Repurposing Avermectins and Milbemycins against Mycobacteroides abscessus and Other Nontuberculous Mycobacteria
Abstract
:1. Introduction
2. Results
2.1. Milbemycin Oxime Was the Most Active Macrocyclic Lactone against NTM with Broad-Spectrum Antimycobacterial Activity
2.2. Milbemycin Oxime Did Not Show any Inducible Resistance against Rapidly Growing Mycobacteria, in Contrast to Clarithromycin
2.3. Macrocyclic Lactones Displayed Selective Dose-Dependent Bacteriostatic or Bactericidal Activities against Different NTM Species
3. Discussion
4. Materials and Methods
4.1. Mycobacterial Strains
4.2. General Growth Conditions and Drugs
4.3. Drug Susceptibility Testing
4.4. Time Kill Assays
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, I.; Tiberi, S.; Farooqi, J.; Jabeen, K.; Yeboah-Manu, D.; Migliori, G.B.; Hasan, R. Non-Tuberculous Mycobacterial Infections—A Neglected and Emerging Problem. Int. J. Infect. Dis. 2020, 92, S46–S50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.L.; Aziz, D.B.; Dartois, V.; Dick, T. NTM Drug Discovery: Status, Gaps and the Way Forward. Drug Discov. Today 2018, 23, 1502–1519. [Google Scholar] [CrossRef] [PubMed]
- Ratnatunga, C.N.; Lutzky, V.P.; Kupz, A.; Doolan, D.L.; Reid, D.W.; Field, M.; Bell, S.C.; Thomson, R.M.; Miles, J.J. The Rise of Non-Tuberculosis Mycobacterial Lung Disease. Front. Immunol. 2020, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Egea, M.C.; Carrasco-Antón, N.; Esteban, J. State-of-the-Art Treatment Strategies for Nontuberculous Mycobacteria Infections. Expert Opin. Pharmacother. 2020, 6566. [Google Scholar] [CrossRef] [PubMed]
- Guglielmetti, L.; Mougari, F.; Lopes, A.; Raskine, L.; Cambau, E. Human Infections Due to Nontuberculous Mycobacteria: The Infectious Diseases and Clinical Microbiology Specialists ’ Point of View. Future Microbiol. 2015, 10, 1467–1483. [Google Scholar] [CrossRef]
- Degiacomi, G.; Sammartino, J.C.; Chiarelli, L.R.; Riabova, O.; Makarov, V.; Pasca, M.R. Mycobacterium Abscessus, an Emerging and Worrisome Pathogen among Cystic Fibrosis Patients. Int. J. Mol. Sci. 2019, 20, 5868. [Google Scholar] [CrossRef] [Green Version]
- Bento, C.M.; Gomes, M.S.; Silva, T. Looking beyond Typical Treatments for Atypical Mycobacteria. Antibiotics 2020, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Eur. Respir. J. 2020, 56. [Google Scholar] [CrossRef]
- Da Mata-Jardín, O.; Angulo, A.; Rodríguez, M.; Fernández-Figueiras, S.; de Waard, J.H. Drug Susceptibility Patterns of Rapidly Growing Mycobacteria Isolated from Skin and Soft Tissue Infections in Venezuela. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 433–441. [Google Scholar] [CrossRef]
- Esteban, J.; Navas, E. Tratamiento de Las Infecciones Producidas Por Micobacterias No Tuberculosas. Enferm. Infecc. Microbiol. Clin. 2018, 36, 586–592. [Google Scholar] [CrossRef]
- Winburn, B.; Sharman, T. Atypical Mycobacterial Disease Pathophysiology. Clin. Med. 2020, 13, 1–8. [Google Scholar]
- Johansen, M.D.; Herrmann, J.L.; Kremer, L. Non-Tuberculous Mycobacteria and the Rise of Mycobacterium Abscessus. Nat. Rev. Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Adelman, M.H.; Addrizzo-Harris, D.J. Management of Nontuberculous Mycobacterial Pulmonary Disease. Curr. Opin. Pulm. Med. 2018, 24, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Merola, V.M.; Eubig, P.A. Toxicology of Avermectins and Milbemycins (Macrocyclic Lactones) and the Role of P-Glycoprotein in Dogs and Cats. Vet. Clin. N. Am. Small Anim. Pract. 2018, 48, 991–1012. [Google Scholar] [CrossRef] [PubMed]
- Prichard, R.; Ménez, C.; Lespine, A. Moxidectin and the Avermectins: Consanguinity but Not Identity. Int. J. Parasitol. Drugs Drug Resist. 2012, 2, 134–153. [Google Scholar] [CrossRef] [PubMed]
- Długońska, H. The Nobel Prize 2015 in Physiology or Medicine for Highly Effective Antiparasitic Drugs. Ann. Parasitol. 2015, 61, 299–301. [Google Scholar]
- Nolan, J.; Lok, T.B.J. Macrocyclic Lactones in the Treatment and Control of Parasitism in Small Companion Animals. Curr. Pharm. Biotechnol. 2012, 13, 1078–1094. [Google Scholar] [CrossRef]
- McKellar, Q.A.; Benchaoui, H.A. Avermectins and Milbemycins. J. Vet. Pharmacol. Ther. 1996, 19, 331–351. [Google Scholar] [CrossRef]
- Canga, A.G.; Prieto, A.M.S.; Diez Liébana, M.J.; Martínez, N.F.; Sierra Vega, M.; García Vieitez, J.J. The Pharmacokinetics and Interactions of Ivermectin in Humans-A Mini-Review. AAPS J. 2008, 10, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Crump, A. Ivermectin: Panacea for Resource-Poor Communities? Trends Parasitol. 2014, 30, 445–455. [Google Scholar]
- FDA U.S. Food & Drug Administration. Available online: Https://Www.Accessdata.Fda.Gov/Drugsatfda_docs/Label/2018/210867lbl.Pdf (accessed on 2 April 2021).
- Roadmappers, T.I. A Roadmap for the Development of Ivermectin as a Complementary Malaria Vector Control Tool. Am. J. Trop. Med. Hyg. 2020, 102, 3–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagstaff, K.M.; Sivakumaran, H.; Heaton, S.M.; Harrich, D.; Jans, D.A. Ivermectin Is a Specific Inhibitor of Importin α/β-Mediated Nuclear Import Able to Inhibit Replication of HIV-1 and Dengue Virus. Biochem. J. 2012, 443, 851–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-Approved Drug Ivermectin Inhibits the Replication of SARS-CoV-2 in Vitro. Antiviral Res. 2020, 104787. [Google Scholar] [CrossRef] [PubMed]
- Chaccour, C.; Hammann, F.; Ram, S. Editorial Ivermectin and Novel Coronavirus Disease ( COVID-19 ): Keeping Rigor in Times of Urgency. Am. J. Trop. Med. Hyg. 2020, 1–2. [Google Scholar] [CrossRef]
- Lim, L.E.; Vilchèze, C.; Ng, C.; Jacobs, W.R.; Ramón-García, S.; Thompson, C.J. Anthelmintic Avermectins Kill Mycobacterium Tuberculosis, Including Multidrug-Resistant Clinical Strains. Antimicrob. Agents Chemother. 2013, 57, 1040–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherr, N.; Pluschke, G.; Thompson, C.J.; Ramón-García, S. Selamectin Is the Avermectin with the Best Potential for Buruli Ulcer Treatment. PLoS Negl. Trop. Dis. 2015, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dinos, G.P. The Macrolide Antibiotic Renaissance. Br. J. Pharmacol. 2017, 174, 2967–2983. [Google Scholar] [CrossRef]
- Clinical & Laboratory Standards Institute. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes; Approved Standard Second Edition—M24A2; Clinical & Laboratory Standards Institute: Annapolis Junction, MD, USA, 2011. [Google Scholar]
- Nessar, R.; Cambau, E.; Reyrat, J.M.; Murray, A.; Gicquel, B. Mycobacterium Abscessus: A New Antibiotic Nightmare. J. Antimicrob. Chemother. 2012, 67, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Hanson, K.E.; Slechta, E.S.; Muir, H.; Barker, A.P. Rapid Molecular Detection of Inducible Macrolide Resistance in Mycobacterium Chelonae and M. Abscessus Strains: A Replacement for 14-Day Susceptibility Testing? J. Clin. Microbiol. 2014, 52, 1705–1707. [Google Scholar] [CrossRef] [Green Version]
- Aono, A.; Morimoto, K.; Chikamatsu, K.; Yamada, H. Antimicrobial Susceptibility Testing of Mycobacteroides (Mycobacterium) Abscessus Complex, Mycolicibacterium (Mycobacterium) Fortuitum, and Mycobacteroides (Mycobacterium) Chelonae *. J. Infect. Chemother. 2018, 4–10. [Google Scholar] [CrossRef]
- Hatakeyama, S.; Ohama, Y.; Okazaki, M.; Nukui, Y.; Moriya, K. Antimicrobial Susceptibility Testing of Rapidly Growing Mycobacteria Isolated in Japan. BMC Infect. Dis. 2017, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Esteban, J.; Martín-de-Hijas, N.Z.; García-Almeida, D.; Bodas-Sánchez, A.; Gadea, I.F.-R.R. Prevalence of Erm Methylase Genes in Clinical Isolates of Non-Pigmented, Rapidly Growing Mycobacteria. Clin. Microbiol. Infect. 2009, 15, 919–923. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Li, G.L.; Pang, H.; Liu, H.C.; Xiao, T.Y.; Li, S.J.; Luo, Q.; Jiang, Y.; Wang, R.B.; Wan, K.L. Preliminary Study on Drug Susceptibility Profile and Resistance Mechanisms to Macrolides of Clinical Isolates of Non-Tuberculous Mycobacteria from China. Biomed. Environ. Sci. 2018, 31, 290–299. [Google Scholar]
- Chhaiya, S.; Mehta, D.; Kataria, B. Ivermectin: Pharmacology and Therapeutic Applications. Int. J. Basic Clin. Pharmacol. 2012, 1, 132. [Google Scholar] [CrossRef]
- Navarro, M.; Camprubí, D.; Requena-Méndez, A.; Buonfrate, D.; Giorli, G.; Kamgno, J.; Gardon, J.; Boussinesq, M.; Muñoz, J.; Krolewiecki, A. Safety of High-Dose Ivermectin: A Systematic Review and Meta-Analysis. J. Antimicrob. Chemother. 2020, 75, 827–834. [Google Scholar] [CrossRef]
- Bishop, B.F.; Bruce, C.I.; Evans, N.A.; Goudie, A.C.; Gration, K.A.F.; Gibson, S.P.; Pacey, M.S.; Perry, D.A.; Walshe, N.D.A.; Witty, M.J. Selamectin: A Novel Broad-Spectrum Endectocide for Dogs and Cats. Vet. Parasitol. 2000, 91, 163–176. [Google Scholar] [CrossRef]
- Sarasola, P.; Jernigan, A.D.; Walker, D.K.; Castledine, J.; Smith, D.G.; Rowan, T.G.; McTier, T.L. Pharmacokinetics of Selamectin Following Intravenous, Oral and Topical Administration in Cats and Dogs. J. Vet. Pharmacol. Ther. 2002, 25, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Amilio, T.; Francine, M.; Marianne, B.; Frank, B.E.C.B. Rapid Identification of Mycobacteria to the Species Level by Polymerase Chain Reaction and Restriction Enzyme Analysis. J. Clin. Microbiol. 1993, 31, 175–178. [Google Scholar]
Strains | MIC (mg/L) for RGM Strains | ||||||||
---|---|---|---|---|---|---|---|---|---|
MBO | Fold Change | CLA | Fold Change | AMK | Fold Change | ||||
3 Days | 14 Days | 3 Days | 14 Days | 3 Days | 14 Days | ||||
M. abscessus sp. abscessus ATCC 19977 | 8 | 8 | 1 | 4 | 128 | 32 | 16 | 64 | 4 |
M. abscessus sp. bolletii CCUG 50184 | 8 | 8 | 1 | 4 | 128 | 32 | 16 | 32 | 2 |
M. abscessus sp. masiliense CCUG 48898 | 8 | 8 | 1 | 0.5 | 2 | 4 | 16 | 64 | 4 |
M. chelonae ATCC 19235 | 8 | 16 | 2 | 0.12 | 0.5 | 4 | nd | nd | nd |
M. fortuitum ATCC 6841 | 8 | 8 | 1 | 8 | 64 | 8 | 4 | 4 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Muñoz, L.; Shoen, C.; Sweet, G.; Vitoria, A.; Bull, T.J.; Cynamon, M.; Thompson, C.J.; Ramón-García, S. Repurposing Avermectins and Milbemycins against Mycobacteroides abscessus and Other Nontuberculous Mycobacteria. Antibiotics 2021, 10, 381. https://doi.org/10.3390/antibiotics10040381
Muñoz-Muñoz L, Shoen C, Sweet G, Vitoria A, Bull TJ, Cynamon M, Thompson CJ, Ramón-García S. Repurposing Avermectins and Milbemycins against Mycobacteroides abscessus and Other Nontuberculous Mycobacteria. Antibiotics. 2021; 10(4):381. https://doi.org/10.3390/antibiotics10040381
Chicago/Turabian StyleMuñoz-Muñoz, Lara, Carolyn Shoen, Gaye Sweet, Asunción Vitoria, Tim J. Bull, Michael Cynamon, Charles J. Thompson, and Santiago Ramón-García. 2021. "Repurposing Avermectins and Milbemycins against Mycobacteroides abscessus and Other Nontuberculous Mycobacteria" Antibiotics 10, no. 4: 381. https://doi.org/10.3390/antibiotics10040381
APA StyleMuñoz-Muñoz, L., Shoen, C., Sweet, G., Vitoria, A., Bull, T. J., Cynamon, M., Thompson, C. J., & Ramón-García, S. (2021). Repurposing Avermectins and Milbemycins against Mycobacteroides abscessus and Other Nontuberculous Mycobacteria. Antibiotics, 10(4), 381. https://doi.org/10.3390/antibiotics10040381