resist. 2018, 24, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Matuschek, E.; Åhman, J.; Webster, C.; Kahlmeter, G. Antimicrobial susceptibility testing of colistin–Evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin. Microbiol. Infect. 2018, 24, 865–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malloy, A.M.; Campos, J.M. Extended-spectrum beta-lactamases: A brief clinical update. Pediatr. Infect. Dis. J. 2011, 30, 1092–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yong, D.; Lee, K.; Yum, J.H.; Shin, H.B.; Rossolini, G.M.; Chong, Y. Imipenem-edta disk method for differentiation of metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 2002, 40, 3798–3801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muüller, D.; Greune, L.; Heusipp, G.; Karch, H.; Fruth, A.; Tschaäpe, H.; Schmidt, M.A. Identification of unconventional intestinal pathogenic escherichia coli isolates expressing intermediate virulence factor profiles by using a novel single-step multiplex PCR. Appl. Environ. Microbiol. 2007, 73, 3380–3390. [Google Scholar] [CrossRef] [Green Version]
- Borowiak, M.; Fischer, J.A.; Hammerl, J.; Hendriksen, R.S.; Szabo, I.; Malorny, B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J. Antimicrob. Chemother. 2017, 72, 3317–3324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Peirano, G.; Ahmed-Bentley, J.; Woodford, N.; Pitout, J.D. New delhi metallo-beta-lactamase from traveler returning to Canada. Emerg. Infect. Dis. 2011, 17, 242–244. [Google Scholar] [CrossRef] [PubMed]
- Szabó, D.; Bonomo, R.A.; Silveira, F.; Pasculle, A.W.; Baxter, C.; Linden, P.K.; Hujer, A.M.; Deeley, K.; Paterson, D.L.; Hujer, K.M. SHV-type extended-spectrum beta-lactamase production is associated with reduced cefepime susceptibility in enterobacter cloacae. J. Clin. Microbiol. 2005, 43, 5058–5064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirel, L.; Karim, A.; Mercat, A.; Le Thomas, I.; Vahaboglu, H.; Richard, C.; Nordmann, P. Extended-spectrum β-lactamase-producing strain of Acinetobacter baumannii isolated from a patient in France. J. Antimicrob. Chemother. 1999, 43, 157–158. [Google Scholar] [CrossRef] [PubMed]
- Minarini, L.A.; Poirel, L.; Trevisani, N.A.; Darini, A.L.C.; Nordmann, P. Predominance of CTX-M–type extended-spectrum β-lactamase genes among enterobacterial isolates from outpatients in Brazil. Diagn. Microbiol. Infect. Dis. 2009, 65, 202–206. [Google Scholar] [CrossRef]
- El Solh, A.A.; Alhajhusain, A. Update on the treatment of Pseudomonas aeruginosa pneumonia. J. Antimicrob. Chemother. 2009, 64, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Garnacho, J.; Sole-Violan, J.; Sa-Borges, M.; Diaz, E.; Rello, J. Clinical impact of pneumonia caused by Acinetobacter baumannii in intubated patients: A matched cohort study. Crit. Care Med. 2003, 31, 2478–2482. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.M.; Feola, D.J.; Rapp, R.P. Polymyxin B sulfate and colistin: Old antibiotics for emerging multiresistant gram-negative bacteria. Ann. Pharmacother. 1999, 33, 960–967. [Google Scholar] [CrossRef]
- Ahmed, S.H.; Daef, E.A.; Badary, M.S.; Mahmoud, M.A.; Abd-Elsayed, A.A. Nosocomial blood stream infection in intensive care units at Assiut University hospitals (Upper Egypt) with special reference to extended spectrum beta-lactamase producing organisms. BMC Res. Notes 2009, 2, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brusselaers, N.; Vogelaers, D.; Blot, S. The rising problem of antimicrobial resistance in the intensive care unit. Ann. Intensiv. Care 2011, 1, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Mokhtar, M.A.; Hetta, H.F. Ambulance vehicles as a source of multidrug-resistant infections: A multicenter study in Assiut City, Egypt. Infect. Drug Resist. 2018, 11, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Elgendy, S.G.; Hameed, M.R.A.; El-Mokhtar, M.A. Tigecycline resistance among Klebsiella pneumoniae isolated from febrile neutropenic patients. J. Med. Microbiol. 2018, 67, 972–975. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.A.; Hassan, A.T.; Mohamed, M.S.; El-Mokhtar, A.M. Acute exacerbations of chronic obstructive pulmonary disease: Etiological bacterial pathogens and antibiotic resistance in Upper Egypt. Egypt. J. Bronchol. 2016, 10, 283. [Google Scholar] [CrossRef]
- Eltwisy, H.O.; Abdel-Fattah, M.; Elsisi, A.M.; Omar, M.M.; Abdelmoteleb, A.A.; El-Mokhtar, M.A. Pathogenesis of Staphylococcus haemolyticus on primary human skin fibroblast cells. Virulence 2020, 11, 1142–1157. [Google Scholar] [CrossRef] [PubMed]
- Karaiskos, I.; Lagou, S.; Pontikis, K.; Rapti, V.; Poulakou, G. The “old” and the “new” antibiotics for mdr gram-negative pathogens: For whom, when, and how. Front. Public Health 2019, 7, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thabit, A.G.; El-Sabour, E.A.; Nafie, A.M.A.; El-Mokhtar, M.A.; Biomy, Y.E. Detection of proteus species in diabetic wounds and their antibiotic resistance profile analysis. Bull. Pharm. Sci. Assiut 2020, 43, 1–10. [Google Scholar] [CrossRef]
- Elkhawaga, A.A.; Hetta, H.F.; Osman, N.S.; Hosni, A.; El-Mokhtar, M.A. Emergence of Cronobacter sakazakii in cases of neonatal sepsis in Upper Egypt: First report in North Africa. Front. Microbiol. 2020, 11, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çetin, Ç.B.; Türk, D.Ö.; Şenol, Ş.; Horasan, G.D.; Tunger, O. Colistin efficacy in the treatment of multidrug-resistant and extremelydrug-resistant gram-negative bacterial infections. Turk. J. Med. Sci. 2016, 46, 1379–1384. [Google Scholar] [CrossRef]
- Micek, S.T.; Chew, B.; Hampton, N.; Kollef, M.H. A case-control study assessing the impact of nonventilated hospital-acquired pneumonia on patient outcomes. Chest 2016, 150, 1008–1014. [Google Scholar] [CrossRef]
- Zaragoza, R.; Vidal-Cortés, P.; Aguilar, G.; Borges, M.; Diaz, E.; Ferrer, R.; Maseda, E.; Nieto, M.; Nuvials, F.X.; Ramirez, P.; et al. Update of the treatment of nosocomial pneumonia in the ICU. Crit. Care 2020, 24, 1–13. [Google Scholar] [CrossRef]
- Wilke, M.; Grube, R. Update on management options in the treatment of nosocomial and ventilator assisted pneumonia: Review of actual guidelines and economic aspects of therapy. Infect. Drug Resist. 2013, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Di Pasquale, M.; Aliberti, S.; Mantero, M.; Bianchini, S.; Blasi, F. Non-intensive care unit acquired pneumonia: A new clinical entity? Int. J. Mol. Sci. 2016, 17, 287. [Google Scholar] [CrossRef] [PubMed]
- El-Mokhtar, M.A.; Mandour, S.A.; Shahat, A.A. Colistin resistance among multidrug-resistant E. coli isolated from Upper Egypt. Egypt. J. Med. Microbiol. 2019, 28, 11–17. [Google Scholar]
- Santimaleeworagun, W.; Thunyaharn, S.; Juntanawiwat, P.; Thongnoy, N.; Harindhanavudhi, S.; Nakee-sathit, S.; Teschumroon, S. The prevalence of colistin-resistant Gram-negative bacteria isolated from hospitalized patients with bacteremia. J. Appl. Pharm. Sci. 2020, 10, 056–059. [Google Scholar]
- Devkota, S.P.; Paudel, A. Colistin resistance among Gram-negative isolates in Nepal: A review. J. Biomed. Sci. 2020, 7, 33–39. [Google Scholar] [CrossRef]
- Doumith, M.; Godbole, G.; Ashton, P.; Larkin, L.; Dallman, T.; Day, M.; Day, M.; Muller-Pebody, B.; Ellington, M.J.; de Pinna, E.; et al. Detection of the plasmid-mediated mcr-1 gene conferring colistin resistance in human and food isolates of Salmonella enterica and Escherichia coli in England and Wales. J. Antimicrob. Chemother. 2016, 71, 2300–2305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gales, A.C.; Jones, R.N.; Sader, H.S. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: Results from the SENTRY Antimicrobial Surveillance Program (2006–09). J. Antimicrob. Chemother. 2011, 66, 2070–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bialvaei, A.Z.; Kafil, H.S. Colistin, mechanisms and prevalence of resistance. Curr. Med Res. Opin. 2015, 31, 707–721. [Google Scholar] [CrossRef]
- Mezghani Maalej, S.; Rekik Meziou, M.; Mahjoubi, F.; Hammami, A. Epidemiological study of Enterobacte-riaceae resistance to colistin in Sfax (Tunisia). Med. Mal. Infect. 2012, 42, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Pitt, T.L.; Sparrow, M.; Warner, M.; Stefanidou, M. Survey of resistance of Pseudomonas aeruginosa from UK patients with cystic fibrosis to six commonly prescribed antimicrobial agents. Thorax 2003, 58, 794–796. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, L.A.; Garcia-Curiel, A.; Pachon-Ibanez, M.E.; Llanos, A.C.; Ruiz, M.; Pachon, J.; Aznar, J. Reliability of the E-test method for detection of colistin resistance in clinical isolates of acinetobacter baumannii. J. Clin. Microbiol. 2005, 43, 903–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miftode, E.; Dorneanu, O.; Leca, D.; Teodor, A.; Mihalache, D.; Filip, O.; Luca, V. Antimicrobial resistance profile of E. coli and Klebsiella spp. from urine in the infectious diseases hospital Iasi. Rev. Med. Chir. Soc. Med. Nat. Iasi 2008, 112, 478–482. [Google Scholar]
- Piskin, N.; Aydemir, H.; Oztoprak, N.; Akduman, D.; Comert, F.; Kokturk, F.; Celebi, G. Inadequate treat-ment of ventilator-associated and hospital-acquired pneumonia: Risk factors and impact on outcomes. BMC Infect. Dis. 2012, 12, 268. [Google Scholar] [CrossRef] [Green Version]
- Elnahriry, S.S.; Khalifa, H.O.; Soliman, A.M.; Ahmed, A.M.; Hussein, A.M.; Shimamoto, T.; Shimamoto, T. Emergence of plasmid-mediated colistin resistance gene mcr-1 in a clinical Escherichia coli isolate from Egypt. J. Antimicrob. Chemother. 2016, 60, 3249–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussein, A.H.M.; Ghanem, I.A.I.; Eid, A.A.M.; Ali, M.A.; Sherwood, J.S.; Li, G.; Nolan, L.K.; Logue, C.M. Molecular and phenotypic characterization of escherichia coli isolated from broiler chicken flocks in Egypt. Avian Dis. 2013, 57, 602–611. [Google Scholar] [CrossRef]
- Zafer, M.M.; El-Mahallawy, H.A.; Abdulhak, A.; Amin, M.A.; Al-Agamy, M.H.; Radwan, H.H. Emergence of colistin resistance in multidrug-resistant Klebsiella pneumoniae and Escherichia coli strains isolated from cancer patients. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Kawahara, R.; Hamamoto, K.; Hirai, I.; Khong, D.T.; Nguyen, T.N.; Tran, H.T.; Motooka, D.; Nakamura, S.; Yamamoto, Y. High prevalence of colistin-resistant Escherichia coli with chromosomally carried mcr-1 in healthy residents in Vietnam. Msphere 2020, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castanheira, M.; Griffin, M.A.; Deshpande, L.M.; Mendes, R.E.; Jones, R.N.; Flamm, R.K. Detection of mcr-1 among Escherichia coli clinical isolates collected worldwide as part of the sentry antimicrobial surveillance program in 2014 and 2015. J. Antimicrob. Agents 2016, 60, 5623–5624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prim, N.; Turbau, M.; Rivera, A.; Rodríguez-Navarro, J.; Coll, P.; Mirelis, B. Prevalence of colistin resistance in clinical isolates of Enterobacteriaceae: A four-year cross-sectional study. J. Infect. 2017, 75, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Snesrud, E.; McGann, P.; Chandler, M. The birth and demise of the isapl1-mcr-1-isapl1 composite transpos-on: The vehicle for transferable colistin resistance. MBio 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Blot, S.; Koulenti, D.; Dimopoulos, G.; Martin, C.; Komnos, A.; Krueger, W.A.; Spina, G.; Armaganidis, A.; Rello, J. Prevalence, risk factors, and mortality for ventilator-associated pneumonia in middle-aged, old, and very old critically ill patients. Crit. Care Med. 2014, 42, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Vogelaers, D.; De Bels, D.; Forêt, F.; Cran, S.; Gilbert, E.; Schoonheydt, K.; Blot, S. Patterns of antimicrobial therapy in severe nosocomial infections: Empiric choices, proportion of appropriate therapy, and adaptation rates—A multicentre, observational survey in critically ill patients. Int. J. Antimicrob. Agents 2010, 35, 375–381. [Google Scholar] [CrossRef]
- Trung, N.V.; Matamoros, S.; Hardon, A.; Mai, N.T.N.; Hieu, T.Q.; Thwaites, G.; De Jong, M.D.; Schultsz, C.; Hoa, N.T.; Carrique-Mas, J.J.; et al. Zoonotic transmission of mcr-1 colistin resistance gene from small-scale poultry farms, Vietnam. Emerg. Infect. Dis. 2017, 23, 529–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieffer, N.; Aires-de-Sousa, M.; Nordmann, P.; Poirel, L. High rate of mcr-1–producing Escherichia coli and Klebsiella pneumoniae among pigs, Portugal. J. Emerg. Infect. Dis. 2017, 23, 2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramadan, H.K.; Mahmoud, M.A.; Aburahma, M.Z.; Elkhawaga, A.A.; El-Mokhtar, M.A.; Sayed, I.M.; Hosni, A.; Hassany, S.M.; Medhat, M.A. Predictors of severity and co-infection resistance profile in COVID-19 patients: First report from upper Egypt. Infect. Drug. Resist. 2020, 13, 3409–3422. [Google Scholar] [CrossRef]
- Bradford, P.A.; Kazmierczak, K.M.; Biedenbach, D.J.; Wise, M.G.; Hackel, M.; Sahm, D.F. Correlation of β-lactamase production and colistin resistance among Enterobacteriaceae isolates from a global surveillance program. J. Antimicrob. Agents Chemother. 2016, 60, 1385–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kontopoulou, K.; Protonotariou, E.; Vasilakos, K.; Kriti, M.; Koteli, A.; Antoniadou, E.; Sofianou, D. Hospital outbreak caused by Klebsiella pneumoniae producing KPC-2 beta-lactamase resistant to colistin. J. Hosp. Infect. 2010, 76, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Mansour, W.; Haenni, M.; Saras, E.; Grami, R.; Mani, Y.; Ben Haj Khalifa, A.; El Atrouss, S.; Kheder, M.; Fekih Hassen, M.; Boujaafar, N.; et al. Outbreak of colistin-resistant carbapenemase-producing Klebsiella pneu-moniae in Tunisia. J. Glob. Antimicrob. Resist. 2017, 10, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Savarino, S.J.; Fasano, A.; Robertson, D.C.; Levine, M.M. Enteroaggregative Escherichia coli elaborate a heat-stable enterotoxin demonstrable in an in vitro rabbit intestinal model. J. Clin. Investig. 1991, 87, 1450–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nataro, J.P.; Steiner, T.; Guerrant, R.L. Enteroaggregative Escherichia coli. Emerg. Infect. Dis. 1998, 4, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 2010, 7, 653–660. [Google Scholar] [CrossRef]
- Pitout, J.D.D. Extraintestinal pathogenic Escherichia coli: An update on antimicrobial resistance, laboratory diagnosis and treatment. Expert Rev. Anti-Infect. Ther. 2012, 10, 1165–1176. [Google Scholar] [CrossRef]
- Ménard, L.-P.; Dubreuil, J.D. Enteroaggregative Escherichia coli heat-stable Enterotoxin 1 (EAST1): A new toxin with an old twist. Crit. Rev. Microbiol. 2002, 28, 43–60. [Google Scholar] [CrossRef]
- Kaur, P.; Chakraborti, A.; Asea, A. Enteroaggregative Escherichia coli: An emerging enteric food Borne pathogen. Interdiscip. Perspect. Infect. Dis. 2010, 2010, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, I.R.; Czeczulin, J.; Eslava, C.; Noriega, F.; Nataro, J.P. Characterization of Pic, a Secreted Protease of Shigella flexneri and Enteroaggregative Escherichia coli. Infect. Immun. 1999, 67, 5587–5596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, I.R.; Hicks, S.; Navarro-Garcia, F.; Elias, W.P.; Philips, A.D.; Nataro, J.P. Involvement of the enteroaggregative Escherichia coli plasmid-encoded toxin in causing human intestinal damage. Infect. Immun. 1999, 67, 5338–5344. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Garcia, F.; Gutierrez-Jimenez, J.; Garcia-Tovar, C.; Castro, L.A.; Salazar-Gonzalez, H.; Cordova, V. Pic, an autotransporter protein secreted by different pathogens in the enterobacteriaceae family, is a potent mucus secretagogue. Infect. Immun. 2010, 78, 4101–4109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, J.-L.; Rello, J.; Reinhart, K.; Marshall, J.K.; Silva, E.; Anzueto, A.; Martin, C.D.; Moreno, R.; Lipman, J.; Gomersal, C. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009, 302, 2323–2329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Risk Factors | Total Patients Infected with E. coli (n = 140) | Colistin-Resistant Group (n = 21) | Colistin-Sensitive Group (n = 119) | p-Value |
---|---|---|---|---|
Sex (male) | 76 (45.2%) | 13 (61.9%) | 63 (52.9%) | 0.512 |
Age (years) | 54.5 ± 10.3 | 57.6 ± 6.4 | 53.7 ± 10.9 | 0.872 |
Empiric antibiotic therapy during hospitalization | 140 (100%) | 21 (100%) | 119 (100%) | NA |
Urinary tract catheter | 102 (72.9%) | 17 (81.0%) | 85 (71.4%) | 0.366 |
Diabetes mellitus | 51 (36.4%) | 9 (42.9%) | 42 (35.3%) | 0.507 |
Obesity | 42 (30.0 %) | 6 (28.6%) | 36 (30.3%) | 0.877 |
Malnutrition | 39 (27.9%) | 6 (28.6%) | 33 (27.7%) | 0.937 |
Central venous catheter | 13 (9.3%) | 2 (9.5%) | 11 (9.2%) | 1.000 |
Artificial feeding | 14 (10%) | 1 (4.8%) | 13 (10.9%) | 0.694 |
Mechanical ventilation | 22 (15.7%) | 4 (19.0%) | 18 (15.1%) | 0.745 |
Worsening oxygenation | 112 (80%) | 15 (76.2) | 96 (80.7%) | 0.732 |
Pleural effusion | 20 (14.3%) | 3 (14.3%) | 17 (14.3%) | 0.979 |
Cavitation on chest radiograph | 5 (3.5%) | 1 (4.7%) | 4 (3.4%) | 0.891 |
WBC (×109/L) | 8.1 ± 3.7 | 7.6 ± 3.2 | 8.6 ± 3.4 | 0.547 |
Hemoglobin (g/dL) | 12.6 ± 1.2 | 12.3 ± 1.6 | 12.9 ± 1 | 0.378 |
Platelets (×103/μL) | 277 ± 84 | 273 ± 80.1 | 281 ± 84 | 0.978 |
Antibiotic | Colistin-Resistant Group n = 21 | Colistin-Sensitive Group n = 119 | p-Value |
---|---|---|---|
Amikacin | 5 (23.8%) | 23 (19.3%) | 0.767 |
Amoxicillin | 21 (100%) | 119 (100%) | NA |
Amoxicillin/clavulanic acid | 21 (100%) | 119 (100%) | NA |
Aztreonam | 10 (47.6%) | 70 (58.8%) | 0.339 |
Cefaclor | 7 (33.3%) | 52 (43.7%) | 0.375 |
Ceftriaxone | 9 (42.9%) | 43 (36.1%) | 0.557 |
Cephazoline | 6 (28.6%) | 40 (33.6%) | 0.650 |
Chloramphenicol | 9 (42.9%) | 57 (47.9%) | 0.670 |
Ciprofloxacin | 9 (42.9%) | 49 (41.2%) | 0.885 |
Levofloxacin | 2 (9.5%) | 23 (19.3%) | 0.367 |
Meropenem | 4 (19.0%) | 24 (20.2%) | 1.000 |
Imipenem | 5 (23.8%) | 29 (24.4%) | 0.956 |
Resistance-associated genes | |||
blaTEM-type | 5 (23.8%) | 20 (16.8%) | 0.124 |
blaCTX-M-type | 2 (9.5%) | 8 (6.7%) | 0.792 |
blaSHV-type | 0 | 0 | NA# |
blaIMP-type | 3 (14.3%) | 12 (10.1%) | 0.467 |
blaNDM-1 | 2 (9.5%) | 9 (7.6%) | 0.669 |
Gene | All E. coli Isolates n = 140 | Colistin-Resistant n = 21 | Colistin-Sensitive n = 119 | p-Value |
---|---|---|---|---|
escV | 35 (25%) | 2 (9.5%) | 33 (27.7%) | 0.076 |
bfpB | 3 (2.1%) | 2 (9.5%) | 1 (0.8%) | 0.059 |
stx1 | 11 (7.9%) | 2 (9.5%) | 9 (7.6%) | 0.670 |
stx2 | 7 (5%) | 0 (0%) | 7 (5.9%) | NA |
elt | 26 (18.6%) | 0 (0%) | 26 (21.8%) | NA |
estIa | 8 (5.7%) | 0 (0%) | 8 (6.7%) | NA |
estIb | 21 (15%) | 0 (0%) | 21 (17.6%) | NA |
invE | 13 (9.3%) | 1 (4.8%) | 12 (10.1%) | 0.691 |
astA | 30 (21.4%) | 16 (76.2%) | 14 (11.8%) | 0.001 * |
aggR | 36 (25.7%) | 16 (76.2%) | 20 (16.8%) | 0.002 * |
pic | 29 (20.7%) | 11 (52.4%) | 18 (15.1%) | 0.001 * |
Type | All E. coli Isolates n = 140 | Colistin-Resistant n = 21 | Colistin-Sensitive n = 119 | p-Value |
---|---|---|---|---|
Enteroaggregative E. coli (EAEC) | 36 (25.7%) | 16 (76.2%) | 20 (16.8%) | 0.0001 * |
Atypical E. coli (ATEC) | 29 (20.7%) | 0 (0.0%) | 29 (24.4%) | NA |
Enterotoxigenic E. coli (ETEC) | 33 (23.6%) | 0 (0.0%) | 33 (27.7%) | NA |
Enteropathogenic E. coli (EPEC) | 3 (2.1%) | 2 (9.5%) | 1 (0.8%) | 0.059 |
Enteroinvasive E. coli (EIEC) | 13 (9.3%) | 1 (4.8%) | 12 (10.1%) | 0.691 |
Shiga toxin-producing E. coli (STEC) | 18 (12.9%) | 2 (9.5%) | 16 (13.4%) | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Mokhtar, M.A.; Daef, E.; Mohamed Hussein, A.A.R.; Hashem, M.K.; Hassan, H.M. Emergence of Nosocomial Pneumonia Caused by Colistin-Resistant Escherichia coli in Patients Admitted to Chest Intensive Care Unit. Antibiotics 2021, 10, 226. https://doi.org/10.3390/antibiotics10030226
El-Mokhtar MA, Daef E, Mohamed Hussein AAR, Hashem MK, Hassan HM. Emergence of Nosocomial Pneumonia Caused by Colistin-Resistant Escherichia coli in Patients Admitted to Chest Intensive Care Unit. Antibiotics. 2021; 10(3):226. https://doi.org/10.3390/antibiotics10030226
Chicago/Turabian StyleEl-Mokhtar, Mohamed A., Enas Daef, Aliae A. R. Mohamed Hussein, Maiada K. Hashem, and Hebatallah M. Hassan. 2021. "Emergence of Nosocomial Pneumonia Caused by Colistin-Resistant Escherichia coli in Patients Admitted to Chest Intensive Care Unit" Antibiotics 10, no. 3: 226. https://doi.org/10.3390/antibiotics10030226
APA StyleEl-Mokhtar, M. A., Daef, E., Mohamed Hussein, A. A. R., Hashem, M. K., & Hassan, H. M. (2021). Emergence of Nosocomial Pneumonia Caused by Colistin-Resistant Escherichia coli in Patients Admitted to Chest Intensive Care Unit. Antibiotics, 10(3), 226. https://doi.org/10.3390/antibiotics10030226