Antibiotic Prophylaxis in Torso, Maxillofacial, and Skin Traumatic Lesions: A Systematic Review of Recent Evidence
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Thoracic Trauma
3.2. Abdominal Trauma
3.3. Maxillofacial Trauma
3.4. Burns
3.5. Skin Wounds and Bites
4. Discussion
4.1. Thoracic Trauma
4.2. Abdominal Trauma
4.3. Maxillo-Facial Trauma
4.4. Burns
4.5. Skin Wounds and Bites
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Coccolini, F.; Kluger, Y.; Moore, E.E.; Maier, R.V.; Coimbra, R.; Ordoñez, C.; Ivatury, R.; Kirkpatrick, A.W.; Biffl, W.; Sartelli, M.; et al. Trauma quality indicators: Internationally approved core factors for trauma management quality evaluation. World J. Emerg. Surg. 2021, 16, 6. [Google Scholar] [CrossRef] [PubMed]
- Ierano, C.; Thursky, K.; Peel, T.; Rajkhowa, A.; Marshall, C.; Ayton, D. Influences on surgical antimicrobial prophylaxis decision making by surgical craft groups, anaesthetists, pharmacists and nurses in public and private hospitals. PLoS ONE 2019, 14, e0225011. [Google Scholar] [CrossRef] [Green Version]
- Sartelli, M.; Ansaloni, L.; Biffl, W.A.; Coccolini, F.; De Simone, B.; Leppaniemi, A.; Kluger, Y.; Tolonen, M.; Moore, E.E.; Catena, F. World Society of Emergency Surgery-American Association for the Surgery of Trauma Guidelines for management of Clostridioides (Clostridium) difficile infection in surgical patients: An executive summary. J. Trauma Acute Care Surg. 2021, 91, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Sartelli, M.; Coccolini, F.; Carrieri, A.; Labricciosa, F.M.; Cicuttin, E.; Catena, F. The “Torment” of Surgical Antibiotic Prophylaxis among Surgeons. Antibiot. 2021, 10, 1357. [Google Scholar] [CrossRef]
- Dhingra, S.; Rahman, N.A.A.; Peile, E.; Rahman, M.; Sartelli, M.; Hassali, M.A.; Islam, T.; Islam, S.; Haque, M. Microbial Resistance Movements: An Overview of Global Public Health Threats Posed by Antimicrobial Resistance, and How Best to Counter. Front. Public Health 2020, 8, 535668. [Google Scholar] [CrossRef]
- Sartelli, M.; Duane, T.M.; Catena, F.; Tessier, J.M.; Coccolini, F.; Kao, L.S.; De Simone, B.; Labricciosa, F.M.; May, A.K.; Ansaloni, L.; et al. Antimicrobial Stewardship: A Call to Action for Surgeons. Surg. Infect. 2016, 17, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (minors): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosman, A.; de Jong, M.B.; Debeij, J.; van den Broek, P.J.; Schipper, I.B. Systematic review and meta-analysis of antibiotic prophylaxis to prevent infections from chest drains in blunt and penetrating thoracic injuries. Br. J. Surg. 2012, 99, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Heydari, M.B.; Hessami, M.A.; Setayeshi, K.; Sajadifar, F. Use of prophylactic antibiotics following tube thoracostomy for blunt chest trauma in the prevention of empyema and pneumonia. J. Inj. Violence Res. 2014, 6, 91–92. [Google Scholar] [CrossRef] [PubMed]
- Bradley, M.; Okoye, O.; DuBose, J.; Inaba, K.; Demetriades, D.; Scalea, T.; O’Connor, J.; Menaker, J.; Morales, C.; Shiflett, T.; et al. Risk factors for post-traumatic pneumonia in patients with retained haemothorax: Results of a prospective, observational AAST study. Injury 2013, 44, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.; Hu, C.; Ward, J.; Schultz, S.; Moore Iii, F.O.; Funk, G.; Juern, J.; Turay, D.; Ahmad, S.; Pieri, P.; et al. Presumptive antibiotics in tube thoracostomy for traumatic hemopneumothorax: A prospective, Multicenter American Association for the Surgery of Trauma Study. Trauma Surg. Acute Care Open 2019, 4, e000356. [Google Scholar] [CrossRef] [Green Version]
- Kong, V.Y.; Sartorius, B.; Oosthuizen, G.V.; Clarke, D.L. Prophylactic antibiotics for tube thoracostomy may not be appropriate in the developing world setting. Injury 2015, 46, 814–816. [Google Scholar] [CrossRef]
- Brand, M.; Goosen, J.; Grieve, A. Prophylactic antibiotics for penetrating abdominal trauma. Cochrane Database Syst. Rev. 2009, CD007370. [Google Scholar] [CrossRef] [Green Version]
- Brand, M.; Grieve, A. Prophylactic antibiotics for penetrating abdominal trauma. Cochrane Database Syst. Rev. 2013, CD007370. [Google Scholar] [CrossRef] [Green Version]
- Brand, M.; Grieve, A. Prophylactic antibiotics for penetrating abdominal trauma. Cochrane Database Syst. Rev. 2019, 12, CD007370. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.R.; Anand, R.J.; Como, J.J.; Dechert, T.; Dente, C.; Luchette, F.A.; Ivatury, R.R.; Duane, T.M. Prophylactic antibiotic use in penetrating abdominal trauma: An Eastern Association for the Surgery of Trauma practice management guideline. J. Trauma Acute Care Surg. 2012, 73, S321–S325. [Google Scholar] [CrossRef] [Green Version]
- Oxman, A.D.; Sackett, D.L.; Guyatt, G.H. Users’ guides to the medical literature. I. How to get started. The Evidence-Based Medicine Working Group. JAMA 1993, 270, 2093–2095. [Google Scholar] [CrossRef]
- Jang, J.Y.; Kang, W.S.; Keum, M.-A.; Sul, Y.H.; Lee, D.-S.; Cho, H.; Lee, G.J.; Lee, J.G.; Hong, S.-K. Antibiotic use in patients with abdominal injuries: Guideline by the Korean Society of Acute Care Surgery. Ann. Surg. Treat. Res. 2019, 96, 1–7. [Google Scholar] [CrossRef]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.R.; Henning, J.; Wolfe, L.G.; Duane, T.M. Practice Patterns for the Use of Antibiotic Agents in Damage Control Laparotomy and Its Impact on Outcomes. Surg. Infect. 2017, 18, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.P.; Fox, N.; Fakhro, A.; LaChant, M.; Pathak, A.S.; Ross, S.E.; Seamon, M.J. “SCIP”ping antibiotic prophylaxis guidelines in trauma: The consequences of noncompliance. J. Trauma Acute Care Surg. 2012, 73, 452–456. [Google Scholar] [CrossRef] [Green Version]
- Rosenberger, L.H.; Politano, A.D.; Sawyer, R.G. The surgical care improvement project and prevention of post-operative infection, including surgical site infection. Surg. Infect. 2011, 12, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Herrod, P.J.; Boyd-Carson, H.; Doleman, B.; Blackwell, J.; Williams, J.P.; Bhalla, A.; Nelson, R.L.; Tou, S.; Lund, J.N. Prophylactic antibiotics for penetrating abdominal trauma: Duration of use and antibiotic choice. Cochrane Database Syst. Rev. 2019, 12, CD010808. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, J.O.; Jensen, S.S.; Schwartz, O.; Hillerup, Y. A systematic review of prophylactic antibiotics in the surgical treatment of maxillofacial fractures. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 2006, 64, 1664–1668. [Google Scholar] [CrossRef]
- Habib, A.M.; Wong, A.D.; Schreiner, G.C.; Satti, K.F.; Riblet, N.B.; Johnson, H.A.; Ossoff, J.P. Postoperative prophylactic antibiotics for facial fractures: A systematic review and meta-analysis. Laryngoscope 2019, 129, 82–95. [Google Scholar] [CrossRef] [PubMed]
- Delaplain, P.T.; Phillips, J.L.; Lundeberg, M.; Nahmias, J.; Kuza, C.M.; Sheehan, B.M.; Murphy, L.S.; Pejcinovska, M.; Grigorian, A.; Gabriel, V.; et al. No Reduction in Surgical Site Infection Obtained with Post-Operative Antibiotics in Facial Fractures, Regardless of Duration or Anatomic Location: A Systematic Review and Meta-Analysis. Surg. Infect. 2020, 21, 112–121. [Google Scholar] [CrossRef]
- Dawoud, B.E.S.; Kent, S.; Henry, A.; Wareing, J.; Chaudry, H.; Kyzas, P.; Kyzas, P. Use of antibiotics in traumatic mandibular fractures: A systematic review and meta-analysis. Br. J. Oral Maxillofac. Surg. 2021. [Google Scholar] [CrossRef]
- Forrester, J.D.; Wolff, C.J.; Choi, J.; Colling, K.P.; Huston, J.M. Surgical Infection Society Guidelines for Antibiotic Use in Patients with Traumatic Facial Fractures. Surg. Infect. 2021, 22, 274–282. [Google Scholar] [CrossRef]
- Avni, T.; Levcovich, A.; Ad-El, D.D.; Leibovici, L.; Paul, M. Prophylactic antibiotics for burns patients: Systematic review and meta-analysis. BMJ 2010, 340, c241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barajas-Nava, L.A.; López-Alcalde, J.; Roqué i Figuls, M.; Solà, I.; Bonfill Cosp, X. Antibiotic prophylaxis for preventing burn wound infection. Cochrane Database Syst. Rev. 2013, 6, CD008738. [Google Scholar] [CrossRef] [Green Version]
- Csenkey, A.; Jozsa, G.; Gede, N.; Pakai, E.; Tinusz, B.; Rumbus, Z.; Lukacs, A.; Gyongyi, Z.; Hamar, P.; Sepp, R.; et al. Systemic antibiotic prophylaxis does not affect infectious complications in pediatric burn injury: A meta-analysis. PLoS ONE 2019, 14, e0223063. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.; Cornistein, W.; Cerino, G.T.; Nacif, G. Systemic antimicrobial prophylaxis in burn patients: Systematic review. J. Hosp. Infect. 2017, 97, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Muthukumar, V.; Arumugam, P.K.; Bamal, R. Role of systemic antibiotic prophylaxis in acute burns: A retrospective analysis from a tertiary care center. Burns J. Int. Soc. Burn Inj. 2020, 46, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Yeong, E.-K.; Sheng, W.-H.; Hsueh, P.-R.; Hsieh, S.-M.; Huang, H.-F.; Ko, A.-T.; Tai, H.-C.; Lai, H.-S.; Chang, S.-C. The Wound Microbiology and the Outcomes of the Systemic Antibiotic Prophylaxis in a Mass Burn Casualty Incident. J. Burn Care Res. Off. Publ. Am. Burn Assoc. 2020, 41, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, R.T.; Matthews, J.M.; Sullivan, S.G. The effect of systemic antibiotic prophylaxis and wound irrigation on penetrating combat wounds in a return-to-duty population. Prehospital Emerg. Care Off. J. Natl. Assoc. EMS Physicians Natl. Assoc. State EMS Dir. 2009, 13, 500–504. [Google Scholar] [CrossRef]
- Lloyd, B.A.; Murray, C.K.; Shaikh, F.; Carson, M.L.; Blyth, D.M.; Schnaubelt, E.R.; Whitman, T.J.; Tribble, D.R. Antimicrobial Prophylaxis with Combat-Related Open Soft-Tissue Injuries. Mil. Med. 2018, 183, e260–e265. [Google Scholar] [CrossRef] [Green Version]
- Weintrob, A.C.; Murray, C.K.; Xu, J.; Krauss, M.; Bradley, W.; Warkentien, T.E.; Lloyd, B.A.; Tribble, D.R. Early Infections Complicating the Care of Combat Casualties from Iraq and Afghanistan. Surg. Infect. 2018, 19, 286–297. [Google Scholar] [CrossRef]
- Medeiros, I.; Saconato, H. Antibiotic prophylaxis for mammalian bites. Cochrane Database Syst. Rev. 2001, CD001738. [Google Scholar] [CrossRef]
- Looke, D.; Dendle, C. Bites (Mammalian). BMJ Clin. Evid. 2010, 2010, 914. [Google Scholar]
- Broder, J.; Jerrard, D.; Olshaker, J.; Witting, M. Low risk of infection in selected human bites treated without antibiotics. Am. J. Emerg. Med. 2004, 22, 10–13. [Google Scholar] [CrossRef]
- Petersen, K.; Waterman, P. Prophylaxis and treatment of infections associated with penetrating traumatic injury. Expert Rev. Anti Infect. Ther. 2011, 9, 81–96. [Google Scholar] [CrossRef]
- Maxwell, R.A.; Campbell, D.J.; Fabian, T.C.; Croce, M.A.; Luchette, F.A.; Kerwin, A.J.; Davis, K.A.; Nagy, K.; Tisherman, S. Use of presumptive antibiotics following tube thoracostomy for traumatic hemopneumothorax in the prevention of empyema and pneumonia-a multi-center trial. J. Trauma 2004, 57, 742–749. [Google Scholar] [CrossRef]
- Spanjersberg, W.R.; Ringburg, A.N.; Bergs, E.A.; Krijen, P.; Schipper, I.B. Prehospital chest tube thoracostomy: Effective treatment or additional trauma? J. Trauma 2005, 59, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Fullen, W.D.; Hunt, J.; Altemeier, W.A. Prophylactic antibiotics in penetrating wounds of the abdomen. J. Trauma 1972, 12, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Thadepalli, H.; Gorbach, S.L.; Broido, P.W.; Norsen, J.; Nyhus, L. Abdominal trauma, anaerobes, and antibiotics. Surg. Gynecol. Obstet. 1973, 137, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Conger, N.G.; Landrum, M.L.; Jenkins, D.H.; Martin, R.R.; Dunne, J.R.; Hirsch, E.F. Prevention and management of infections associated with combat-related thoracic and abdominal cavity injuries. J. Trauma 2008, 64, S257–S264. [Google Scholar] [CrossRef] [Green Version]
- Hindawi, Y.H.; Oakley, G.M.; Kinsella, C.R.J.; Cray, J.J.; Lindsay, K.; Scifres, A.M. Antibiotic duration and postoperative infection rates in mandibular fractures. J. Craniofac. Surg. 2011, 22, 1375–1377. [Google Scholar] [CrossRef] [PubMed]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg. Infect. 2013, 14, 73–156. [Google Scholar] [CrossRef]
- Brooke, S.M.; Goyal, N.; Michelotti, B.F.; Guedez, H.M.; Fedok, F.G.; Mackay, D.R.; Samson, T.D. A Multidisciplinary Evaluation of Prescribing Practices for Prophylactic Antibiotics in Operative and Nonoperative Facial Fractures. J. Craniofac. Surg. 2015, 26, 2299–2303. [Google Scholar] [CrossRef]
- Dvorak, J.E.; Ladhani, H.A.; Claridge, J.A. Review of Sepsis in Burn Patients in 2020. Surg. Infect. 2021, 22, 37–43. [Google Scholar] [CrossRef]
- Bracco, D.; Eggimann, P. Prophylaxis with systemic antibiotics in patients with severe burns. BMJ 2010, 340, c208. [Google Scholar] [CrossRef] [PubMed]
- Steele, A.N.; Grimsrud, K.N.; Sen, S.; Palmieri, T.L.; Greenhalgh, D.G.; Tran, N.K. Gap analysis of pharmacokinetics and pharmacodynamics in burn patients: A review. J. Burn Care Res. Off. Publ. Am. Burn Assoc. 2015, 36, e194–e211. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Abdul-Aziz, M.H.; Lipman, J.; Mouton, J.W.; Vinks, A.A.; Felton, T.W.; Hope, W.W.; Farkas, A.; Neely, M.N.; Schentag, J.J.; et al. Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions. Lancet Infect. Dis. 2014, 14, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Singer, A.J.; Dagum, A.B. Current management of acute cutaneous wounds. N. Engl. J. Med. 2008, 359, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Cummings, P.; Del Beccaro, M.A. Antibiotics to prevent infection of simple wounds: A meta-analysis of randomized studies. Am. J. Emerg. Med. 1995, 13, 396–400. [Google Scholar] [CrossRef]
- Givens, M.; Muck, A.E.; Goolsby, C. Battlefield to bedside: Translating wartime innovations to civilian Emergency Medicine. Am. J. Emerg. Med. 2017, 35, 1746–1749. [Google Scholar] [CrossRef]
Non-Randomized | Quality Evaluation Criteria | Additional Criteria in Comparative Studies | ||||||||||||
Study (Ref.) Year | Clear Stated Aim | Inclusion of Consecutive Patients | Prospective Data Collection | Endpoints Appropriate to the Study Aim | Unbiased Assessment of Study Endpoint | Appropriate Follow-Up Period | Loss to Follow-Up Less Than 5% | Prospective Calculation of the Study Size | Adequate Control Group | Contemporary Groups | Baseline Equivalence | Adequate Statistical Analysis | Total | |
1 | Bradley 2013 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 22/24 |
2 | Cook 2019 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 22/24 |
3 | Kong 2015 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | - | - | - | - | 12/16 |
4 | Smith 2021 | 2 | 2 | 0 | 1 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 19/24 |
5 | Goldberg 2016 | 2 | 2 | 0 | 1 | 2 | 2 | 2 | 0 | 2 | 2 | 1 | 2 | 18/24 |
6 | Muthukumar 2019 | 2 | 2 | 0 | 1 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 19/24 |
7 | Yeong 2020 | 2 | 1 | 0 | 1 | 2 | 2 | 1 | 0 | - | - | - | - | 9/16 |
8 | Gerhardt 2009 | 2 | 1 | 0 | 2 | 2 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 15/24 |
9 | Lloyd 2018 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 20/24 |
10 | Weintrob 2018 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | - | - | - | - | 14/16 |
RCT | Quality Evaluation Criteria | |||||||||||||
Study (Ref.) Year | Randomization | Allocation Concealment | Blinding of Partecipansand Personnel | Blinding of Outcome Assessment | Incomplete Outcome Data | Selective Reporting | Other Bias | |||||||
Heydari 2014 | ? | ? | ? | ? | + | + | ? |
Author | Year | Study Type | Intervention | N. of Patients | Result | Limitations |
---|---|---|---|---|---|---|
Bosman | 2012 | Systematic review and meta-analysis of RCTs | Infection rate in tube thoracostomy (AP vs. noAP) | 1234 | Reduced empyema rate in AP group; reduced risk of infection in penetrating chest trauma; no effect on blunt trauma | Wide time span of trials (1977–2009); no consensus on definition of infective complications; no indications on length of AP. |
Heydari | 2014 | RCT | Infection after thoracostomy in blunt trauma (AP vs. noAP) | 104 | No reduction in infection rate from 24 h AP after tube thoracostomy for blunt trauma | Small sample; limited to blunt trauma |
Bradley | 2013 | Prospective | Risk factors for pneumonia in patients with post-traumatic retained hemothorax | 328 | ISS > 25, blunt trauma, and failure to administer peri-procedural antibiotic are independent predictors of pneumonia | Observational study, limited to patients with retained hemothorax |
Cook | 2019 | Prospective | Pneumonia and empyema after tube thoracostomy (antibiotic vs. no-antibiotic) | 1887 | No difference of incidence in the two groups; no significative association of AP with infection risk | Observational study, no clear division of AP and antibiotic treatment |
Kong | 2015 | Retrospective | AP vs. noAP after tube thoracostomy in developing setting | 1002 | No difference in empyema rate in the AP vs. noAP. | Observational study, no indication about other types of infective complications |
Author | Year | Study Type | Intervention | N. of Patients | Result | Limitations |
---|---|---|---|---|---|---|
Goldberg (EAST) | 2012 | Guidelines (review) | AP in penetrating abdominal trauma | - | AP only for 24 h in presence of hollow viscus injury; broad spectrum antibiotic (anaerobic and aerobic coverage); increase AP dosage in blood loss. | Hollow viscus injury and contamination of peritoneum can be considered indication for AT; limited only to penetrating trauma |
Jang (KSACS) | 2019 | Guidelines (review) | Use of antibiotic in patients with abdominal injuries | - | Indication: if no surgery is needed, no AP is needed. | Statement indirectly obtained, no recent RCTs. |
Smith | 2012 | Retrospective | Effect of SCIP guidelines on abdominal trauma patients (adherence to guidelines vs. no adherence) | 306 | Group treated according to SCIP guidelines had inferior rate of SSI; no differences in mortality | No clear distinction between AP and AT |
Goldberg | 2016 | Retrospective | Use of antibiotics in damage control laparotomy | 121 | Pre-operative antibiotic reduces infection rate; post-operative antibiotic and bowel injury increases infection risk. | No distinction between AP and AT; heterogeneity of lesions and scenarios |
Herrod | 2019 | Systematic review and meta-analysis of RCTs | Choice and duration (<24 h vs. >24 h) of AP in penetrating abdominal trauma | 4458 | No definitive indications. Uncertainty on specific regimen and duration of AP. | All studies published more than 20 years ago; 23/29 studies at high risk of bias; limited to penetrating trauma. |
Author | Year | Study Type | Intervention | N. of Patients | Result | Limitations |
---|---|---|---|---|---|---|
Andreasen | 2006 | Systematic review of RCTs | Efficacy of AP in reducing infection rate; duration of AP (One-shot and <24 h vs. >24 h) | 573 | 3-fold reduction of infection rate in AP group; one-shot and 24 h AP similar or better than >24 h AP; no differences based on the facial region involved | Wide time span of studies included (1975–2001); quasi-randomized studies included |
Habib | 2018 | Systematic review and meta-aanalysis of RCTs and cohort studies | Efficacy of addiction of post-operative AP in reducing infection rate vs. pre-operative/peri-operative AP alone | 2236 (635 RCTs + 1601 cohort studies) | No reduction in infection rate when adding post-operative prophylaxis. | Lack of sub-analysis referred to patients at high risk for infection |
Delaplain | 2020 | Systematic review and meta-analysis of RCTs and cohort studies | <24 h AP, 24–72 h AP, >72 h AP comparison in reducing SSI rate; risk according to fracture location | 3132 (2316 mandible + 377 orbital + 439 mid-face) | Prolonged AP (>24 h) does not reduce SSI risk; no differences of SSI among different location of fracture; AP > 72 h could increase SSI rate of mandible fractures | Lack of sub-analysis referred to patients at high risk for infection |
Dawoud | 2021 | Systematic review and meta-analysis of RCTs and cohort studies | Efficacy of AP in reducing infection rate in mandibular fracture (AP vs. noAP; short AP vs. long AP; preop. AP vs. preop. + postop. AP; preop. And postop. IV + oral AP vs. preop.IV AP and oral post-op AP) | 3285 | No clear advantage of AP in reducing adverse effects; no benefit in prolonged AP; non difference in preop. and postop. regimens. | High clinical and statistical heterogeinity; high risk of bias of the included studies. |
Forrester (SIS) | 2020 | Guidelines (Review) | AP in facial fractures | - | Use AP in peri-operative period for surgical fractures; avoid AP in non-surgical fractures; avoid pre-operative and post-operative AP. | Statements are expert opinion synthesis of evidence |
Author | Year | Study Type | Intervention | N. of Patients | Result | Limitations |
---|---|---|---|---|---|---|
Avni | 2010 | Systematic review and meta-analysis of RCTs | AP effect on reducing mortality | Not stated | Reduction in mortality and pneumonia rate with systemic prolonged AP; no effect with topical AP; increased antibiotic resistance rate. | Possible overlap of prolonged AP with AT; suspect of overuse of AP; results not valid for peri-operative AP. |
Barajas-Nava | 2014 | Systematic review and meta-analysis of RCTs | AP efficacy on preventing wound infection, mortality, sepsis, HLOS | 2117 | No benefit of systemic and topical AP; increased risk of wound infection with silver sulfaziadine compared to dressing or skin substitutes; no benefit with perioperative AP. | Studies included at high risk of bias |
Csenkey | 2019 | Systematic review and meta-analysis of RCTs and cohort | AP efficacy in preventing infective complications in pediatric burn injury (AP vs. noAP) | 1735 | No benefit from AP in local and systemic infective complications. | Reduced number of studies included (6 studies); mixed cohort studies and RCTs |
Ramos | 2017 | Systematic review | Use of systemic AP in burn patients (adult and pediatric) | - | AP could be adequate in patients with severe burns requiring mechanical ventilation; perioperative AP could be useful in preventing split-thickness graft infection. | Wide time span of trail included (1982–2016); heterogeneity of type of AP, dose, and duration of AP. |
Muthukumar | 2019 | Retrospective | Mortality and sepsis rate in burned patients treated with AP vs. noAP | 157 | No differences in mortality and sepsis; reduction of mortality of AP in patients with inhalation burns and pneumonia | Observational study, population size |
Yeong | 2020 | Retrospective | Effect of AP on wound microbiology and outcomes in mass burn casualties | 31 | 39% of patients developed multi-resistant pathogens; increased risk with >40% of body involved and with 2 or more antibiotic classes. | Observational study, population size, heterogeneity of AP regimens; mixed AP and AT |
Author | Year | Study Type | Intervention | N. of Patients | Result | Limitations |
---|---|---|---|---|---|---|
Gerhardt (Skin wounds) | 2009 | Retrospective | Effect on infection rate of wound irrigation and systemic AP in mild combat wounds | 53 | Probable benefit in synergic systemic AP + irrigation in reducing wound infection rate | Observational study, small sample size, mixed lesions |
Lloyd (Skin wounds) | 2018 | Retrospective | Extended AP vs. narrow AP in combat-related soft tissues wounds | 287 | No difference between the two groups; no benefit in extended AP | Observational study, does not consider group with no AP as control. |
Weintrob (Skin wounds) | 2018 | Prospective | Risk factors for early infection in combat injuries | 1807 | Antibiotic administration does not affect infection rate; infection rate is related to amputation, severity of injury, need of mechanical ventilation, ICU admission | Observational study, mixed kind of lesions, not clear discrimination between AP and AT |
Medeiros (Bites) | 2001 (updated 2009) | Systematic review and meta-analysis of RCTs | AP vs. noAP effect on Infection rate for mammalian bites | 522 | AP is effective in reducing infection rate in human bites; type of wound does not influence infection rate; hand bites have a higher rate of infection if not treated with AP | Inappropriate antibiotics, according to type of bacteria involved, were used in some studies |
Looke (Bites) | 2009 | Systematic review | AP vs. noAP effect on infection rate in mammalian bites | - | AP has no effect in reducing infection rate in human or animal bites if risk areas (extremities and over cartilaginous areas) are not involved | Meta-analysis not performed; concerns about the quality of involved studies |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicuttin, E.; Sartelli, M.; Scozzafava, E.; Tartaglia, D.; Cremonini, C.; Brevi, B.; Ramacciotti, N.; Musetti, S.; Strambi, S.; Podda, M.; et al. Antibiotic Prophylaxis in Torso, Maxillofacial, and Skin Traumatic Lesions: A Systematic Review of Recent Evidence. Antibiotics 2022, 11, 139. https://doi.org/10.3390/antibiotics11020139
Cicuttin E, Sartelli M, Scozzafava E, Tartaglia D, Cremonini C, Brevi B, Ramacciotti N, Musetti S, Strambi S, Podda M, et al. Antibiotic Prophylaxis in Torso, Maxillofacial, and Skin Traumatic Lesions: A Systematic Review of Recent Evidence. Antibiotics. 2022; 11(2):139. https://doi.org/10.3390/antibiotics11020139
Chicago/Turabian StyleCicuttin, Enrico, Massimo Sartelli, Emanuele Scozzafava, Dario Tartaglia, Camilla Cremonini, Bruno Brevi, Niccolò Ramacciotti, Serena Musetti, Silvia Strambi, Mauro Podda, and et al. 2022. "Antibiotic Prophylaxis in Torso, Maxillofacial, and Skin Traumatic Lesions: A Systematic Review of Recent Evidence" Antibiotics 11, no. 2: 139. https://doi.org/10.3390/antibiotics11020139
APA StyleCicuttin, E., Sartelli, M., Scozzafava, E., Tartaglia, D., Cremonini, C., Brevi, B., Ramacciotti, N., Musetti, S., Strambi, S., Podda, M., Catena, F., Chiarugi, M., & Coccolini, F. (2022). Antibiotic Prophylaxis in Torso, Maxillofacial, and Skin Traumatic Lesions: A Systematic Review of Recent Evidence. Antibiotics, 11(2), 139. https://doi.org/10.3390/antibiotics11020139