The Triprenylated Anthranoid Ferruginin A, a Promising Scaffold for the Development of Novel Antibiotics against Gram-Positive Bacteria
Abstract
:1. Introduction
2. Results
2.1. Screeening of Compounds: Structural Characterization and Preliminary Antibacterial Profile
2.2. Antimicrobial Activity of Compounds 7, 26, and 27
2.3. Antibiofilm Activity
2.4. Cytotoxicity
3. Discussion
4. Materials and Methods
4.1. In-House Library Clustering
4.2. Chemistry
4.3. Materials, Bacterial Strains and Cell Line
4.4. Antibacterial Screening: Inhibition Zone Assay
4.5. Antimicrobial Assays
4.6. Cytotoxicity Assays
Author Contributions
Funding
Conflicts of Interest
References
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- De Kraker, M.E.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [Green Version]
- Penesyan, A.; Paulsen, I.T.; Kjelleberg, S.; Gillings, M.R. Three faces of biofilms: A microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. NPJ Biofilms Microbiomes 2021, 7, 80. [Google Scholar] [CrossRef]
- Tan, S.Y.; Tatsumura, Y. Alexander Fleming (1881–1955): Discoverer of penicillin. Singap. Med. J. 2015, 56, 366–367. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [Green Version]
- Ghirga, F.; Quaglio, D.; Mori, M.; Cammarone, S.; Iazzetti, A.; Goggiamani, A.; Ingallina, C.; Botta, B.; Calcaterra, A. A unique high-diversity natural product collection as a reservoir of new therapeutic leads. Org. Chem. Front. 2021, 8, 996–1025. [Google Scholar] [CrossRef]
- Pollastro, F.; Fontana, G.; Appendino, G. Comprehensive Natural Products II Chemistry and Biology; Elsevier: Oxford, UK, 2009; pp. 205–236. [Google Scholar]
- Wright, G.D. Unlocking the potential of natural products in drug discovery. Microb. Biotechnol. 2019, 12, 55–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaglio, D.; Mangoni, M.L.; Stefanelli, R.; Corradi, S.; Casciaro, B.; Vergine, V.; Lucantoni, F.; Cavinato, L.; Cammarone, S.; Loffredo, M.R.; et al. ent-Beyerane Diterpenes as a Key Platform for the Development of ArnT-Mediated Colistin Resistance Inhibitors. J. Org. Chem. 2020, 85, 10891–10901. [Google Scholar] [CrossRef]
- Quaglio, D.; Zhdanovskaya, N.; Tobajas, G.; Cuartas, V.; Balducci, S.; Christodoulou, M.S.; Fabrizi, G.; Gargantilla, M.; Priego, E.M.; Carmona Pestana, A.; et al. Chalcones and Chalcone-mimetic Derivatives as Notch Inhibitors in a Model of T-cell Acute Lymphoblastic Leukemia. ACS Med. Chem. Lett. 2019, 10, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Lospinoso Severini, L.; Quaglio, D.; Basili, I.; Ghirga, F.; Bufalieri, F.; Caimano, M.; Balducci, S.; Moretti, M.; Romeo, I.; Loricchio, E.; et al. A Smo/Gli Multitarget Hedgehog Pathway Inhibitor Impairs Tumor Growth. Cancers 2019, 11, 1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iovine, V.; Benni, I.; Sabia, R.; D’Acquarica, I.; Fabrizi, G.; Botta, B.; Calcaterra, A. Total Synthesis of (+/−)-Kuwanol E. J. Nat. Prod. 2016, 79, 2495–2503. [Google Scholar] [CrossRef]
- Mori, M.; Tottone, L.; Quaglio, D.; Zhdanovskaya, N.; Ingallina, C.; Fusto, M.; Ghirga, F.; Peruzzi, G.; Crestoni, M.E.; Simeoni, F.; et al. Identification of a novel chalcone derivative that inhibits Notch signaling in T-cell acute lymphoblastic leukemia. Sci. Rep. 2017, 7, 2213. [Google Scholar] [CrossRef] [PubMed]
- Stahl, M.; Mauser, H. Database clustering with a combination of fingerprint and maximum common substructure methods. J. Chem. Inf. Model. 2005, 45, 542–548. [Google Scholar] [CrossRef]
- Alper, K.R. Ibogaine: A review. Alkaloids Chem. Biol. 2001, 56, 1–38. [Google Scholar] [CrossRef]
- Erland, L.A.; Turi, C.E.; Saxena, P.K. Serotonin: An ancient molecule and an important regulator of plant processes. Biotechnol. Adv. 2016, 34, 1347–1361. [Google Scholar] [CrossRef] [PubMed]
- Kihlman, B.A. Caffeine and Chromosomes; Elsevier Scientific Pub. Co.: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Choi, W.S.; Shin, P.G.; Lee, J.H.; Kim, G.D. The regulatory effect of veratric acid on NO production in LPS-stimulated RAW264.7 macrophage cells. Cell. Immunol. 2012, 280, 164–170. [Google Scholar] [CrossRef] [PubMed]
- De, P.; Baltas, M.; Bedos-Belval, F. Cinnamic acid derivatives as anticancer agents-a review. Curr. Med. Chem. 2011, 18, 1672–1703. [Google Scholar] [CrossRef] [PubMed]
- Gnawali, G.R.; Acharya, P.; Rajbhandari, M. Isolation of Gallic Acid and Estimation of Total Phenolic Content in Some Medicinal Plants and Their Antioxidant Activity. Nepal J. Sci. Technol. 2013, 14, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Delle Monache, F.; Mc Quhae, M.M.; Ferrari, F.; Marini-Bettolo, G.B. Ferruginin A and B and ferruanthrone, new triprenylated anthranoids from Vismia baccifera var. ferruginea. Tetrahedron 1979, 35, 2143–2149. [Google Scholar] [CrossRef]
- Delle Monache, F.; D’Albuquerque, I.L.; De Andrade Chiappeta, A.; De Mello, J.F. A bianthraquinone and 4′-O-methyl-ent-gallocatechin fromCassia trachypus. Phytochemistry 1992, 31, 259–261. [Google Scholar] [CrossRef]
- Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of aloin: A concise report. J. Acute Dis. 2013, 2, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Delfel, N.E.; Tallent, W.H.; Carlson, D.G.; Wolff, I.A. Distribution of rotenone and deguelin in Tephrosia vogelii and separation of rotenoid-rich fractions. J. Agric. Food Chem. 1970, 18, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Pavanaram, S.K.; Row, L.R. New Flavones from Pongamia pinnata (L.) Merr.: Identification of Compound D. Nature 1955, 176, 1177. [Google Scholar] [CrossRef]
- Anand, M.; Basavaraju, R. A review on phytochemistry and pharmacological uses of Tecoma stans (L.) Juss. ex Kunth. J. Ethnopharmacol. 2021, 265, 113270. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.; Liu, M.; Zhang, C.; Shao, J.; Hou, X.; Tian, J.; Cui, Q. A comprehensive review on phytochemistry, bioactivities, toxicity studies, and clinical studies on Ficus carica Linn. leaves. Biomed. Pharm. 2021, 137, 111393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.R.; Jiang, K.; Yang, J.L.; Shi, Y.P. Flavonoids as key bioactive components of Oxytropis falcata bunge, a traditional anti-inflammatory and analgesic Tibetan medicine. Nat. Prod. Res. 2020, 34, 3335–3352. [Google Scholar] [CrossRef]
- Wang, J.H.; Luan, F.; He, X.D.; Wang, Y.; Li, M.X. Traditional uses and pharmacological properties of Clerodendrum phytochemicals. J. Tradit. Complement. Med. 2018, 8, 24–38. [Google Scholar] [CrossRef]
- Delle Monache, F.; Cairo-Valera, G.; Zapata, D.; Marini-Bettolo, G. 3-aryl-4 methoxycoumarins and isoflavones from Derris glabrescens. Gazz. Chim. Ital. 1977, 107, 403. [Google Scholar]
- Delle Monache, G.; Scurria, R.; Vitali, A.; Botta, B.; Monacelli, B.; Pasqua, G.; Palocci, C.; Cernia, E. Two isoflavones and a flavone from the fruits of Maclura pomifera. Phytochemistry 1994, 37, 893–898. [Google Scholar] [CrossRef]
- Xue, L.L.; Wu, W.S.; Ma, X.; Pei, H.Y.; Tang, M.H.; Kuang, S.; Cai, X.Y.; Wang, L.; Li, Y.; Zhang, R.J.; et al. Modulation of LPS-induced inflammation in RAW264.7 murine cells by novel isoflavonoids from Millettia pulchra. Bioorganic Chem. 2020, 97, 103693. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, A.F.; Tozzi, A.M.; Magalhas, E.G.; de Souza Moraes, V.R. Prenylated flavonoids from Deguelia hatschbachii and their systematic significance in Deguelia. Phytochemistry 2001, 57, 77–89. [Google Scholar] [CrossRef]
- Stompor, M. A Review on Sources and Pharmacological Aspects of Sakuranetin. Nutrients 2020, 12, 513. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, J.G.; Martinez Olivares, E.; Delle Monache, F. Citrans and cyclols from Clusia multiflora. Phytochemistry 1995, 38, 485–489. [Google Scholar] [CrossRef]
- González, A.G.; Pérez, E.M.R.; Barrera, J.B. Biologically Active Compounds from the Lichen Ramalina hierrensis. Planta Med. 1991, 57, A2. [Google Scholar] [CrossRef]
- Yang, C.; Zhu, S.; Chen, Y.; Liu, Z.; Zhang, W.; Zhao, C.; Luo, C.; Deng, H. Flavonoid 4,4’-dimethoxychalcone suppresses cell proliferation via dehydrogenase inhibition and oxidative stress aggravation. Free Radic. Biol. Med. 2021, 175, 206–215. [Google Scholar] [CrossRef]
- Avila, H.P.; Smania Ede, F.; Delle Monache, F.; Smania, A., Jr. Structure-activity relationship of antibacterial chalcones. Bioorg. Med. Chem. 2008, 16, 9790–9794. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, I.R.; Abu-Shady, H. Ammi majus Linn.; pharmacognostical study and isolation of a crystalline constituent, ammoidin. Q. J. Pharm. Pharmacol. 1947, 20, 281–291, discussion 426. [Google Scholar]
- Nielsen, B.E. Coumarins of Umbelliferous Plants; The Royal Danish School of Pharmacy: Copenhagen, Danmark, 1970. [Google Scholar]
- Mitchell, J.; Rook, A.; Sulzberger, M.B. Botanical Dermatology: Plants and Plant Products Injurious to the Skin; Greenglass: Vancouver, BC, Canada, 1979. [Google Scholar]
- Zorin, E.B.I.; Ivashchenko, N.V.; Perelson, M.E.; Pimenov, M.G. Coumarins from the Roots of Angelica Komarovii. Chem. Nat. Compd. 1984, 20, 365. [Google Scholar] [CrossRef]
- Han, H.Y.; Wen, P.; Liu, H.W.; Wang, N.L.; Yao, X.S. Coumarins from campylotropis hirtella (FRANCH.) SCHINDL. and their inhibitory activity on prostate specific antigen secreted from LNCaP cells. Chem. Pharm. Bull. 2008, 56, 1338–1341. [Google Scholar] [CrossRef] [Green Version]
- Chou, H.C.; Chen, J.J.; Duh, C.Y.; Huang, T.F.; Chen, I.S. Cytotoxic and anti-platelet aggregation constituents from the root wood of Melicope semecarpifolia. Planta Med. 2005, 71, 1078–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quader, M.A.; El-Turbi, J.A.; Armstrong, J.A.; Gray, A.I.; Waterman, P.G. Coumarins and their taxonomic value in the genus Phebalium. Phytochemistry 1992, 31, 3083–3089. [Google Scholar] [CrossRef]
- Wong, K.C.; Ong, K.S.; Lim, C.L. Compositon of the essential oil of rhizomes of kaempferia galanga L. Flavour Fragr. J. 1992, 7, 263–266. [Google Scholar] [CrossRef]
- Vazquez, A.; Aimar, M.; Demmel, G.; Cabalen, M.; Criado, S.; Cantero, J.; Velasco, M.; Rossi, L. Determination of volatile organic compounds of Tagetes filifolia Lag. (Asteraceae) from Córdoba (Argentina) using HS-SPME analysis. Boletín Latinoamericano Caribe Plantas Medicinales Aromáticas 2013, 12, 143–149. [Google Scholar]
- Ikeda, Y.; Murakami, A.; Ohigashi, H. Ursolic acid: An anti- and pro-inflammatory triterpenoid. Mol. Nutr. Food Res. 2008, 52, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Leal, A.S.; Wang, R.; Salvador, J.A.; Jing, Y. Synthesis of novel ursolic acid heterocyclic derivatives with improved abilities of antiproliferation and induction of p53, p21waf1 and NOXA in pancreatic cancer cells. Bioorganic Med. Chem. 2012, 20, 5774–5786. [Google Scholar] [CrossRef] [PubMed]
- Jondiko, I.J.O.; Pattenden, G. Terpenoids and an apocarotenoid from seeds of Bixa orellana. Phytochemistry 1989, 28, 3159–3162. [Google Scholar] [CrossRef]
- Rajamanickam, K.; Yang, J.; Sakharkar, M.K. Gallic Acid Potentiates the Antimicrobial Activity of Tulathromycin Against Two Key Bovine Respiratory Disease (BRD) Causing-Pathogens. Front. Pharmacol. 2019, 9, 1486. [Google Scholar] [CrossRef] [PubMed]
- Francolini, I.; Norris, P.; Piozzi, A.; Donelli, G.; Stoodley, P. Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob. Agents Chemother. 2004, 48, 4360–4365. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Yang, B.; Cheng, Z.; Zhang, P.; Yang, M. Synthesis and antimicrobial activity of novel chalcone derivatives. Res. Chem. Intermed. 2014, 40, 1715–1725. [Google Scholar] [CrossRef]
- Delle Monache, F.; Ferrari, F.; Marini-Bettolo, G.B.; Maxfield, P.; Cerrini, S.; Fedeli, W.; Gavuzzo, E.; Vaciago, A. Vismiones from Vismia baccifera var. dealdata (H.B.K.): Chemistry and x-ray structure determination. Gazz. Chim. Ital. 1979, 108, 301–310. [Google Scholar]
- Kranjec, C.; Morales Angeles, D.; Torrissen Marli, M.; Fernandez, L.; Garcia, P.; Kjos, M.; Diep, D.B. Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics 2021, 10, 131. [Google Scholar] [CrossRef]
- Barbieri, J.S.; Wanat, K.; Seykora, J. Skin: Basic Structure and Function. In Pathobiology of Human Disease; Elsevier: Oxford, UK, 2014; pp. 1134–1144. [Google Scholar] [CrossRef]
- Colombo, I.; Sangiovanni, E.; Maggio, R.; Mattozzi, C.; Zava, S.; Corbett, Y.; Fumagalli, M.; Carlino, C.; Corsetto, P.A.; Scaccabarozzi, D.; et al. HaCaT Cells as a Reliable In Vitro Differentiation Model to Dissect the Inflammatory/Repair Response of Human Keratinocytes. Mediat. Inflamm. 2017, 2017, 7435621. [Google Scholar] [CrossRef] [PubMed]
- Shlaes, D.M. The Economic Conundrum for Antibacterial Drugs. Antimicrob. Agents Chemother. 2019, 64, e02057-19. [Google Scholar] [CrossRef] [PubMed]
- Littmann, J.; Viens, A.M.; Silva, D.S. The Super-Wicked Problem of Antimicrobial Resistance. In Ethics and Drug Resistance: Collective Responsibility for Global Public Health; Springer International Publishing: Cham, Switzerland, 2020; pp. 421–443. [Google Scholar] [CrossRef]
- Hussein, A.A.; Bozzi, B.; Correa, M.; Capson, T.L.; Kursar, T.A.; Coley, P.D.; Solis, P.N.; Gupta, M.P. Bioactive constituents from three Vismia species. J. Nat. Prod. 2003, 66, 858–860. [Google Scholar] [CrossRef]
- Tankeo, S.B.; Damen, F.; Sandjo, L.P.; Celik, I.; Tane, P.; Kuete, V. Antibacterial activities of the methanol extracts, fractions and compounds from Harungana madagascariensis Lam. ex Poir. (Hypericaceae). J. Ethnopharmacol. 2016, 190, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Johnson, O.O.; Zhao, M.; Gunn, J.; Santarsiero, B.D.; Yin, Z.Q.; Ayoola, G.A.; Coker, H.A.; Che, C.T. α-Glucosidase Inhibitory Prenylated Anthranols from Harungana madagascariensis. J. Nat. Prod. 2016, 79, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Otto, M. Staphylococcal biofilms. Curr. Top Microbiol. Immunol. 2008, 322, 207–228. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; He, L.; Asiamah, T.K.; Otto, M. Colonization of medical devices by staphylococci. Environ. Microbiol. 2018, 20, 3141–3153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Singh, K.P.; Jain, A. Medical significance and management of staphylococcal biofilm. FEMS Immunol. Med. Microbiol. 2010, 58, 147–160. [Google Scholar] [CrossRef]
- Casciaro, B.; Calcaterra, A.; Cappiello, F.; Mori, M.; Loffredo, M.R.; Ghirga, F.; Mangoni, M.L.; Botta, B.; Quaglio, D. Nigritanine as a New Potential Antimicrobial Alkaloid for the Treatment of Staphylococcus aureus-Induced Infections. Toxins 2019, 11, 511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cluster | Common Name (Library Code) | Chemical Structure | M.W. | Molecular Formula | Source | Ref |
---|---|---|---|---|---|---|
Alkaloids | ||||||
1 | Ibogaine (BBN236) | 310.43 | C20H26N2O | Tabernanthe iboga (Apocynaceae family) | [16] | |
2 | Serotonin (BBN187) | 176.22 | C10H12N2O | Mucuna pruriens (Fabaceae family); Musa sapientum (Musaceae family); pineapple (Bromeliaceae family); strawberry and cherries (Rosaceae family); rice (Poaceae family) | [17] | |
3 | Caffeine (BBN195) | 194.19 | C8H10N4O2 | Camellia sinensis (Theaceae family); Coffea arabica (Rubiaceae family) | [18] | |
Phenolic compounds | ||||||
Aromatic compounds | ||||||
4 | Veratric Acid (BBN227) | 182.18 | C9H10O4 | Tabebuia impetiginosa (Bignoniaceae family) | [19] | |
5 | Cinnamic Acid (BBN232) | 148.16 | C9H8O2 | Ginseng (Araliacee family), Xuanshen (Scrophulariaceae family); Danshen (Lamiaceae family) | [20] | |
6 | Gallic Acid (BBN241) | 170.12 | C7H6O5 | Terminalia chebula (Combretaceae family) | [21] | |
Anthranoids | ||||||
7 | Ferruginin A (BBN240) | 460.61 | C30H36O4 | Vismia baccifera var. ferruginea and Vismia decipiens (Hypericaceae family) | [22] | |
8 | Trachyphone (BBN242) | 594.6 | C34H26O10 | Cassia trachypus (Leguminosae family) | [23] | |
9 | Aloin (BBN36) | 418.40 | C21H22O9 | Aloe vera (Asphodelaceae family) | [24] | |
Flavonoids | ||||||
Rotenoids | ||||||
10 | Deguelin (BBN238) | 394.42 | C23H22O6 | Tephrosia vogelii (Fabaceae family) | [25] | |
Furanoflavones | ||||||
11 | Pongapin (BBN259) | 336.3 | C19H12O6 | Pongapia pinnata (Fabaceae family) | [26] | |
Flavones | ||||||
12 | 7-hydroxy-flavone (BBN143) | 238.24 | C15H10O3 | Tecoma stans (Bignoniaceae family) Ficus carica Linn. (Moraceae family); Oxytropis falcata (Fabaceae family) Clerodendrum phlomidis (Lamiaceae family) | [27,28,29,30] | |
Isoflavones | ||||||
13 | Glabrescione B (BBN234) | 450.53 | C27H30O6 | Derris glabrescens (Leguminosae family) | [31] | |
14 | Osajin (BBN98) | 404.46 | C25H24O5 | Maclura pomifera (Moraceae family); Millettia pulchra (Leguminosae family); Deguelia genus (Fabaceae family) | [32,33,34] | |
Flavanon | ||||||
15 | Sakuranetin (BBN159) | 286.28 | C16H14O5 | Prunus puddum (Rosaceae family) Prunus spp. (Rosaceae family); Baccharis retusa (Asteraceae family); Ribes nigrum L. (Grossulariaceae family); Iris milesii (Iridaceae family); Eriodictyon californicum (Boraginaceae family); Hyptis salzmanii (Lamiaceae family); Bonnetia dinizii (Guttiferae family); Primula sieboldii (Primulaceae family); Prunus avium L. (Rosaceae family) | [35] | |
Benzophenone | ||||||
16 | Clusiacitran B (BBN38) | 364.44 | C23H24O4 | Clusia multiflora (Clusiaceae family) | [36] | |
Dibenzofuran | ||||||
17 | Usnic acid (BBN66) | 344.32 | C18H16O7 | Ramalina hierensis (Ramalinaceae family) | [37] | |
Chalcone | ||||||
18 | 2’,4-hydroxy-4’-methoxy-chalcone (BBN246) | 270.28 | C16H14O4 | Synthetic origin | [14] | |
19 | 4,4’-dimethoxy-chalcone (BBN229) | 268.31 | C17H16O3 | Angelica keiskei koidzumi (Apiaceae family) | [38] | |
Dihydrochalcone | ||||||
20 | 2-hydroxy-dihydrochalcone (BBN86) | 226.28 | C15H14O2 | Synthetic origin | [39] | |
Coumarine | ||||||
21 | Xanthotoxin (BBN225) | 216.19 | C12H8O4 | Ammi majus and Heracleum genus (Apiaceae family) | [40,41,42] | |
22 | Columbianetin (BBN133) | 246.26 | C14H14O4 | Angelica komarovii (Apiaceae family); Campylotropis hirtella (Onagraceae family); Melicope semecarpifolia and Phebalium stenophyllum (Rutaceae family) | [43,44,45,46] | |
Terpenoids | ||||||
23 | Borneol (BBN245) | 154.25 | C10H18O | Kaempferia galanga (Zingiberaceae family); Blumea balsamifera and Artemisia genus (Asteraceae family) | [47] | |
24 | Ursolic Acid (BBN233) | 456.71 | C30H48O3 | Mimusops caffra (Sapotaceae family); Ilex paraguarieni (Aquifoliaceae family); Glechoma hederaceaes (Lamiaceae family); Ichnocarpus frutescens (Apocynaceae family); Syzygium claviflorum (Myrtaceae family) | [48,49,50] | |
Apocarotenoid | ||||||
25 | Bixin (BBN103) | 394.51 | C25H30O4 | Bixa orellana (Bixaceae family) | [51] |
Compound | Inhibition Zone (cm) | |
---|---|---|
Gram-positive | ||
S. aureus | S. epidermidis | |
6 | 2.350 | n.a. |
7 | 0.620 | 0.550 |
17 | 1.040 | 2.832 |
18 | 0.622 | 0.590 |
21 | 0.420 | n.a. |
24 | 1.040 | 2.832 |
Compound | Common Name (Library Code) | Chemical Structure | M.W. | Molecular Formula | Source | Ref |
---|---|---|---|---|---|---|
26 | Ferruanthrone (BBN257) | 460.61 | C30H36O4 | Vismia baccifera var. ferruginea and Vismia decipiens (Hypericaceae family) | [22] | |
27 | Vismione B (BBN239) | 354.40 | C21H22O5 | Vismia baccifera var. dealdata (Hypericaceae family) | [55] |
Microorganism | MIC (μM) | ||
---|---|---|---|
7 | 26 | 27 | |
Gram-negative | |||
E. coli ATCC 25922 | >256 | >256 | >256 |
P. aeruginosa ATCC 27853 | >256 | >256 | >256 |
Gram-positive | |||
B. megaterium Bm11 | 8 | 256 | >256 |
S. aureus ATCC 25923 | 64 | >256 | > 256 |
S. epidermidis ATCC 12228 | 16 | >256 | >256 |
Yeast | |||
C. albicans ATCC 24433 | >256 | >256 | >256 |
Compound | LC50 (μM) | ABC50 (μM) | TI (LC50/ABC50) | |
---|---|---|---|---|
S. aureus | S. epidermidis | |||
7 | 27.88 | 1.08 | 4.5 | 25.81–6.19 |
26 | 133.53 | 501.8 | 50.32 | 0.26–2.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casciaro, B.; Ghirga, F.; Cappiello, F.; Vergine, V.; Loffredo, M.R.; Cammarone, S.; Puglisi, E.; Tortora, C.; Quaglio, D.; Mori, M.; et al. The Triprenylated Anthranoid Ferruginin A, a Promising Scaffold for the Development of Novel Antibiotics against Gram-Positive Bacteria. Antibiotics 2022, 11, 84. https://doi.org/10.3390/antibiotics11010084
Casciaro B, Ghirga F, Cappiello F, Vergine V, Loffredo MR, Cammarone S, Puglisi E, Tortora C, Quaglio D, Mori M, et al. The Triprenylated Anthranoid Ferruginin A, a Promising Scaffold for the Development of Novel Antibiotics against Gram-Positive Bacteria. Antibiotics. 2022; 11(1):84. https://doi.org/10.3390/antibiotics11010084
Chicago/Turabian StyleCasciaro, Bruno, Francesca Ghirga, Floriana Cappiello, Valeria Vergine, Maria Rosa Loffredo, Silvia Cammarone, Elena Puglisi, Carola Tortora, Deborah Quaglio, Mattia Mori, and et al. 2022. "The Triprenylated Anthranoid Ferruginin A, a Promising Scaffold for the Development of Novel Antibiotics against Gram-Positive Bacteria" Antibiotics 11, no. 1: 84. https://doi.org/10.3390/antibiotics11010084
APA StyleCasciaro, B., Ghirga, F., Cappiello, F., Vergine, V., Loffredo, M. R., Cammarone, S., Puglisi, E., Tortora, C., Quaglio, D., Mori, M., Botta, B., & Mangoni, M. L. (2022). The Triprenylated Anthranoid Ferruginin A, a Promising Scaffold for the Development of Novel Antibiotics against Gram-Positive Bacteria. Antibiotics, 11(1), 84. https://doi.org/10.3390/antibiotics11010084