Antibacterial Activity of Propolis Extracts from the Central Region of Romania against Neisseria gonorrhoeae
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Raw Propolis Extracts
2.2. NG Detection in Urine Samples
2.3. dcmH, gyrA, and parC Gene Detection
2.4. Assessment of Antimicrobial Activity of Propolis Samples
Minimum Inhibitory Concentration (MIC) of Different Types of Propolis
2.5. Statistical Analysis
3. Discussion
4. Materials and Methods
4.1. Propolis Sampling
4.2. Physico-Chemical Analyses of the Propolis Samples
4.2.1. Assessment of Water Content (H)
4.2.2. The Water Activity (aw)
4.2.3. Assessment of Total Ash
4.2.4. Qualitative Identification of Flavones’ Presence
4.2.5. Identification of Aromatic Acids
4.2.6. Quantification of the Phenolic Compounds (the Folin–Ciocalteu Method)
4.2.7. Determination of Flavonoid Content (Aluminum Chloride Colorimetric Method)
4.3. The Selection of NG Strains in View of Their Antimicrobial Activity
4.3.1. Patients and Specimens
4.3.2. DNA Extraction
4.3.3. DNA Amplification for NG-positive Samples Detection
4.3.4. DNA Amplification to Detect NG dcmH, gyrA, and parC Genes
4.3.5. NG Strains Isolation
4.4. Antimicrobial Activity
Minimum Inhibitory Concentration (MIC) of the Propolis Samples
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Report on Global Sexually Transmitted Infection Surveillance; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Grad, A.I.; Șenilă, S.C.; Cosgarea, R.; Tătaru, D.A.; Vesa, S.C.; Vica, M.L.; Matei, H.V.; Ungureanu, L. Sexual behaviors, attitudes, and knowledge about sexually transmitted infections: A cross-sectional study in Romania. Acta Dermatovener. Croat. 2018, 26, 25–32. [Google Scholar]
- Centers for Disease Control and Prevention. Sexually Transmitted Bacterial Pathogen for Which There are Increasing Antimicrobial Resistance Concerns: Neisseria Gonorrhea. Available online: https://www.who.int/csr/resources/publications/drugresist/IIAMRmanual.pdf (accessed on 6 May 2021).
- MacDonald, N.E.; Stanbrook, M.B.; Flegel, K.; Hebert, P.C.; Rosenfield, D. Gonorrhea: What goes around comes around. Can. Med. Assoc. J. 2011, 183, 1567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piszczek, J.; St Jean, R.; Khaliq, Y. Gonorrhea: Treatment update for an increasingly resistant organism. Can. Pharm. J. 2015, 148, 82–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Sexually Transmitted Infections (STIs). Available online: https://www.who.int/en/news-room/fact-sheets/detail/sexually-transmitted-infections-(stis) (accessed on 6 May 2021).
- Centers for Disease Control and Prevention. State and Local Health Alerts. Available online: https://www.cdc.gov/std/gonorrhea/arg/default.htm (accessed on 7 May 2021).
- Magooa, M.P.; Müller, E.E.; Gumede, L.; Lewis, D.A. Determination of Neisseria gonorrhoeae susceptibility to ciprofloxacin in clinical specimens from men using a real-time PCR assay. Int. J. Antimicrob. Agents 2013, 42, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Giles, J.; Hardick, J.; Yuenger, J.; Dan, M.; Reich, K.; Zenilman, J. Use of Applied Biosystems 7900HT sequence detection system and Taqman assay for detection of quinolone-resistant Neisseria gonorrhoeae. J. Clin. Microbiol. 2004, 42, 3281–3283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazer, M.; Abbaszadeh, S.; Darvishi, M.; Kheirollahi, A.; Shahsavari, S.; Moghadasi, M. The Most Important Herbs Used in the Treatment of Sexually Transmitted Infections in Traditional Medicine. Sudan J. Med Sci. 2019, 14, 41–64. [Google Scholar] [CrossRef] [Green Version]
- Abu-Jafar, A.; Huleihel, M. Antiviral activity of Eucalyptus camaldulensis leaves ethanolic extract on herpes viruses infection. Int. J. Clin. Virol. 2017, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Evans, M. A Guide to Herbal Remedies; Orient Publishing: New Delhi, India, 1994; p. 96. [Google Scholar]
- Rumpf, G.E. The Poison Tree: Selected Writings of Rumphius on the Natural History of the Indies; Beekman, E.M., Ed.; University of Massachusetts Press: Amherst, MA, USA, 1981; pp. 185–190. [Google Scholar]
- Ruddock, P.S.; Liao, M.; Foster, B.C.; Lawson, L.; Arnason, J.T.; Dillon, J.-A.R. Garlic natural health products exhibit variable constituent levels and antimicrobial activity against Neisseria gonorrhoeae, Staphylococcus aureus and Enterococcus faecalis. Phytother. Res. 2005, 19, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Budak, N.H.; Aykin, E.; Seydim, A.C.; Greene, A.K.; Guzel-Seydim, Z.B. Functional Properties of Vinegar. J. Food Sci. 2014, 79, R757–R764. [Google Scholar] [CrossRef]
- Edwards, D.J.; Draper, E.J. Variations in alkaloid content of herbal products containing goldenseal. J. Am. Pharm. Assoc. 2003, 43, 419–423. [Google Scholar] [CrossRef]
- Hudson, J.B. Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in infectious diseases. J. Biomed. Biotechnol. 2012, 2012, 769896. [Google Scholar] [CrossRef] [Green Version]
- Kambizi, L.; Sultana, N.; Afolayan, A.J. Bioactive Compounds Isolated from Aloe ferox.: A Plant Traditionally Used for the Treatment of Sexually Transmitted Infections in the Eastern Cape, South Africa. Pharm. Biol. 2005, 42, 636–639. [Google Scholar] [CrossRef]
- Medina, E.; de Castro, A.; Romero, C.; Ramírez, E.; Brenes, M. Effect of Antimicrobial Compounds from Olive Products on Microorganisms Related to Health, Food and Agriculture. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Méndez-Vilas, A., Ed.; Formatex Research Center Publisher: Gloucester, UK, 2013; pp. 1078–1094. [Google Scholar]
- Kedari, T.S.; Khan, A.; Khan, A. Guyabano (Annona Muricata): A review of its traditional uses phytochemistry and pharmacology. Am. J. Res. Commun. 2014, 2, 247–268. [Google Scholar]
- Cushnie, T.P.T.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef]
- Vica, M.L.; Glevitzky, M.; Dumitrel, G.A.; Junie, L.M.; Popa, M. Antibacterial activity of different natural honeys from Transylvania, Romania. J. Environ. Sci. Health B 2014, 49, 176–181. [Google Scholar] [CrossRef]
- Junie, L.M.; Vica, M.L.; Glevitzky, M.; Matei, H.V. Physico-chemical characterization and antibacterial activity of different types of honey tested on strains isolated from hospitalized patients. J. Apic. Sci. 2016, 60, 5–18. [Google Scholar] [CrossRef] [Green Version]
- UF Researchers Find Potential Vaccine for Gonorrhea Using Honey Bee Bacteria (UF Innovate). Available online: https://innovate.research.ufl.edu/2020/05/18/uf-researchers-find-potential-vaccine-for-gonorrhea-using-honey-bee-bacteria/ (accessed on 27 April 2021).
- McCoy, K. Axe: Gonorrhea Symptoms + 9 Natural Ways to Relieve Them. Available online: https://draxe.com/health/gonorrhea-symptoms/ (accessed on 27 April 2021).
- Eteraf-Oskouei, T.; Najafi, M. Traditional and modern uses of natural honey in human diseases: A review. Iran. J. Basic Med. Sci. 2013, 16, 731–742. [Google Scholar]
- Lavigne, J.-P.; Ranfaing, J.; Dunyach-Remy, C.; Sotto, A. Synergistic Effect of Propolis and Antibiotics on Uropathogenic Escherichia coli. Antibiotics 2020, 9, 739. [Google Scholar] [CrossRef]
- Al-Waili, N.; Al-Ghamdi, A.; Ansari, M.J.; Al-Attal, Y.; Salom, K. Synergistic effects of honey and propolis toward drug multi-resistant Staphylococcus aureus, Escherichia coli and Candida albicans isolates in single and polymicrobial cultures. Int. J. Med. Sci. 2012, 9, 793–800. [Google Scholar] [CrossRef] [Green Version]
- Salatino, A.; Teixeira, É.W.; Negri, G.; Message, D. Origin and chemical variation of Brazilian propolis. Evid. Based Complement. Alternat. Med. 2005, 2, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Toreti, V.C.; Sato, H.H.; Pastore, G.M.; Park, Y.K. Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evid. Based Complement. Alternat. Med. 2013, 2013, 697390. [Google Scholar] [CrossRef]
- Marcucci, M.C. Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie 1995, 26, 83–99. [Google Scholar] [CrossRef]
- Park, Y.K.; Alencar, S.M.; Aguiar, C.L. Botanical origin and chemical composition of Brazilian propolis. J. Agric. Food Chem. 2002, 50, 2502–2506. [Google Scholar] [CrossRef] [PubMed]
- Pietta, P.G.; Gardana, C.; Pietta, A.M. Analytical methods for quality control of propolis. Fitoterapia 2002, 73 (Suppl. S1), S7–S20. [Google Scholar] [CrossRef]
- De Castro, S.L. Propolis: Biological and pharmacological activities. Therapeutic uses of this bee-product. Annu. Rev. Biomed. Sci. 2001, 3, 49–83. [Google Scholar] [CrossRef]
- Jeon, J.G.; Rosalen, P.L.; Falsetta, M.L.; Koo, H. Natural Products in Caries Research: Current (Limited) Knowledge, Challenges and Future Perspective. Caries Res. 2011, 45, 243–263. [Google Scholar] [CrossRef]
- De Figueiredo, K.A.; da Silva, H.D.P.; Miranda, S.L.F.; Dos Santos Gonçalves, F.J.; de Sousa, A.P.; de Figueiredo, L.C.; Feres, M.; Bueno-Silva, B. Brazilian Red Propolis is as Effective as Amoxicillin in Controlling Red-Complex of Multispecies Subgingival Mature Biofilm In Vitro. Antibiotics 2020, 9, 432. [Google Scholar] [CrossRef]
- Pobiega, K.; Kraśniewska, K.; Przybył, J.L.; Bączek, K.; Żubernik, J.; Witrowa-Rajchert, D.; Gniewosz, M. Growth Biocontrol of Foodborne Pathogens and Spoilage Microorganisms of Food by Polish Propolis Extracts. Molecules 2019, 24, 2965. [Google Scholar] [CrossRef] [Green Version]
- Ling, A.E.; Bash, M.C.; Lynn, F.; Lister, N.A.; Zhu, P.; Garland, S.M.; Fairley, C.K.; Tabrizi, S.N. Evaluation of PorB variable region typing of Neisseria gonorrhoeae using PCR-ELISA in samples collected from men who have sex with men. J. Clin. Lab. Anal. 2007, 21, 237–243. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Centers for Disease Control and Prevention. Drug-Resistant Neisseria Gonorrhoeae. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/gonorrhea-508.pdf (accessed on 7 May 2021).
- Fletcher-Lartey, S.; Dronavalli, M.; Alexander, K.; Ghosh, S.; Boonwaat, L.; Thomas, J.; Robinson, A.; Patel, Z.; Forssman, B.; Pal, N. Trends in Antimicrobial Resistance Patterns in Neisseria Gonorrhoeae in Australia and New Zealand: A Meta-analysis and Systematic Review. Antibiotics 2019, 8, 191. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standard Institute. Performance Standards for Antimicrobial Susceptibility Testing 2020. Available online: https://clsi.org/media/3481/m100ed30_sample.pdf (accessed on 29 April 2021).
- Lopez, B.G.-C.; de Lourenco, C.C.; Alves, D.A.; Machado, D.; Lancellotti, M.; Sawaya, A.C.H.F. Antimicrobial and cytotoxic activity of red propolis: An alert for its safe use. J. Appl. Microbiol. 2015, 119, 677–687. [Google Scholar] [CrossRef]
- Gruber, F.; Lipozencic, J.; Kehler, T. History of venereal diseases from antiquity to the renaissance. Acta Dermatovenerol. Croat. 2015, 23, 1–11. [Google Scholar]
- Przybyłek, I.; Karpiński, T.M. Antibacterial properties of propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef] [Green Version]
- Al-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Antimicrobial Activities of European Propolis Collected from Various Geographic Origins Alone and in Combination with Antibiotics. Medicines 2018, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Shehata, M.G.; Ahmad, F.T.; Badr, A.N.; Masry, S.H.; El-Sohaimy, S.A. Chemical analysis, antioxidant, cytotoxic and antimicrobial properties of propolis from different geographic regions. Ann. Agric. Sci. 2020, 65, 209–217. [Google Scholar] [CrossRef]
- Vica, M.L.; Glevitzky, M.; Tit, D.M.; Behl, T.; Heghedus-Mîndru, R.C.; Zaha, D.C.; Ursu, F.; Popa, M.; Glevitzky, I.; Bungau, S. The antimicrobial activity of honey and propolis extracts from the central region of Romania. Food Biosci. 2021, 41, 101014. [Google Scholar] [CrossRef]
- Paulino, N.; Abreu, S.R.L.; Uto, Y.; Koyama, D.; Nagasawa, H.; Hori, H.; Dirsch, V.M.; Vollmar, A.M.; Scremin, A.; Bretz, W.A. Anti-inflammatory effects of a bioavailable compound, Artepillin C, in Brazilian propolis. Eur. J. Pharmacol. 2008, 587, 296–301. [Google Scholar] [CrossRef]
- Devequi-Nunes, D.; Machado, B.A.S.; Barreto, G.A.; Rebouças Silva, J.; da Silva, D.F.; da Rocha, J.L.C.; Brandão, H.N.; Borges, V.M.; Umsza-Guez, M.A. Chemical characterization and biological activity of six different extracts of propolis through conventional methods and supercritical extraction. PLoS ONE 2018, 13, e0207676. [Google Scholar] [CrossRef]
- Lewicki, P.P. Water as the determinant of food engineering properties. A review. J. Food Eng. 2004, 61, 483–495. [Google Scholar] [CrossRef]
- Machado, B.A.S.; Silva, R.P.D.; Barreto, G.A.; Costa, S.S.; da Silva, D.F.; Brandão, H.N.; da Rocha, J.L.C.; Dellagostin, O.A.; Henriques, J.A.P.; Umsza-Guez, M.A.; et al. Chemical Composition and Biological Activity of Extracts Obtained by Supercritical Extraction and Ethanolic Extraction of Brown, Green and Red Propolis Derived from Different Geographic Regions in Brazil. PLoS ONE 2016, 11, e0145954. [Google Scholar] [CrossRef] [PubMed]
- Mărghitaș, L.A. Albinele și Produsele Lor, 2nd ed.; Ceres Publishing: Bucharest, Romania, 2008; pp. 372–373. [Google Scholar]
- Kedzia, B.; Hołderna-Kedzia, E. Pinocembrin—flavonoid component of domestic propolis with delaying effect of the development of Alzheimer’s disease. Post. Fitoter. 2017, 18, 223–228. [Google Scholar] [CrossRef]
- Bankova, V.S.; de Castro, S.L.; Marcucci, M.C. Propolis: Recent advances in chemistry and plant origin. Apidologie 2000, 31, 3–15. [Google Scholar] [CrossRef]
- Metzner, J.; Bekemeier, H.; Schwaiberger, R. Bioautographic detection of the anti-microbial active constituents of propoli. Pharmazie 1975, 30, 799–800. [Google Scholar] [PubMed]
- Metzner, J.; Schneidewind, E.M. Studies on the question of potentiating effects of propolis constituents. Pharmazie 1978, 33, 465–468. [Google Scholar] [PubMed]
- Marghitas, L.A.; Dezmirean, D.S.; Bobis, O. Important Developments in Romanian Propolis Research. Evid. Based Complement. Alternat. Med. 2013, 2013, 159392. [Google Scholar] [CrossRef] [Green Version]
- Bonvehi, J.S.; Coll, F.V. Study on propolis quality from China and Uruguay. Z. Naturforsch. C J. Biosci. 2000, 55, 778–784. [Google Scholar] [CrossRef]
- Escriche, I.; Juan-Borras, M. Standardizing the analysis of phenolic profile in propolis. Food Res. Int. 2018, 106, 834–841. [Google Scholar] [CrossRef]
- Dos Santos, L.; Hochheim, S.; Boeder, A.M.; Kroger, A.; Tomazzoli, M.M.; Neto, R.D.P.; Maraschin, M.; Guedes, A.; de Cordova, C.M.M. Chemical characterization, antioxidant, cytotoxic and antibacterial.activity of propolis extracts and isolated compounds from the Brazilian stingless bees Melipona quadrifasciata and Tetragonisca angustula. J. Apic. Res. 2017, 56, 543–558. [Google Scholar] [CrossRef]
- Salomao, K.; Dantas, A.P.; Borba, C.M.; Campos, L.C.; Machado, D.G.; Aquino Neto, F.R.; de Castro, S.L. Chemical composition and microbicidal activity of extracts from Brazilian and Bulgarian propolis. Lett. Appl. Microbiol. 2004, 38, 87–92. [Google Scholar] [CrossRef]
- Oliveira, A.V.; Ferreira, A.L.; Nunes, S.; Dandlen, S.A.; Miguel, D.G.D.G.; Faleiro, M.L. Antibacterial activity of propolis extracts from the south of Portugal. Pak. J. Pharm. Sci. 2017, 30, 1–9. [Google Scholar]
- Biron, R.; Hădărugă, N.; Heghedűş Mîndru, G.; Hădărugă, D.; Jianu, I.; Ştef, D. Phitodelayer activity of propolis ingather from the west side of Romania. In Proceedings of the Abstracts of the Symposium on Animal Production, Veterinary Medicine and Agroeconomics in Transition Processes, Herceg Novi, Montenegro, 18–25 June 2006; p. 239. [Google Scholar]
- AOAC Official Method 930.15. Loos on Drying (Moisture) for Feeds. In Official Methods of Analysis of AOAC International, 19th ed.; Latimer, G.W. (Ed.) AOAC International: Gaithersburg, MD, USA, 2007. [Google Scholar]
- AOAC Official Method 923.03. Ash of Flour. In Official Methods of Analysis of AOAC International, 19th ed.; Latimer, G.W. (Ed.) AOAC International: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Correa-González, Y.X.; Rojas-Cardozo, M.A.; Mora-Huertas, C.E. Potentialities of the Colombian propolis in pharmaceutics and cosmetics: A standpoint from the quality control. Rev. Colomb. Cienc. Quím. Farm. 2019, 48, 762–788. [Google Scholar] [CrossRef]
- Mărghitaș, L.A. Albinele și Produsele Lor, 2nd ed.; Ceres Publishing: Bucharest, Romania, 2008; pp. 374–375. [Google Scholar]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Kumazawa, S.; Hamasaka, T.; Nakayama, T. Antioxidant activity of propolis of various geographic origins. Food Chem. 2004, 84, 329–339. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar] [CrossRef]
- Marcucci, M.C.; Ferreres, F.; Garcıa-Viguera, C.; Bankova, V.S.; De Castro, S.L.; Dantas, A.P.; Valente, P.H.; Paulino, N. Phenolic compounds from Brazilian propolis with pharmacological activities. J. Ethnopharmacol. 2001, 74, 105–112. [Google Scholar] [CrossRef]
- Box, G.E.P.; Hunter, J.S.; Hunter, W.G. Statistics for Experimenters: Design, Innovation, and Discovery, 2nd ed.; John Wiley & Sons Press: Hoboken, NJ, USA, 2005; Volume 2, p. 214. [Google Scholar]
Sample/ Shade of Brown | H (%) | aw (%) | Total Ash Content (%) | Phenolic Compounds (mg GAE/g) | Flavonoids (mg QE/g) |
---|---|---|---|---|---|
S1—pale | 7.65 ± 0.15 | 0.856 ± 0.012 | 1.42 ± 0.17 | 203.3 ± 7.28 | 90.54 ± 0.06 |
S2—medium | 6.79 ± 0.24 | 0.825 ± 0.015 | 1.37 ± 0.20 | 190.6 ± 5.26 | 80.19 ± 0.01 |
S3—dark | 7.92 ± 0.19 | 0.794 ± 0.016 | 1.44 ± 0.19 | 134.7 ± 4.09 | 71.24 ± 0.02 |
S4—pale | 7.54 ± 0.27 | 0.810 ± 0.024 | 1.70 ± 0.13 | 181.5 ± 6.10 | 72.92 ± 0.07 |
S5—medium | 7.81 ± 0.22 | 0.832 ± 0.008 | 1.39 ± 0.09 | 169.1 ± 8.39 | 69.23 ± 0.04 |
Sample No. | Diameters of Inhibition Zones (mm) | |||||||
---|---|---|---|---|---|---|---|---|
Strain | S1 (0.1 g/mL) | S2 (0.1 g/mL) | S3 (0.1 g/mL) | S4 (0.1 g/mL) | S5 (0.1 g/mL) | Average xj | Ciprofloxacin (5 µg) | |
ATCC 49226 | 40 | 39 | 41 | 38 | 33 | 38.2 | 41 | |
NG I | 42 | 37 | 36 | 35 | 30 | 36 | 41 | |
NG II | 40 | 41 | 38 | 39 | 33 | 38.2 | 35 | |
NG III | 37 | 36 | 30 | 31 | 27 | 32.2 | 20 | |
Average xi | 39.75 | 38.25 | 36.25 | 35.75 | 30.75 | ∑xij = 723 | - |
Sample No. | MIC (µg/mL) |
---|---|
S1 | 6.25 |
S2 | 6.25 |
S3 | 12.5 |
S4 | 6.25 |
S5 | 25.0 |
Dispersion Sum of the Diameters of Inhibition Zones | Quadratic Sum | Degrees of Freedom ν | Variance | Fcomputed | F0.05 |
---|---|---|---|---|---|
Between the propolis types | S2–S4 = 186.80 | m − 1 = 4 | s12 = 46.70 | 15.47 | 3.26 |
Between strains | S3–S4 = 120.15 | n − 1 = 3 | s22 = 40.05 | 13.50 | 3.4 + 9 |
Residual, Sr | Sr = 198 | (m − 1)(n − 1) = 12 | sr2 = 2.96 | - | - |
QRDR Primer | Sequence | Product Length | GC% |
---|---|---|---|
gyrA | 391 | ||
Forward | ATGTGAGATTTTCGCCATGCGG | 62.14 | |
Reverse | CAAATTCGCCCTCGAAACCCT | 61.22 | |
parC | 329 | ||
Forward | CAGCGGCGCATTTTGTTTG | 59.51 | |
Reverse | TCAAACGCGCCGTCGTAG | 60.80 | |
dcmH | 80 | ||
Forward | GGATACGACGTAACCTTGACTATGG | 60.79 | |
Reverse | CCGATGTAGAAGACCCTTTTGC | 59.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vică, M.L.; Glevitzky, I.; Glevitzky, M.; Siserman, C.V.; Matei, H.V.; Teodoru, C.A. Antibacterial Activity of Propolis Extracts from the Central Region of Romania against Neisseria gonorrhoeae. Antibiotics 2021, 10, 689. https://doi.org/10.3390/antibiotics10060689
Vică ML, Glevitzky I, Glevitzky M, Siserman CV, Matei HV, Teodoru CA. Antibacterial Activity of Propolis Extracts from the Central Region of Romania against Neisseria gonorrhoeae. Antibiotics. 2021; 10(6):689. https://doi.org/10.3390/antibiotics10060689
Chicago/Turabian StyleVică, Mihaela Laura, Ioana Glevitzky, Mirel Glevitzky, Costel Vasile Siserman, Horea Vladi Matei, and Cosmin Adrian Teodoru. 2021. "Antibacterial Activity of Propolis Extracts from the Central Region of Romania against Neisseria gonorrhoeae" Antibiotics 10, no. 6: 689. https://doi.org/10.3390/antibiotics10060689
APA StyleVică, M. L., Glevitzky, I., Glevitzky, M., Siserman, C. V., Matei, H. V., & Teodoru, C. A. (2021). Antibacterial Activity of Propolis Extracts from the Central Region of Romania against Neisseria gonorrhoeae. Antibiotics, 10(6), 689. https://doi.org/10.3390/antibiotics10060689