Increase in Tuberculosis Diagnostic Delay during First Wave of the COVID-19 Pandemic: Data from an Italian Infectious Disease Referral Hospital
Abstract
:1. Introduction
2. Results
2.1. Clinical, Microbiological and Radiological Findings
2.2. Diagnostic Delays
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- McCloskey, B.; Zumla, A.; Ippolito, G.; Blumberg, L.; Arbon, P.; Cicero, A.; Endericks, T.; Lim, P.L.; Borodina, M. WHO Novel Coronavirus-19 Mass Gatherings Expert Group. Mass gathering events and reducing further global spread of COVID 19: A political and public health dilemma. Lancet 2020, 395, 1096–1099. [Google Scholar] [CrossRef]
- Kontis, V.; Bennett, J.E.; Rashid, T.; Parks, R.M.; Pearson-Stuttard, J.; Guillot, M.; Asaria, P.; Zhou, B.; Battaglini, M.; Corsetti, G.; et al. Magnitude, demographics and dynamics of the effect of the first wave of the COVID-19 pandemic on all-cause mortality in 21 industrialized countries. Nat. Med. 2020, 26, 1919–1928. [Google Scholar] [CrossRef] [PubMed]
- Alfano, V.; Ercolano, S. The Efficacy of Lockdown Against COVID-19: A Cross-Country Panel Analysis. Appl. Health Econ. Health Policy 2020, 18, 509–517. [Google Scholar] [CrossRef]
- World Health Organization (WHO). The Impact of the COVID-19 Pandemic on Noncommunicable Disease Resources and Services: Results of a Rapid Assessment; WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/teams/noncommunicable-diseases/covid-19 (accessed on 10 February 2021).
- Maringe, C.; Spicer, J.; Morris, M.; Purushotham, A.; Nolte, E.; Sullivan, R.; Rachet, B.; Aggarwal, A. The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: A national, population-based, modelling study. Lancet Oncol. 2020, 21, 1023–1034. [Google Scholar] [CrossRef]
- Cilloni, L.; Fu, H.; Vesga, J.F.; Dowdy, D.; Pretorius, C.; Ahmedov, S.; Nair, S.A.; Mosneaga, A.; Masini, E.; Sahu, S.; et al. The potential impact of the COVID-19 pandemic on the tuberculosis epidemic a modelling analysis. EClinicalMedicine 2020, 28, 100603. [Google Scholar] [CrossRef]
- McQuaid, C.F.; McCreesh, N.; Read, J.M.; Sumner, T.; CMMID COVID-19 Working Group. The potential impact of COVID-19-related disruption on tuberculosis burden. Eur. Respir. J. 2020, 56, 2001718. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Global Tuberculosis Report; WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/publications/i/item/9789240013131 (accessed on 7 February 2021).
- Barrett, J.; Painter, H.; Rajgopal, A.; Keane, D.; John, L.; Papineni, P.; Whittington, A. Increase in disseminated TB during the COVID-19 pandemic. Int. J. Tuberc. Lung Dis. 2021, 25, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, V.; Mandal, P.P.; Satyanarayana, S.; Aditama, T.Y.; Sharma, M. Mitigating the impact of the COVID-19 pandemic on progress towards ending tuberculosis in the WHO South-East Asia Region WHO South East Asia. J. Public Health 2020, 9, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Migliori, G.B.; Thong, P.M.; Akkerman, O.; Alffenaar, J.-W.; Álvarez-Navascués, F.; Assao-Neino, M.M.; Bernard, P.V.; Biala, J.S.; Blanc, F.-X.; Bogorodskaya, E.M.; et al. Worldwide Effects of Coronavirus Disease Pandemic on Tuberculosis Services, January–April 2020. Emerg. Infect. Dis. 2020, 26, 2709–2712. [Google Scholar] [CrossRef] [PubMed]
- Italian National Health Institute (Istituto Superiore di Sanità). Coronavirus Epidemic: Situation Report. 9 March 2020. Available online: https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_9-marzo%202020.pdf (accessed on 6 February 2021).
- Gazzetta Ufficiale. Available online: https://www.gazzettaufficiale.it/eli/id/2020/03/09/20A01558/sg (accessed on 2 February 2021).
- Berardi, C.; Antonini, M.; Genie, M.G.; Cotugno, G.; Lanteri, A.; Melia, A.; Paolucci, F. The COVID-19 pandemic in Italy: Policy and technology impact on health and non-health outcomes. Health Policy Technol. 2020, 9, 454–487. [Google Scholar] [CrossRef] [PubMed]
- Magro, P.; Formenti, B.; Marchese, V.; Gulletta, M.; Tomasoni, L.R.; Caligaris, S.; Castelli, F.; Matteelli, A. Impact of the SARS-CoV-2 epidemic on tuberculosis treatment outcome in Northern Italy. Eur. Respir. J. 2020, 56, 2002665. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, G.A.; Normando, P.G.; Loureiro, L.V.M.; Oliveira, V.A.; Melo, M.D.T.; Santana, I.A. Reduction in the Number of Procedures and Hospitalizations and Increase in Cancer Mortality During the COVID-19 Pandemic in Brazil. JCO Glob. Oncol. 2021, 7, 4–9. [Google Scholar] [CrossRef]
- De Rosa, S.; Spaccarotella, C.; Basso, C.; Calabrò, M.P.; Curcio, A.; Filardi, P.P.; Mancone, M.; Mercuro, G.; Muscoli, S.; Nodari, S.; et al. Reduction of hospitalizations for myocardial infarction in Italy in the COVID-19 era. Eur. Heart J. 2020, 41, 2083–2088. [Google Scholar]
- Zumla, A.; McHugh, B.; Maeurer, M.; Zumla, A.; Kapata, N. COVID-19 and tuberculosis—Threats and opportunities. Int. J. Tuberc. Lung Dis. 2020, 24, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Quaglio, G.; Tognon, F.; Finos, L.; Bome, D.; Sesay, S.; Kebbie, A.; Di Gennaro, F.; Camara, B.S.; Marotta, C.; Pisani, V.; et al. Impact of Ebola outbreak on reproductive health services in a rural district of Sierra Leone: A prospective observational study. BMJ Open 2019, 9, e029093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, C.W.M.; Migliori, G.B.; Raviglione, M.; MacGregor-Skinner, G.; Sotgiu, G.; Alffenaar, J.W.; Tiberi, S.; Adlhoch, C.; Alonzi, T.; Archuleta, S.; et al. Epidemic and pandemic viral infections: Impact on tuberculosis and the lung: A consensus by the World Association for Infectious Diseases and Immunological Disorders (WAidid), Global Tuberculosis Network (GTN), and members of the European Society of Clinical Microbiology and Infectious Diseases Study Group for Mycobacterial Infections (ESGMYC). Eur Respir J. 2020, 56, 2001727. [Google Scholar] [CrossRef]
- Louie, J.K.; Reid, M.; Stella, J.; Agraz-Lara, R.; Graves, S.; Chen, L.; Hopewell, P. A decrease in tuberculosis evaluations and diagnoses during the COVID-19 pandemic. Int. J. Tuberc. Lung Dis. 2020, 24, 860–862. [Google Scholar] [CrossRef]
- Pezzotti, P.; Pozzato, S.; Ferroni, E.; Mazzocato, V.; Altieri, A.M.; Gualano, G.; Loffredo, M.; Napoli, P.A.; Perrelli, F.; Girardi, E. Delay in diagnosis of pulmonary tuberculosis: A survey in the Lazio region, Italy. Epidemiol. Biostat. Public Health 2015, 12, 1–10. [Google Scholar]
- Ferrara, G.; De Vincentiis, L.; Ambrosini-Spaltro, A.; Barbareschi, M.; Bertolini, V.; Contato, E.; Crivelli, F.; Feyles, E.; Mariani, M.P.; Morelli, L.; et al. Cancer Diagnostic Delay in Northern and Central Italy During the 2020 Lockdown Due to the Coronavirus Disease 2019 Pandemic. Am. J. Clin. Pathol. 2021, 155, 64–68. [Google Scholar] [CrossRef]
- De Vincentiis, L.; Carr, R.A.; Mariani, M.P.; Ferrara, G. Cancer diagnostic rates during the 2020 “lockdown,” due to COVID-19 pandemic, compared with the 2018–2019: An audit study from cellular pathology. J. Clin. Pathol. 2021, 74, 187–189. [Google Scholar] [CrossRef]
- D’Ovidio, V.; Lucidi, C.; Bruno, G.; Lisi, D.; Miglioresi, L.; Bazuro, M.E. Impact of COVID-19 Pandemic on Colorectal Cancer Screening Program. Clin. Colorectal Cancer 2020, 1533. [Google Scholar] [CrossRef]
- Guthmann, J.-P.; Léon, L.; Antoine, D.; Lévy-Bruhl, D. Tuberculosis treatment outcomes of notified cases: Trends and determinants of potential unfavourable outcome, France, 2008 to 2014. Eurosurveillance 2020, 25, 1900191. [Google Scholar] [CrossRef] [Green Version]
- Bojovic, O.; Medenica, M.; Zivkovic, D.; Rakocevic, B.; Trajkovic, G.; Kisic-Tepavcevic, D.; Grgurevic, A. Factors associated with patient and health system delays in diagnosis and treatment of tuberculosis in Montenegro, 2015–2016. PLoS ONE 2018, 13, e0193997. [Google Scholar] [CrossRef] [PubMed]
- Di Gennaro, F.; Pizzol, D.; Cebola, B.; Stubbs, B.; Monno, L.; Saracino, A.; Luchini, C.; Solmi, M.; Segafredo, G.; Putoto, G.; et al. Social determinants of therapy failure and multi drug resistance among people with tuberculosis: A review. Tuberculosis 2017, 103, 44–51. [Google Scholar] [CrossRef]
- Sreeramareddy, C.T.; Qin, Z.Z.; Satyanarayana, S.; Subbaraman, R.; Pai, M. Delays in diagnosis and treatment of pulmonary tuberculosis in India: A systematic review. Int. J. Tuberc. Lung Dis. 2014, 18, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Tattevin, P.; Che, D.; Fraisse, P.; Gatey, C.; Guichard, C.; Antoine, D.; Paty, M.C.; Bouvet, E. Factors associated with patient and health care system delay in the diagnosis of tuberculosis in France. Int. J. Tuberc. Lung Dis. 2012, 16, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Di Gennaro, F.; Vittozzi, P.; Gualano, G.; Musso, M.; Mosti, S.; Mencarini, P.; Pareo, C.; Di Caro, A.; Schininà, V.; Girardi, E.; et al. Active Pulmonary Tuberculosis in Elderly Patients: A 2016–2019 Retrospective Analysis from an Italian Referral Hospital. Antibiotics 2020, 9, 489. [Google Scholar] [CrossRef]
- World Health Organitation (WHO). Guidelines for Treatment of Drug-Susceptible Tuberculosis and Patient Care; WHO: Geneva, Switzerland, 2017; Available online: https://apps.who.int/iris/bitstream/handle/10665/255052/9789241550000-eng.pdf?sequence=1 (accessed on 1 February 2021).
- Chakraborthy, A.; Shivananjaiah, A.J.; Ramaswamy, S.; Chikkavenkatappa, N. Chest X ray score (Timika score): An useful adjunct to predict treatment outcome in tuberculosis. Adv. Respir. Med. 2018, 86, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Thiel, B.A.; Bark, C.M.; Nakibali, J.G.; Van Der Kuyp, F.; Johnson, J.L. Reader variability and validation of the Timika X-ray score during treatment of pulmonary tuberculosis. Int. J. Tuberc. Lung Dis. 2016, 20, 1358–1363. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Diagnostic and Treatment Delay in Tubercolosis. WHO Regional Office Eastern Mediterranean; WHO: Geneva, Switzerland, 2006; Available online: https://apps.who.int/iris/handle/10665/116501 (accessed on 2 February 2021).
- Datiko, D.G.; Jerene, D.; Suarez, P. Patient and health system delay among TB patients in Ethiopia: Nationwide mixed method cross-sectional study. BMC Public Health 2020, 20, 1–10. [Google Scholar] [CrossRef]
2020 (tot 115) | 2019 (tot 201) | p-Value | ||
---|---|---|---|---|
n (%) | n (%) | |||
Sex | Female | 39 (34) | 59 (29) | 0.449 |
Male | 76 (66) | 142 (71) | ||
BMI | Low (16–18,49) | 66 (57) | 68 (34) | <0.01 |
Normal (18.5–24,99) | 39 (34) | 121 (60) | ||
High (25–29,99) | 10 (9) | 12 (5.5) | ||
Very high (>29.99) | 5(4) | 1(0.5) | ||
Marital Status | Single | 50 (43) | 72 (36) | <0.01 |
Married | 60 (52) | 91 (45) | ||
Not declared | 5 (4) | 38 (19) | ||
Age | 18–40 | 41 (36) | 78 (39) | 0.709 |
41–64 | 60 (52) | 95 (47) | ||
>65 | 14 (12) | 28 (14) | ||
Occupational status | Employed | 33 (29) | 89 (44) | 0.013 |
Unemployed | 72 (63) | 92 (46) | ||
Retired | 10 (9) | 20 (10) | ||
Education | <8 years | 106 (92) | 168 (84) | 0.038 |
>8 years | 9 (8) | 33 (16) | ||
Nationality | African | 15 (13) | 29 (14) | 0.99 |
Central-Sud American | 9 (8) | 18 (9) | ||
Asian | 18 (16) | 32 (16) | ||
East European | 35 (30) | 60 (30) | ||
Italian | 38 (33) | 62 (31) | ||
Smoking | Yes | 64 (56) | 70 (35) | <0.01 |
2020 (tot 115) | 2019 (tot 201) | p-Value | ||
---|---|---|---|---|
n (%) | n (%) | |||
Comorbidity | Yes | 63 (56) | 94 (47) | 0.160 |
Previous TB | Yes | 16 (14) | 24 (12) | 0.603 |
Risk factor for TB | Diabetes | 14 (12) | 20 (10) | 0.574 |
Hypertension | 16 (14) | 27 (13) | 1.000 | |
Renal failure | 5 (4) | 13 (6) | 0.615 | |
HIV positive | 5 (4) | 3 (1) | 0.145 | |
Initial TB symptoms | Cough | 81 (70) | 130 (65) | 0.322 |
Fever | 27 (23) | 66 (33) | 0.095 | |
Dispnea | 26 (23) | 17 (8) | <0.01 | |
Night sweats | 27 (23) | 31 (15) | 0.096 | |
Hemoptysis | 11 (10) | 30 (15) | 0.223 | |
Weight loss | 53 (46) | 56 (28) | <0.01 | |
TB cases | Bacteriologically confirmed | 94 (82) | 163 (81) | 1.000 |
Clinically diagnosed | 21 (18) | 38 (19) | ||
Timika score | Timika 1 (≤60) | 45 (39) | 134 (67) | <0.01 |
Timika 2 (>60; ≤100) | 51 (44) | 57 (28) | ||
Timika 3 (>100) | 19 (17) | 10 (5) | ||
Sputum smear | Positive | 55 (48) | 82 (41) | 0.240 |
Acute respiratory failure | Yes | 34 (30) | 17 (8) | <0.01 |
Drug resistance | Susceptible | 94 (82) | 176 (88) | 0.185 |
Monoresistance | 10 (9) | 12 (6) | 0.036 | |
Polydrug resistance | 1 (1) | 2 (1) | 1.000 | |
Multidrug resistance | 9 (7) | 6 (3) | 0.059 | |
Concurrent extrapulmonary TB | Yes | 37 (32) | 31 (15) | <0.01 |
2020 (tot 115) | 2019 (tot 201) | p-Value | |
---|---|---|---|
n (%) | n (%) | ||
Patient delay, days (median; IQR) | 75 (40–100) | 30 (10–60) | <0.01 |
HS, days (median; IQR) | 5 (3–14) | 4 (2–10) | 0.032 |
Total, days (median; IQR) | 90 (58–107) | 38 (22–69) | <0.01 |
PD > 30 Days | |||||
---|---|---|---|---|---|
N | % | Total | p-Value | ||
Sex | Male | 118 | 54.1 | 218 | 0.807 |
Female | 55 | 56.1 | 98 | ||
Marital status | Single | 72 | 59 | 122 | 0.084 |
Married | 84 | 55.6 | 151 | ||
Not indicated | 17 | 39.5 | 43 | ||
Age class | 18–40 | 66 | 55.5 | 118 | 0.987 |
41–64 | 84 | 54.2 | 155 | ||
>65 | 23 | 54.8 | 42 | ||
Education | <8 years | 159 | 58 | 274 | 0.004 |
>8 years | 14 | 33.3 | 42 | ||
Nationality | Italian | 43 | 43 | 100 | 0.005 |
Foreign | 130 | 60.2 | 216 | ||
Occupational status | Employed | 66 | 54.1 | 122 | 0.957 |
Unemployed | 91 | 55.5 | 164 | ||
Retired | 16 | 55.3 | 30 | ||
Smoke habit | Yes | 72 | 53.7 | 134 | 0.819 |
No | 101 | 55.5 | 182 | ||
Year | 2020 | 93 | 80.9 | 115 | <0.01 |
2019 | 80 | 39.8 | 201 | ||
BMI | <18.5 | 88 | 65.7 | 134 | <0.01 |
≥18.5 | 85 | 46.7 | 182 | ||
Comorbidity | Yes | 94 | 59.5 | 158 | 0.113 |
No | 79 | 50 | 158 | ||
Diabetes | Yes | 20 | 58.8 | 34 | 0.716 |
No | 153 | 54.3 | 282 | ||
Hypertension | Yes | 23 | 53.5 | 43 | 0.871 |
No | 150 | 55 | 273 | ||
Renal failure | Yes | 6 | 33.3 | 18 | 0.086 |
No | 167 | 56 | 298 | ||
HIV positive | Yes | 6 | 75 | 8 | 0.301 |
No | 167 | 54.2 | 308 | ||
Acute respiratory failure | Yes | 38 | 74.5 | 51 | 0.002 |
No | 155 | 50.9 | 265 | ||
Previous TB | Yes | 22 | 55 | 40 | 1.000 |
No | 151 | 54.7 | 276 |
OR | p-Value | 95%CI | AOR | p-Value | 95%CI | ||||
---|---|---|---|---|---|---|---|---|---|
Sex | Male | 0.92 | 0.742 | (0.57–1.49) | NI | ||||
Female | 1.00 | ||||||||
Marital status | Single | 1.14 | 0.574 | (0.71–1.86) | NI | ||||
Married | 1.00 | ||||||||
Not indicated | 0.52 | 0.065 | (0.26–1.04) | ||||||
Age class | 18–40 | 1.00 | NI | ||||||
41–64 | 0.95 | 0.834 | (0.59–1.54) | ||||||
>65 | 0.97 | 0.937 | (0.48–1.97) | ||||||
Education | <8 years | 1.00 | NI | ||||||
>8 years | 0.36 | 0.004 | (0.18–0.72) | ||||||
Nationality | Italian | 1.00 | 1.00 | ||||||
Foreign | 2.00 | 0.005 | (1.24–3.24) | 2.93 | 0.000 | 1.65 | 5.21 | ||
Occupational status | Employed | 1.00 | NI | ||||||
Unemployed | 1.06 | 0.815 | (0.66–1.69) | ||||||
Retired | 0.97 | 0.940 | (0.44–2.16) | ||||||
Smoke habit | Yes | 0.93 | 0.756 | (0.59–1.46) | NI | ||||
No | 1.00 | ||||||||
Year | 2020 | 6.39 | 0.000 | (3.71–11.01) | 6.93 | 0.000 | 3.91 | 12.30 | |
2019 | 1.00 | ||||||||
BMI | <18.5 | 2.18 | 0.001 | (1.38–3.46) | NI | ||||
≥18.5 | 1.00 | ||||||||
Comorbidity | Yes | 1.47 | 0.091 | (0.94–2.29) | 2.05 | 0.010 | 1.19 | 3.53 | |
No | 1.00 | ||||||||
Diabetes | Yes | 1.20 | 0.614 | (0.59–2.48) | NI | ||||
No | 1.00 | ||||||||
Hypertension | Yes | 0.94 | 0.858 | (0.49–1.80) | NI | ||||
No | 1.00 | ||||||||
Renal failure | Yes | 0.39 | 0.068 | (0.14–1.07) | 0.32 | 0.048 | 0.11 | 0.99 | |
No | 1.00 | ||||||||
HIV positive | Yes | 2.53 | 0.260 | (0.50–12.75) | NI | ||||
No | 1.00 | ||||||||
Acute respiratory failure | Yes | 2.81 | 0.003 | (1.43–5.52) | NI | ||||
No | 1.00 | ||||||||
Previous TB | Yes | 1.01 | 0.973 | (0.52–1.97) | NI | ||||
No | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Gennaro, F.; Gualano, G.; Timelli, L.; Vittozzi, P.; Di Bari, V.; Libertone, R.; Cerva, C.; Pinnarelli, L.; Nisii, C.; Ianniello, S.; et al. Increase in Tuberculosis Diagnostic Delay during First Wave of the COVID-19 Pandemic: Data from an Italian Infectious Disease Referral Hospital. Antibiotics 2021, 10, 272. https://doi.org/10.3390/antibiotics10030272
Di Gennaro F, Gualano G, Timelli L, Vittozzi P, Di Bari V, Libertone R, Cerva C, Pinnarelli L, Nisii C, Ianniello S, et al. Increase in Tuberculosis Diagnostic Delay during First Wave of the COVID-19 Pandemic: Data from an Italian Infectious Disease Referral Hospital. Antibiotics. 2021; 10(3):272. https://doi.org/10.3390/antibiotics10030272
Chicago/Turabian StyleDi Gennaro, Francesco, Gina Gualano, Laura Timelli, Pietro Vittozzi, Virginia Di Bari, Raffaella Libertone, Carlotta Cerva, Luigi Pinnarelli, Carla Nisii, Stefania Ianniello, and et al. 2021. "Increase in Tuberculosis Diagnostic Delay during First Wave of the COVID-19 Pandemic: Data from an Italian Infectious Disease Referral Hospital" Antibiotics 10, no. 3: 272. https://doi.org/10.3390/antibiotics10030272
APA StyleDi Gennaro, F., Gualano, G., Timelli, L., Vittozzi, P., Di Bari, V., Libertone, R., Cerva, C., Pinnarelli, L., Nisii, C., Ianniello, S., Mosti, S., Bevilacqua, N., Iacomi, F., Mondi, A., Topino, S., Goletti, D., Vaia, F., Ippolito, G., Girardi, E., & Palmieri, F., on behalf of the TB1-INMI Working Group. (2021). Increase in Tuberculosis Diagnostic Delay during First Wave of the COVID-19 Pandemic: Data from an Italian Infectious Disease Referral Hospital. Antibiotics, 10(3), 272. https://doi.org/10.3390/antibiotics10030272