Antibacterial Secondary Metabolites from Marine-Derived Fungus Aspergillus sp. IMCASMF180035
Abstract
:1. Introduction
2. Results and Discussion
2.1. Culture of Fungus and Isolation of Compounds
2.2. Structure Elucidation
2.3. Biological Activity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Microbial Material
3.3. Fermentation, Extraction, and Purification
3.3.1. Aspergiloxathene A (1)
3.3.2. Δ2′-1′-dehydropenicillide (2)
3.3.3. 5-methyl-3-methoxyepicoccone (3)
3.3.4. 7-carboxy-4-hydroxy-6-methoxy-5-methylphthalide (4)
3.4. Antibacterial Activity Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! an update from the infectious diseases society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumarasamy, K.K.; Toleman, M.A.; Walsh, T.R.; Bagaria, J.; Butt, F.; Balakrishnan, R.; Chaudhary, U.; Doumith, M.; Giske, C.G.; Irfan, S.; et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. Lancet. Infect. Dis. 2010, 10, 597–602. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Li, J.; Wu, Z.; Yin, W.; Schwarz, S.; Tyrrell, J.M.; Zheng, Y.; Wang, S.; Shen, Z.; et al. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat. Microbiol. 2017, 2, 16260. [Google Scholar] [CrossRef]
- Moloney, M.G. Natural products as a source for novel antibiotics. Trends. Pharmacol. Sci. 2016, 37, 689–701. [Google Scholar] [CrossRef]
- Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. Nat. Rev. Drug. Discov. 2009, 8, 69–85. [Google Scholar] [CrossRef]
- Shinde, P.; Banerjee, P.; Mandhare, A. Marine natural products as source of new drugs: A patent review (2015–2018). Expert Opin. Ther. Pat. 2019, 29, 283–309. [Google Scholar] [CrossRef]
- Wiese, J.; Imhoff, J.F. Marine bacteria and fungi as promising source for new antibiotics. Drug Develop. Res. 2019, 80, 24–27. [Google Scholar] [CrossRef] [Green Version]
- Blunt, J.W.; Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2018, 35, 8–53. [Google Scholar] [CrossRef] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2019, 36, 122–173. [Google Scholar] [CrossRef] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2020, 37, 175–223. [Google Scholar] [CrossRef]
- Song, F.; Liu, X.; Guo, H.; Ren, B.; Chen, C.; Piggott, A.; Yu, K.; Gao, H.; Wang, Q.; Liu, M.; et al. Brevianamides with antitubercular potential from a marine-derived isolate of Aspergillus versicolor. Org. lett. 2012, 14, 4770–4773. [Google Scholar] [CrossRef]
- Song, F.; Ren, B.; Chen, C.; Yu, K.; Liu, X.; Zhang, Y.; Yang, N.; He, H.; Liu, X.; Dai, H.; et al. Three new sterigmatocystin analogues from marine-derived fungus Aspergillus versicolor MF359. Appl. Microbiol. Biot. 2014, 98, 3753–3758. [Google Scholar] [CrossRef]
- Song, Z.; Gao, J.; Hu, J.; He, H.; Huang, P.; Zhang, L.; Song, F. One new xanthenone from the marine-derived fungus Aspergillus versicolor MF160003. Nat. Prod. Res. 2019, 34, 2907–2912. [Google Scholar] [CrossRef]
- An, C.L.; Kong, F.D.; Ma, Q.Y.; Xie, Q.Y.; Yuan, J.Z.; Zhou, L.M.; Dai, H.F.; Yu, Z.F.; Zhao, Y.X. Chemical constituents of the marine-derived fungus Aspergillus sp. SCS-KFD66. Mar. Drugs 2018, 16, 468. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Xu, Y.; Shao, C.L.; Yang, R.Y.; Zheng, C.J.; Chen, Y.; Fu, X.M.; Qian, P.Y.; She, Z.G.; de Voogd, N.J.; et al. Antibacterial bisabolane-type sesquiterpenoids from the sponge-derived fungus Aspergillus sp. Mar. Drugs 2012, 10, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Prompanya, C.; Dethoup, T.; Bessa, L.J.; Pinto, M.M.; Gales, L.; Costa, P.M.; Silva, A.M.; Kijjoa, A. New isocoumarin derivatives and meroterpenoids from the marine sponge-associated fungus Aspergillus similanensis sp. nov. KUFA 0013. Mar. Drugs 2014, 12, 5160–5173. [Google Scholar] [CrossRef]
- Wu, J.S.; Shi, X.H.; Yao, G.S.; Shao, C.L.; Fu, X.M.; Zhang, X.L.; Guan, H.S.; Wang, C.Y. New thiodiketopiperazine and 3,4-dihydroisocoumarin derivatives from the marine-derived fungus Aspergillus terreus. Mar. Drugs 2020, 18, 132. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Ren, L.; Li, S.; Song, J.; Han, Z.; He, S.; Xu, S. Production of new antibacterial 4-hydroxy-α-pyrones by a marine fungus Aspergillus niger cultivated in solid medium. Mar. Drugs 2019, 17, 344. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.K.; Cho, D.Y.; Choi, D.K.; Trinh, P.T.H.; Shin, H.J. Two new phomaligols from the marine-derived fungus Aspergillus flocculosus and their anti-neuroinflammatory activity in BV-2 microglial cells. Mar. Drugs 2021, 19, 65. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, J.; Wang, L.; Li, F.; Wang, Y.; Jiang, Y.; Song, X.; Qin, S.; Zheng, K.; Ye, J.; et al. Anti-HSV-1 activity of Aspergillipeptide D, a cyclic pentapepetide isolated from fungus Aspergillus sp. SCSIO 41501. Virol. J. 2020, 17, 41. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Zhu, X.; Hao, L.; Zhao, M.; Hua, Q.; An, F. Bioactive indolyl diketopiperazines from the marine derived endophytic Aspergillus versicolor DY180635. Mar. Drugs 2020, 18, 338. [Google Scholar] [CrossRef]
- Liu, Y.F.; Yue, Y.F.; Feng, L.X.; Zhu, H.J.; Cao, F. Asperienes A-D, bioactive sesquiterpenes from the marine-derived fungus Aspergillus flavus. Mar. Drugs 2019, 17, 550. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.Y.; Liao, L.; Park, S.H.; Kim, W.K.; Shin, J.; Lee, S.K. Antitumor activity of Asperphenin A, a lipopeptidyl benzophenone from marine-derived Aspergillus sp. fungus, by inhibiting yubulin polymerization in colon cancer cells. Mar. Drugs 2020, 18, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komai, S.I.; Hosoe, T.; Itabashi, T.; Nozawa, K.; Yaguchi, T.; Fukushima, K.; Kawai, K.I. New penicillide derivatives isolated from Penicillium simplicissimum. J. Nat. Med. 2006, 60, 185–190. [Google Scholar] [CrossRef] [PubMed]
- El Amrani, M.; Lai, D.; Debbab, A.; Aly, A.H.; Siems, K.; Seidel, C.; Schnekenburger, M.; Gaigneaux, A.; Diederich, M.; Feger, D.; et al. Protein kinase and HDAC inhibitors from the endophytic fungus Epicoccum nigrum. J. Nat. Prod. 2014, 77, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.R.; Miao, F.P.; Zhang, J.; Wang, G.; Yin, X.L.; Ji, N.Y. Three new xanthone derivatives from an algicolous isolate of Aspergillus wentii. Magn. Reson. Chem. 2013, 51, 65–68. [Google Scholar] [CrossRef]
- Achenbach, H.; Mühlenfeld, A.; Brillinger, G.U. Phthalide und chromanole aus Aspergillus duricaulis. Liebigs Ann. der Chem. 1985, 1985, 1596–1628. [Google Scholar] [CrossRef]
- Li, W.; Yang, X.; Yang, Y.; Duang, R.; Chen, G.; Li, X.; Li, Q.; Qin, S.; Li, S.; Zhao, L.; et al. Anti-phytopathogen, multi-target acetylcholinesterase inhibitory and antioxidant activities of metabolites from endophytic Chaetomium globosum. Nat. Prod. Res. 2016, 30, 2616–2619. [Google Scholar] [CrossRef]
- Salituro, G.M.; Pettibone, D.J.; Clineschmidt, B.V.; Williamson, J.M.; Zink, D.L. Potent, non-peptidic oxytocin receptor antagonists from a natural source. Bioorg. Med. Chem. Lett. 1993, 3, 337–340. [Google Scholar] [CrossRef]
- Loureiro, D.R.P.; Soares, J.X.; Costa, J.C.; Magalhaes, A.F.; Azevedo, C.M.G.; Pinto, M.M.M.; Afonso, C.M.M. Structures, activities and drug-likeness of anti-infective xanthone derivatives isolated from the marine environment: A Review. Molecules 2019, 24, 243. [Google Scholar] [CrossRef] [Green Version]
- Coopoosamy, R.M.; Magwa, M.L. Antibacterial activity of aloe emodin and aloin A isolated from Aloe excelsa. Afr. J. Biotechnol. 2006, 5, 1092–1094. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 7th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Han, J.; Yang, N.; Wei, S.; Jia, J.; Lin, R.; Li, J.; Bi, H.; Song, F.; Xu, X. Dimeric hexylitaconic acids from the marine-derived fungus Aspergillus welwitschiae CUGBMF180262. Nat. Prod. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Hang, X.; Jiang, X.; Zeng, L.; Jia, J.; Xie, Y.; Li, F.; Bi, H. In vitro and in vivo activities of zinc linolenate, a selective antibacterial agent against Helicobacter pylori. Antimicrob. Agents. Chemother. 2019, 63, e00004-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mnyambwa, N.P.; Mahende, C.; Wilfred, A.; Sandi, E.; Mgina, N.; Lubinza, C.; Kahwa, A.; Petrucka, P.; Mfinanga, S.; Ngadaya, E.; et al. Antibiotic susceptibility patterns of bacterial isolates from routine clinical specimens from Referral Hospitals in Tanzania: A prospective hospital-based observational study. Infect. Drug Resist. 2021, 4, 869–878. [Google Scholar] [CrossRef]
- Luna, V.A.; Xu, Z.Q.; Eiznhamer, D.A.; Cannons, A.C.; Cattani, J. Susceptibility of 170 isolates of the USA300 clone of MRSA to macrolides, clindamycin and the novel ketolide cethromycin. J. Antimicrob. Chemother. 2008, 62, 639–940. [Google Scholar] [CrossRef] [PubMed]
Position | 1 (DMSO-d6) | Position | 2 (CDCl3) | ||
---|---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | ||
1 | 156.6, C | 1 | 118.0, CH | 6.94 (d, J = 8.5 Hz) | |
2 | 122.6, C | 2 | 134.8, CH | 7.72 (d, J = 8.5 Hz) | |
3 | 143.2, C | 3 | 134.0, C | ||
4 | 123.5, CH | 6.28 (s) | 4 | 156.9, C | |
4a | 150.6, C | 4a | 121.6, C | ||
4b | 153.5, C | 5 | 166.4, C | ||
5 | 111.7, CH | 5.90 (d, J = 2.0 Hz) | 7 | 69.1, CH2 | 5.11 (s) |
6 | 165.6, C | 7a | 125.9, C | ||
7 | 101.3, CH | 6.19 (d, J = 2.0 Hz) | 8 | 121.2, CH | 6.40 (s) |
8 | 163.3, C | 9 | 135.6, C | ||
8a | 109.7, C | 10 | 117.8, CH | 6.87 (s) | |
8b | 114.1, C | 11 | 147.4, C | ||
9 | 45.6, C | 11a | 141.0, C | ||
10 | 190.2, C | 12a | 154.0, C | ||
11 | 167.5, C | 13 | 64.3, CH3 | 3.91 (s) | |
12 | 19.8, CH3 | 2.10 (s) | 1’ | 190.7, C | |
1’/8’ | 125.9, C | 2’ | 124.1, CH | 6.66 (s) | |
2’/7’ | 115.5, CH | 6.15 (s) | 3’ | 158.8, C | |
3’/6’ | 144.1, C | 4’ | 21.7, CH3 | 2.26 (s) | |
4’/5’ | 131.0, C | 5’ | 28.3, CH3 | 2.01 (s) | |
4’a/4’b | 137.3, C | 1’’ | 21.0, CH3 | 2.25 (s) | |
8’a/8’b | 117.7, C | ||||
9’/10’ | 19.9, CH3 | 1.34 (s) | |||
3’/6’-OH | 8.95 (s) | ||||
4’/5’-OH | 9.00 (s) |
Position | 3 (DMSO-d6) | 4 (DMSO-d6) | ||
---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
1 | 168.7, C | 168.8, C | ||
3 | 100.5, CH | 6.31 (s) | 68.0, CH2 | 5.26 (s) |
3a | 122.5, C | 119.8, C | ||
4 | 144.0, C | 150.7, C | ||
5 | 141.0, C | 124.8, C | ||
6 | 151.1, C | 155.9, C | ||
7 | 116.1, C | 118.7, C | ||
7a | 119.0, C | 128.8, C | ||
8 | 55.2, CH3 | 3.40 (s) | 9.8, CH3 | 2.16 (s) |
9 | 60.3, CH3 | 3.74 (s) | 61.8, CH3 | 3.73 (s) |
10 | 9.5, CH3 | 2.31 (s) | 166.4, C | |
4-OH | 9.71 (s) | |||
6-OH | 9.33 (s) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, F.; Lin, R.; Yang, N.; Jia, J.; Wei, S.; Han, J.; Li, J.; Bi, H.; Xu, X. Antibacterial Secondary Metabolites from Marine-Derived Fungus Aspergillus sp. IMCASMF180035. Antibiotics 2021, 10, 377. https://doi.org/10.3390/antibiotics10040377
Song F, Lin R, Yang N, Jia J, Wei S, Han J, Li J, Bi H, Xu X. Antibacterial Secondary Metabolites from Marine-Derived Fungus Aspergillus sp. IMCASMF180035. Antibiotics. 2021; 10(4):377. https://doi.org/10.3390/antibiotics10040377
Chicago/Turabian StyleSong, Fuhang, Rui Lin, Na Yang, Jia Jia, Shangzhu Wei, Jiahui Han, Jiangpeng Li, Hongkai Bi, and Xiuli Xu. 2021. "Antibacterial Secondary Metabolites from Marine-Derived Fungus Aspergillus sp. IMCASMF180035" Antibiotics 10, no. 4: 377. https://doi.org/10.3390/antibiotics10040377
APA StyleSong, F., Lin, R., Yang, N., Jia, J., Wei, S., Han, J., Li, J., Bi, H., & Xu, X. (2021). Antibacterial Secondary Metabolites from Marine-Derived Fungus Aspergillus sp. IMCASMF180035. Antibiotics, 10(4), 377. https://doi.org/10.3390/antibiotics10040377