Effectiveness of Oil-Based Denture Dentifrices-Organoleptic Characteristics, Physicochemical Properties and Antimicrobial Action
Abstract
:1. Introduction
2. Results
2.1. Organoleptic Characteristics and Physico-Chemical Properties
2.2. Antimicrobial and Anti-Biofilm Activity
3. Discussion
4. Materials and Methods
4.1. Essential Oils and Fatty Acids
4.2. Strains and Inoculum Preparation
4.3. Determination of Minimum Inhibitory Concentration (MIC)
4.4. Dentifrice Formulations
4.5. Organoleptic Characteristics and Physico-Chemical Properties
4.6. Antimicrobial and Anti-Biofilm Activity
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coulthwaite, L.; Verran, J. Potential pathogenic aspects of denture plaque. Br. J. Biomed. Sci. 2007, 4, 180–189. [Google Scholar] [CrossRef]
- Andrucioli, M.C.; Macedo, L.D.; Panzeri, H.; Lara, E.H.G.; Paranhos, H.F.O. Comparison of two cleansing pastes for the removal of biofilm from dentures and palatal lesions in patients with atrophic chronic candidiasis. Braz. Dent. J. 2004, 15, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Paranhos, H.F.; Silva-Lovato, C.H.; Souza, R.F.; Cruz, P.C.; Freitas, K.M.; Peracini, A. Effects of mechanical and chemical methods on denture biofilm accumulation. J. Oral Rehabil. 2007, 8, 606–612. [Google Scholar] [CrossRef]
- Andrade, I.M.; Silva-Lovato, C.H.; Souza, R.F.; Pisani, M.X.; Andrade, K.M.; Paranhos, H.F.O. Trial of experimental toothpastes regarding quality for cleaning dentures. Int. J. Prosthodont. 2012, 25, 157–159. [Google Scholar] [PubMed]
- Paranhos, H.F.O.; Salles, A.E.; Macedo, L.D.; Silva-Lovato, C.H.; Pagnano, V.O.; Watanabe, E. Complete denture biofilm after brushing with specific denture paste, neutral soap and artificial saliva. Braz. Dent. J. 2013, 24, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Axe, A.S.; Varghese, R.; Bosma, M.; Kitson, N.; Bradshaw, D.J. Dental health professional recommendation and consumer habits in denture cleansing. J. Prosthet. Dent. 2016, 115, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Papadiochou, S.; Polyzois, G. Hygiene practices in removable prosthodontics: A systematic review. Int. J. Dent. Hyg. 2017, 16, 179–201. [Google Scholar] [CrossRef] [PubMed]
- Freitas, K.M.; Paranhos, H.F. Weight loss of five commercially available denture teeth after toothbrushing with three different dentifrices. J. Appl. Oral Sci. 2006, 14, 242–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas-Pontes, K.M.; Silva-Lovato, C.H.; Paranhos, H.F.O. Mass loss of four commercially available heat-polymerized acrylic resins after toothbrushing with three different dentifrices. J. Appl. Oral Sci. 2009, 17, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Pisani, M.X.; Bruhn, J.P.; Paranhos, H.F.; Silva-Lovato, C.H.; Souza, R.F.; Panzeri, H. Evaluation of the abrasiveness of dentifrices for complete dentures. J. Prosthodont. 2010, 19, 369–373. [Google Scholar] [CrossRef]
- Sorgini, D.B.; Silva-Lovato, C.H.; Souza, R.F.; Davi, L.R.; Paranhos, H.F.O. Abrasiveness of conventional and specific denture-cleansing dentifrices. Braz. Dent. J. 2012, 23, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Roselino, R.M.L.; Alandia-Roman, A.R.; Leite, V.M.F.; Silva-Lovato, C.H.; Pires-de-Souza, F.C.P. Color stability and surface roughness of artificial teeth brushed with an experimental Ricinus communis toothpaste. Braz. J. Oral Sci. 2015, 14, 267–271. [Google Scholar] [CrossRef]
- Sorgini, D.B.; Silva-Lovato, C.H.; Muglia, V.A.; Souza, R.F.; Arruda, C.N.F.; Paranhos, H.F.O. Adverse effects on PMMA caused by mechanical and combined methods of denture cleansing. Braz. Dent. J. 2015, 26, 292–296. [Google Scholar] [CrossRef] [Green Version]
- Badaró, M.M.; Salles, M.M.; Arruda, C.N.F.; Oliveira, V.C.; Souza, R.F.; Paranhos, H.F.O.; Silva-Lovato, C.H. In vitro analysis of surface roughness of acrylic resin exposed to the combined hygiene method of brushing and immersion in Ricinus communis and sodium hypochlorite. J. Prosthodont. 2016, 26, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Badaró, M.M.; Prates, T.P.; Leite-Fernandes, V.M.F.; Oliveira, V.C.; Paranhos, H.F.O.; Silva-Lovato, C.H. In vitro evaluation of resilient liner after brushing with conventional and experimental Ricinus communis-based dentifrices. J. Prosthodont. 2019, 28, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Paranhos, H.F.O.; Panzeri, H.; Lara, E.H.; Candido, R.C.; Ito, I.Y. Capacity of denture plaque/biofilm removal and antimicrobial action of a new denture paste. Braz. Dent. J. 2000, 11, 97–104. [Google Scholar]
- Panzeri, H.; Lara, E.H.; Paranhos, H.F.O.; Lovato-Silva, C.H.; Souza, R.F.; Gugelmin, M.C.M.S.; Tirapelli, C.; Criz, P.C.; Andrade, I.M. In vitro and clinical evaluation of specific dentifrices for complete denture hygiene. Gerodontology 2009, 26, 26–33. [Google Scholar] [CrossRef]
- Tirapelli, C.; Landi, F.; Ribas, J.; Panzeri, H.; Lara, E.H. Evaluating an experimental dentifrice containing chloramine-T: A preliminary study. Oral Health Prev. Dent. 2010, 8, 375–381. [Google Scholar]
- André, R.F.G.; Andrade, I.M.; Silva-Lovato, C.H.; Paranhos, H.F.O.; Pimenta, F.C.; Ito, I.Y. Prevalence of mutans streptococci isolated from complete dentures and their susceptibility to mouthrinses. Braz. Dent. J. 2011, 22, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Leite, V.M.F.; Pinheiro, J.B.; Pisani, M.X.; Watanabe, E.; Souza, R.F.; Paranhos, H.F.O.; Silva-Lovato, C.H. In Vitro Antimicrobial activity of an experimental dentifrice based on Ricinus communis. Braz. Dent. J. 2014, 25, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Badaró, M.M.; Fernandes, V.M.F.L.; Martin, L.T.; Oliveira, V.C.; Watanabe, E.; Paranhos, H.F.O.; Silva-Lovato, C.H. Antibiofilm activity of an experimental Ricinus communis dentifrice on soft denture liners. Braz. Dent. J. 2019, 30, 252–258. [Google Scholar] [CrossRef]
- Carvalho, I.O.; Purgato, G.A.; Píccolo, M.S.; Pizziolo, V.R.; Coelho, R.F.; Diaz-Muñoz, G.; Diaz, M.A.N. In vitro anticariogenic and antibiofilm activities of toothpastes formulated with essential oils. Arch. Oral Biol. 2020, 117, 1–8. [Google Scholar] [CrossRef]
- Shaheen, S.S.; Reddy, P.; Hemalatha, S.R.; Doshi, D.; Kulkarni, S.; Kumar, M. Antimicrobial efficacy of ten commercially available herbal dentifrices against specific oral microflora—In vitro study. J. Clin. Diagn. Res. 2015, 9, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Casarin, M.; Pazinatto, J.; Santos, R.C.V.; Zanatta, F.B. Melaleuca alternifolia and its application against dental plaque and periodontal diseases: A systematic review. Phytother. Res. 2017, 32, 230–242. [Google Scholar] [CrossRef]
- Koseki, Y.; Tanaka, R.; Murata, H. Development of antibacterial denture cleaner for brushing containing tea tree and lemongrass essential oils. Dent. Mater. J. 2018, 37, 659–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangrej, U.H.; Dave, D.; Saraiva, K. Clinical effect of commercially available two herbal dentifrices on the control of plaque and gingivitis. Inter. J. Sci. Res. 2018, 7, 39–41. [Google Scholar] [CrossRef]
- Varma, S.R.; Sherif, H.; Serafi, A.; Fanas, S.A.; Desai, V.; Abuhijleh, E. The antiplaque efficacy of two herbal-based toothpastes: A clinical intervention. J. Int. Soc. Prev. Community Dent. 2018, 8, 21–27. [Google Scholar] [CrossRef]
- Mordenti, J.J.; Lindstrom, R.E.; Tanzer, J.M. Activity of sodium ricinoleate against in vitro plaque. J. Pharm. Sci. 1982, 71, 1419–1421. [Google Scholar] [CrossRef] [PubMed]
- Baranowska, M.K.; Mardarowicz, M.; Wiwart, M.; Pobłocka, L.; Dynowska, M. Antifungal activity of the essential oils from some species of the genus Pinus. Z Naturforsch C J Biosci. 2002, 57, 478–482. [Google Scholar] [CrossRef]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (Tea Tree) oil: A review of antimicrobial and other medicinal properties. Microbiol. Rev. 2006, 19, 50–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luqman, S.; Dwivedi, G.R.; Darokar, M.P.; Kalra, A.; Khanuja, S.P.S. Antimicrobial activity of Eucalyptus citriodora essential oil. Inter. J. Es. Oil Therap. 2008, 2, 69–75. [Google Scholar]
- Rodrigues, M.O.; Alves, P.B.; Nogueira, P.C.L.; Machado, S.M.F.; Moraes, V.R.S.; Ribeiro, A.S.; Silva, E.S.; Feitosa, J.G.R. Volatile constituents and antibacterial activity from seeds of Bowdichia virgilioides Kunt. J. Es. Oil Res. 2009, 21, 286–288. [Google Scholar] [CrossRef]
- Moghadamtousi, S.Z.; Kadir, H.A.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res. Int. 2014, 2014, 1–12. [Google Scholar] [CrossRef]
- Diefenbach, A.L.; Muniz, F.W.M.G.; Oballe, H.J.R.; Rösing, C.K. Antimicrobial activity of copaiba oil (Copaifera ssp.) on oral pathogens: Systematic review. Phytother. Res. 2018, 32, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Kraivaphan, P.; Amornchat, C. Effect of an essential oil-containing dentifrice on established plaque and gingivitis. South. East. Asian J. Trop. Med. Public Health 2012, 43, 243–248. [Google Scholar]
- Kulak, Y.; Arikan, A.; Kazazoglu, E. Existence of Candida albicans and microorganisms in denture stomatitis patients. J. Oral Rehabil. 1997, 24, 788–790. [Google Scholar] [CrossRef] [PubMed]
- Baena Monroy, T.; Moreno Maldonado, V.; Martinez, F.F.; Barrios, A.B.; Quindos, G.; Sanchez Vargas, L.O. Candida albicans, Staphylococcus aureus and Streptococcus mutans colonization in patients wearing dental prosthesis. Medicina Oral Patologia Oral Cirugia Bucal 2005, 10, 27–39. [Google Scholar]
- Campos, M.S.; Marchini, L.; Bernardes, L.A.S.; Paulino, L.C.; Nobrega, F.G. Biofilm microbial communities of denture stomatitis. Oral Microbiol. Immunol. 2008, 5, 419–424. [Google Scholar] [CrossRef]
- Ganesh, S.; Gujjari, A.K.; Shylesh, K.B.S.; Ravi, M.B.; Sowmya, S.; Meenakshi, S. Comparative study to assess the effectiveness of various disinfectants on two microorganisms and the effect of same on flexural strength of acrylic denture base resin—An in vitro study. J. Int. Oral Health 2013, 5, 55–62. [Google Scholar] [PubMed]
- Badaró, M.M.; Salles, M.M.; Leite, V.M.F.; Arruda, C.N.F.; Oliveira, V.C.; Nascimento, C.; de Souza, R.F.; Paranhos, H.d.F.d.O.; Silva-Lovato, C.H. Clinical trial for evaluation of Ricinus communis and sodium hypochlorite as denture cleanser. J. Appl. Oral Sci. 2017, 25, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Andonissamy, L.; Karthigeyan, S.; Ali, S.A.; Felix, J.W. Effect of chemical denture disinfectants and tree extracts on biofilm-forming Staphylococcus aureus and viridans Streptococcus species isolated from complete denture. J. Contemp. Dent. Prac. 2019, 20, 1307–1314. [Google Scholar] [CrossRef]
- International Organization for Standardization. Dental Materials—Guidance on Testing of Wear Resistance—Part 1: Wear by Tooth Brushing; ISO: Geneva, Switzerland, 1999. [Google Scholar]
- Nascimento, P.F.C.; Nascimento, A.C.; Rodrigues, S.; Antoniolli, A.R.; Santos, P.O.; Barbosa Júnior, A.M.; Trindade, R.C. Antimicrobial activity of the essentials oils: A multifactor approach of the methods. Rev. Bras. Farmacogn. 2007, 17, 108–113. [Google Scholar] [CrossRef]
- Gendreau, L.; Loewy, Z.G. Epidemiology and etiology of denture stomatitis. J. Prosthodont. 2011, 20, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Ghannoum, M.A.; Jurevic, R.J.; Mukherjee, P.K.; Cui, F.; Sikaroodi, M.; Naqvi, A.; Gillevet, P.M. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010, 6, e1000713. [Google Scholar] [CrossRef] [Green Version]
- Prakash, B.; Shekar, M.; Maiti, B.; Karunasagar, I.; Padiyath, S. Prevalence of Candida spp. among healthy denture and nondenture wearers with respect to hygiene and age. J. Indian Prosthodont. Soc. 2015, 15, 29–32. [Google Scholar] [CrossRef]
- Vanden, A.A.; de Meel, H.; Ahariz, M.; Perraudin, J.P.; Beyer, I.; Courtois, P. Denture contamination by yeasts in the elderly. Gerodontology 2008, 25, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Zomorodian, K.; Haghighi, N.N.; Rajaee, N.; Pakshir, K.; Tarazooie, B.; Vojdani, M.; Sedaghat, F.; Vosoghi, M. Assessment of Candida species colonization and denture related stomatitis in complete denture wearers. Med. Mycol. 2011, 49, 208–211. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, D.G.; Pavarina, A.C.; Dovigo, L.N.; Machado, A.L.; Giampaolo, E.T.; Vergani, C.E. Prevalence of Candida spp. associated with bacteria species on complete dentures. Gerodontology 2012, 29, 203–208. [Google Scholar] [CrossRef]
- Daef, E.; Moharram, A.; Eldin, S.S.; Elsherbiny, N.; Mohammed, M. Evaluation of chromogenic media and seminested PCR in the identification of Candida species. Braz. J. Microbiol. 2014, 45, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Glass, R.T.; Bullard, J.W.; Conrad, R.S.; Blewett, E.L. Evaluation of the sanitization effectiveness of a denture-cleaning product on dentures contaminated with known microbial flora. An in vitro study. Quintessence Int. 2004, 35, 194–199. [Google Scholar]
- Thein, Z.N.; Samaranayake, Y.H.; Samaranayake, L.P. Effect of oral bacteria on growth and survival of Candida albicans biofilms. Arch. Oral Biol. 2001, 51, 672–680. [Google Scholar] [CrossRef]
- Glasse, R.T.; Bullard, J.W.; Hadley, C.S.; Mix, E.W.; Conrad, R.S. Partial spectrum of microorganisms found in dentures and possible disease implications. J. Am. Osteopath. Assoc. 2001, 101, 92–94. [Google Scholar] [CrossRef]
- Coenye, T.; De Prijck, K.; De Wever, B.; Nelis, H.J. Use of the modified Robbins device to study the in vitro biofilm removal efficacy of NitrAdine, a novel disinfecting formula for the maintenance of oral medical devices. J. Appl. Microbiol. 2008, 105, 733–740. [Google Scholar] [CrossRef]
- Smith, A.J.; Jackson, M.S.; Bagg, J. The ecology of Staphylococcus species in the oral cavity. J. Med. Microbiol. 2001, 50, 940–946. [Google Scholar] [CrossRef]
- Albuquerque Jr., R.; Head, T.W.; Mian, H.; Ridrigo, A.; Müller, K.; Sanches, K.; Ito, I.Y. Reduction of salivar S. aureus and mutans group streptococci by a preprocedural chlorhexidine rinse and maximal inhibitory dilutions of chlorhexidine and cetylpyridinium. Quintenssence Int. 2004, 35, 635–640. [Google Scholar]
- Macià, M.D.; Rojo-Molinero, E.; Oliver, A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin. Microbiol. Infect. 2014, 20, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Paranhos, H.F.O.; Silva-Lovato, C.H.; Souza, R.F.; Cruz, P.C.; Pontes, K.M.F.; Watanabe, E.; Ito, I.Y. Effect of three methods for cleaning dentures on biofilm formed in vitro on acrylic resin. J. Prosthod. 2009, 18, 427–431. [Google Scholar] [CrossRef]
- Peters, B.M.; Jabra-Rizk, M.A.; Scheper, M.A.; Leid, J.G.; Costerton, J.W.; Shirtliff, M.E. Microbial interactions and differential protein expression in Staphylococcus aureus—Candida albicans dual—Species biofilms. FEMS Immunol. Med. Microbiol. 2010, 59, 493–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coimbra, F.C.T.; Salles, M.M.; Oliveira, V.C.; Macedo, A.P.; Silva-Lovato, C.H.; Pagnano, V.O.; Paranhos, H.F.O. Antimicrobial efficacy of complete denture cleansers. Am. J. Dent. 2016, 29, 149–153. [Google Scholar] [PubMed]
- Paranhos, H.F.O.; Coimbra, F.C.T.; Salles, M.M.; Oliveira, V.C.; Macedo, A.P.; Pagnano, V.O.; Silva-Lovato, C.H. In vitro evaluation of the effectiveness of alkaline peroxide solutions in reducing the viability of specific biofilms. Am. J. Dent. 2019, 32, 201–206. [Google Scholar] [PubMed]
- Coimbra, F.C.T.; Rocha, M.M.; Oliveira, V.C.; Macedo, A.P.; Pagnano, V.O.; Silva-Lovato, C.H.; Paranhos, H.F.O. Antimicrobial activity of effervescent denture tablets on multispecies biofilms. Gerodontology 2021, 1, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Tobouti, P.L.; Mussi, M.C.M.; Rossi, D.C.P.; Pigatti, F.M.; Taborda, C.P.; Taveira, L.A.A.; Sousa, S.C.O.M. Influence of Melaleuca and Copaiba oils on Candida albicans adhesion. Gerodontology 2014, 33, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Alencar, E.N.; Xavier-Junior, F.H.; Morais, A.R.; Dantas, T.R.; Dantas-Santos, N.; Verissimo, L.M.; Rehder, V.L.G.; Chaves, G.M.; Oliveira, A.G.; Egito, E.S.T. Chemical characterization and antimicrobial activity evaluation of natural oil nanostructured emulsions. J. Nanosci. Nanotechnol. 2015, 15, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, K.R.; Veiga Júnior, V.F.; Rocha, W.C.; Bandeira, M.F. In vitro assessment of antibacterial activity of a dental cement constituted of a Copaifera multijuga Hayne oil-resin. Rev. Bras. Farmacogn. 2008, 18, 33–38. [Google Scholar] [CrossRef]
- Moo, C.L.; Yang, S.K.; Osman, M.A.; Yuswan, M.H.; Loh, J.Y.; Lim, W.M.; Lim, S.H.; Lai, K.S. Antibacterial activity and mode of action of beta-caryophyllene on Bacillus cereus. Pol. J. Microbiol. 2020, 69, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ramezani, H.; Singh, H.P.; Batish, D.R.; Kohli, R.K. Antifungal activity of the volatile oil of Eucalyptus citriodora. Fitoterapia 2002, 73, 261–262. [Google Scholar] [CrossRef]
- Tolbaa, H.H.; Moghrania, A.; Mouffok, D.B.; Maachia, R.K. Essential oil of algerian Eucalyptus citriodora: Chemical composition, antifungal activity. J. Mycol. Med. 2015, 25, 128–133. [Google Scholar] [CrossRef]
- Hans, V.M.; Grover, H.S.; Deswal, H.; Agarwal, P. Antimicrobial efficacy of various essential oils at varying concentrations against periopathogen Porphyromonas Gingivalis. J. Clin. Diagn Res. 2016, 10, 16–19. [Google Scholar] [CrossRef]
- Zengin, H.; Baysal, A.H. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules 2014, 19, 17773–17798. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Wang, J.; Shao, X.; Xu, F.; Wang, H. Antifungal modes of action of tea tree oil and its two characteristic components against Botrytis cinerea. J. Appl. Microbiol. 2015, 119, 1253–1262. [Google Scholar] [CrossRef] [Green Version]
- Worbs, S.; Köhler, K.; Pauly, D.; Avondet, M.A.; Schaer, M.; Dorner, M.B.; Dorner, B.G. Ricinus communis intoxications in human and veterinary medicine-a summary of real cases. Toxins 2011, 3, 1332–1372. [Google Scholar] [CrossRef] [Green Version]
- Rivas da Silva, A.C.; Lopes, P.M.; Barros de Azevedo, M.M.; Costa, D.C.; Alviano, C.S.; Alviano, D.S. Biological activities of α-pinene and β-pinene enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute/National Comitee for Clinical Laboratory Standards (CLSI/NCCLS). Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Third Informational CLSI/NCCLS Document; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2013; pp. 100–123. [Google Scholar]
- Aligiannis, N.; Kalpoutzakis, E.; Mitaku, S.; Chinou, I.B. Composition and antimicrobial activity of the essential oil of two Origanum species. J. Agri. Food Chem. 2001, 40, 4168–4170. [Google Scholar] [CrossRef] [PubMed]
- Karygianni, L.; Al-Ahmad, A.; Argyropoulou, A.; Hellwig, E.; Anderson, A.C.; Skaltsounis, A.L. natural antimicrobials and oral microorganisms: A systematic review on herbal interventions for the eradication of multispecies oral biofilms. Front. Microbiol. 2016, 6, 1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dentifrice | Density (g/mL) | pH | Consistency (mm) | Viscosity | Hysteresis Area | |
---|---|---|---|---|---|---|
Curve Ascending | Curve Downward | |||||
C. officinalis | 1.067 | 7.32 | 89.6 | 3692.58 | 124,222.22 | 0.66 |
E. citriodora | 1.111 | 7.36 | 94.0 | 3976.63 | 155,277.78 | 1.21 |
R. Communis | 1.116 | 7.36 | 93.4 | 3408.54 | 155,277.78 | 0.15 |
M. alternifolia | 1.106 | 7.35 | 89.6 | 3195.50 | 155,277.78 | 0.97 |
P. strobus | 1.075 | 7.37 | 81.0 | 3124.49 | 124,222.22 | 1.74 |
Properties | Group | Mean ± SD (Median) | 95% CI (Range) | p Value |
---|---|---|---|---|
Mass Loss (mg) | C.a officinalis | −41.0 ± 4.1 (−41.7) d | −43.6; −38.3 (−46.7; −34. 2) | <0.001 * |
E. citriodora | −35.6 ± 5.2 (−36.2) cd | −38.9; −32.3 (−42.7; −23.6) | ||
R. communis | −40.3 ± 5.6 (−40.2) d | −43.9; −36.8 (−48.1; −28.0) | ||
M. alternifólia | −37.2 ± 3.6 (−37.8) cd | −39.4; −34.9 (−42.1; −29.8) | ||
P. strobus | −33.3 ± 4.9 (−32.2) c | −36.4; −30.2 (−42.2; −26.2) | ||
Negative Control | 2.6 ± 1.1 (2.7) a | 1.9; 3.3 (1.2; 4.2) | ||
Positive Control | −24.3 ± 5.4 (−24.1) b | −27.7; −20.8 (−30.7; −14.6) | ||
ΔRa (μm) | C. officinalis | 3.86 ± 3.98 (1.35) b | 1.33; 6.39 (0.28; 11.37) | <0.001 ** |
E. citriodora | 2.97 ± 2.75 (1.93) b | 1.22; 4.72 (0.55; 9.51) | ||
R. communis | 2.88 ± 2.03 (3.05) b | 1.58; 4.17 (0.40; 5.77) | ||
M. alternifólia | 3.50 ± 2.99 (2.50) b | 1.59; 5.40 (0.41; 8.35) | ||
P. strobus | 5.40 ± 3.50 (5.56) b | 3.18; 7.62 (1.27; 12.41) | ||
Negative Control | 0.01 ± 0.02 (0.01) a | −0.01; 0.02 (−0.04; 0.04) | ||
Positive Control | 3.17 ± 2.66 (2.69) b | 1.48; 4.86 (0.52; 9.25) |
Microorganisms | Group | Mean ± SD (Median) | 95% CI (Range) | p Value * |
---|---|---|---|---|
S. mutans | C. officinalis | 1.3 ± 0.8 (1.8) abc | 0.7; 1.9 (0.0; 1.8) | <0.001 |
E. citriodora | 1.5 ± 0.7 (1.9) bc | 0.9; 2.0 (0.0; 1.9) | ||
R. communis | 0.8 ± 0.4 (0.9) ab | 0.4; 1.1 (0.0; 1.2) | ||
M. alternifólia | 0.3 ± 0.4 (0.0) ab | 0.0; 0.6 (0.0; 0.9) | ||
P. strobus | 0.2 ± 0.3 (0.0) a | 0.0; 0.4 (0.0; 0.8) | ||
Positive Control | 2.7 ± 0.3 (2.6) c | 2.5; 2.9 (2.4; 3.2) | ||
C. albicans | C. officinalis | 1.4 ± 0.2 (1.5) bc | 1.2; 1.5 (1.0; 1.5) | <0.001 |
E. citriodora | 1.4 ± 0.3 (1.6) c | 1.2; 1.6 (0.9; 1.6) | ||
R. communis | 1.1 ± 0.1 (1.1) ab | 1.0; 1.2 (0.9; 1.3) | ||
M. alternifólia | 0.9 ± 0.2 (0.9) ab | 0.7; 1.0 (0.3; 1.1) | ||
P. strobus | 1.0 ± 0.1 (1.0) a | 1.0; 1.1 (0.9; 1.1) | ||
Positive Control | 1.3 ± 0.1 (1.3) c | 1.2; 1.4 (1.2; 1.5) |
Microorganisms | Group | Mean ± SD (Median) | 95% CI (Range) | p Value * |
---|---|---|---|---|
S. mutans | C. officinalis | 4.56 ± 0.82 (4.69) b | 4.15; 4.96 (2.60; 5.72) | <0.001 |
E. citriodora | 4.46 ± 0.99 (4.53) b | 3.97; 4.95 (1.61; 6.06) | ||
R. communis | 5.12 ± 0.77 (5.27) b | 4.74; 5.50 (3.60; 6.56) | ||
M. alternifólia | 4.88 ± 0.62 (4.92) b | 4.57; 5.19 (3.90; 5.91) | ||
P. strobus | 5.24 ± 0.74 (5.48) b | 4.88; 5.61 (3.60; 6.48) | ||
Negative Control | 5.06 ± 0.52 (5.06) b | 4.81; 5.31 (4.01; 5.97) | ||
Positive Control | 0.60 ± 1.20 (0.00) a | 0.00; 1.20 (0.00; 3.64) | ||
S. aureus | C. officinalis | 6.20 ± 0.74 (6.38) c | 5.83; 6.56 (4.45; 7.08) | <0.001 |
E. citriodora | 6.09 ± 0.88 (6.14) bc | 5.65; 6.53 (3.66; 7.93) | ||
R. communis | 5.92 ± 0.56 (5.96) bc | 5.64; 6.19 (4.60; 6.63) | ||
M. alternifólia | 6.20 ± 0.54 (6.08) c | 5.93; 6.46 (5.30; 7.08) | ||
P. strobus | 6.20 ± 0.53 (6.34) c | 5.94; 6.46 (4.71; 6.91) | ||
Negative Control | 5.48 ± 0.47 (5.49) ab | 5.26; 5.71 (4.72; 6.46) | ||
Positive Control | 3.50 ± 1.21 (3.39) a | 2.90; 4.10 (1.61; 6.03) | ||
C. albicans | C. officinalis | 3.29 ± 0.48 (3.34) b | 3.05; 3.53 (2.08; 4.17) | <0.001 |
E. citriodora | 3.00 ± 0.43 (2.89) b | 2.79; 3.21 (2.30; 3.77) | ||
R. communis | 2.90 ± 0.54 (2.92) b | 2.63; 3.17 (2.08; 4.09) | ||
M. alternifólia | 2.73 ± 0.41 (2.77) b | 2.53; 2.93 (1.91; 3.41) | ||
P. strobus | 2.58 ± 0.87 (2.76) b | 2.15; 3.01 (0.00; 3.73) | ||
Negative Control | 2.83 ± 0.68 (2.90) b | 2.50; 3.16 (1.61; 3.60) | ||
Positive Control | 1.47 ± 1.03 (1.61) a | 0.96; 1.98 (0.00; 2.95) |
Oils | Source | Manufacturer | Chemical Constituents * |
---|---|---|---|
C. officinalis | Stems | Oshadhi Brazil | Essential oil: β-caryophyllene (58.73%); α-humulene (7.81%); α-bergamothene (4.96%); α-copaene (4.66%); Germacrene (4.30%); ∆-cadinene (2.19%); β-selinene (1.73%); β-elemene (1.56%); α-cubebene (0.56%). |
E. citriodora | Leaves | Sítio das Melaleucas, Ibiuna, SP, Brazil | Essential oil: Eucalyptol (79.53%); trans-β-ocimene (14.86%); o-cymene (1.57%); 6,6-dimethyl-2-methylene (1.06%); α-terpineol (0.66%); 4-methyl-1-(1-methylethyl) (0.57%); α-pinene oxyde (0.49); 6-octenal (0.47%); (R)-α-terpinyl acetate (0.42); β-myrcene (0.36%). |
M. alternifolia | Leaves | Sítio das Melaleucas | Essential oil: Terpinen-4-ol (32.1%); y-terpinene (22.6%); α-terpinene (11.00%); terpinolene (4.00%); α-pinene (2.80%); viridiflorol (2.80%); α-terpineol (2.50%); 1,8-cineole (2.4%); β-gurjunene (2.10%); limonene (1.80%); p-cymene (2.20%); myrcene (0.9%); α-thujene (1.10%); β-pinene (0.90%); sabinene (0.90%). |
P. strobus | Leaves | Oshadhi Brazil | Essential oil: α-pinene (33.02%); β-pinene (30.41%); myrcene (9.19%); limonene (9.16%); ∆3-carene (6.39%); caryophyllene (4.52%); terpinolene (1.24%); bornyl acetate (1.02%); β-caryophyllene (0.62%); α-terpineol (0.57%); α-Humulene (0.27%); bornyl (0.25%); δ-cadinene (0.25); Terpinen-4-ol (0.20). |
R. communis | Seeds | Laszlo Group | Fatty acids: C18:1OH-ricinoleic (84.10%); C18:2-linoleic (4.60%); C18:1-oleic (3.60%); C16:0-palmitic (1.30%); C18:0-stearic (1.10%); C18:3-linolenic (0.60%); C22:0-behenic (0.60%); C20:0-arachidic (0.50%). |
Minimum Inhibitory Concentration (%) | |||||||
---|---|---|---|---|---|---|---|
Microorganisms | B. virgilioides Kunth | C. officinalis | C. Longa | E. citriodora | R. Communis | M. alternifolia | P. strobus |
S. aureus | >2.5 | <0.009 | 2.5 | 0.62 | <0.009 | <0.009 | <0.009 |
S. mutans | >2.5 | 0.0048 | 1.25 | 0.62 | 0.078 | 0.078 | 0.009 |
C. albicans | >2.5 | >2.5 | >2.5 | 0.62 | >2.5 | 0.62 | >2.5 |
Components | Manufacturer | Function |
---|---|---|
Hydroxyethylcellulose | Fagron Rubber Industry Products Ltd.a, Guarulhos, SP, Brazil | Thickener |
Glycerin | Ely Martins, Ribeirão Preto, SP, Brazil | Humectant |
EDTA | Fagron P Rubber Industry Products Ltd.a, Guarulhos, SP, Brazil | Chelating Agent |
Sodium benzoate | Labsynth Ltd.a, Diadema, São Paulo, SP, Brazil | Preservative |
Cocamidopropyl betaine | Fagron Rubber Industry Products Ltd.a, Guarulhos, SP, Brazil | Surfactant |
Oils | Laszo Group Oshadhi Brazil Sítio das Melaleucas | Antimicrobial active |
Silica (Tisoxil 73) | Rhodia Solvay Group, São Paulo, SP, Brazil | Abrasive |
Silica (Tisoxil 43 B) | Rhodia Solvay Group, São Paulo, SP, Brazil | Thickener |
Titanium dioxide | Fagron Rubber Industry Products Ltd.a, Guarulhos, SP, Brazil | Pigment (white) |
Menthol aroma | Givaudan of Brazil Ltd.a, São Paulo, SP, Brazil | Flavoring |
Distilled water | - | Vehicle |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, A.C.M.; Oliveira, V.C.; Macedo, A.P.; Bastos, J.K.; Ogasawara, M.S.; Watanabe, E.; Chaguri, I.M.; Silva-Lovato, C.H.; Paranhos, H.F.O. Effectiveness of Oil-Based Denture Dentifrices-Organoleptic Characteristics, Physicochemical Properties and Antimicrobial Action. Antibiotics 2021, 10, 813. https://doi.org/10.3390/antibiotics10070813
dos Santos ACM, Oliveira VC, Macedo AP, Bastos JK, Ogasawara MS, Watanabe E, Chaguri IM, Silva-Lovato CH, Paranhos HFO. Effectiveness of Oil-Based Denture Dentifrices-Organoleptic Characteristics, Physicochemical Properties and Antimicrobial Action. Antibiotics. 2021; 10(7):813. https://doi.org/10.3390/antibiotics10070813
Chicago/Turabian Styledos Santos, Andrezza C. M., Viviane C. Oliveira, Ana P. Macedo, Jairo K. Bastos, Mário S. Ogasawara, Evandro Watanabe, Isabela M. Chaguri, Cláudia H. Silva-Lovato, and Helena F. O. Paranhos. 2021. "Effectiveness of Oil-Based Denture Dentifrices-Organoleptic Characteristics, Physicochemical Properties and Antimicrobial Action" Antibiotics 10, no. 7: 813. https://doi.org/10.3390/antibiotics10070813
APA Styledos Santos, A. C. M., Oliveira, V. C., Macedo, A. P., Bastos, J. K., Ogasawara, M. S., Watanabe, E., Chaguri, I. M., Silva-Lovato, C. H., & Paranhos, H. F. O. (2021). Effectiveness of Oil-Based Denture Dentifrices-Organoleptic Characteristics, Physicochemical Properties and Antimicrobial Action. Antibiotics, 10(7), 813. https://doi.org/10.3390/antibiotics10070813