A Critical Review of the Pharmacokinetics, Pharmacodynamics, and Safety Data of Antibiotics in Avian Species
Abstract
:1. Introduction
2. Methods
3. Drug Disposition and Pharmacokinetic Parameters in Birds
4. Types of Antibiotics
5. Included Studies
6. Fluoroquinolones
6.1. Enrofloxacin
Dosage | Species | MIC (μg/mL) | Cmax:MIC | AUC:MIC (h) | Adverse Effects | Dosage Recommended by Authors | Ref. |
---|---|---|---|---|---|---|---|
Intramuscular | |||||||
5 mg/kg SD | Common ostrich (young) | 0.03 0.06 0.1 0.13 | 14.50 ± 4.12 7.25 ± 2.06 4.35 ± 1.24 3.35 ± 0.95 | 30.42 ± 4.00 15.25 ± 1.24 9.13 ± 1.20 7.02 ± 0.92 | Not reported | All AUC:MIC achieved was lower than the target of 125:1 | [44] |
10 mg/kg SD | Houbara bustard | 0.5 2.0 | 5.44 1.36 | 55 13.7 | Elevated CK, LDH and AST were observed at 12 h, likely caused by restraint | - | [4] |
Southern crested caracara | 0.25 | 15.94 | 139.63 | None observed | IM 9.5 mg/kg q24 h for MIC = 0.25 μg/mL | [45] | |
15 mg/kg SD | African grey parrot | - | - | - | Not reported | - | [36] |
Great horned owl | 1 | 3.8 b | 65.3 b | None observed | IM 15 mg/kg q24 h | [37] | |
Greater rhea | 0.1 0.03 | 35.5 ± 9.52 118 ± 31 | 48.25 ± 7.95 161 ± 26 | Not reported | IM 15 mg/kg | [34] | |
Red-tailed hawk | 1 | 4.5 b | 54 b | None observed | IM 15 mg/kg q24 h | [37] | |
15 mg/kg q12 h × 3 days | Common ostrich (adult) | 0.06 0.25 | 18.86 ± 7.74 4.53 ± 1.85 | 257.78 ± 45.34 61.87 ± 34.88 | CK activity increased by 2–9-fold compared with pre-administration concentration; this may be due to muscle damage | SC 15 mg/kg q12 h | [35] |
Intravenous | |||||||
2.2 ± 0.03 mg/kg SD | Emu | 0.5 | 82.36 b | 16.52 b | Not reported | IV 2.2 mg/kg q12 h | [46] |
5 mg/kg SD | Common ostrich | 0.03 0.06 0.1 0.13 | 54.42 ± 1.66 27.21 ± 0.83 16.32 ± 0.50 12.56 ± 0.38 | 32.04 ± 3.34 16.02 ± 1.67 9.61 ± 1.0 7.39 ± 0.77 | Not reported | All AUC:MIC achieved was lower than the target of 125:1 | [44] |
Southern crested caracara | 0.25 | 13.74 | 90.73 | None observed | IV 7.5 mg/kg q24 h for MIC = 0.25 μg/mL | [45] | |
7.5 mg/kg SD | Great horned owl | 1 | - | - | 2 owls immediately developed bradycardia, peripheral vasoconstriction, and stupor. The timing and nature of response was suggestive of anaphylaxis a | IV administration of enrofloxacin should not be attempted in great horned owls | [37] |
10 mg/kg SD | Houbara bustard | 0.5 2.0 | 9.78 2.44 | 59.6 14.9 | None observed | 10 mg/kg given PO or parenterally q12 h, OR 15 mg/kg given parenterally q24 h | [4] |
15 mg/kg SD | African penguin | 0.5 | 15.72 b | 165 b | Not reported | - | [42] |
Greater rhea | - | - | - | Not reported | - | [47] | |
Red-tailed hawk | 1 | 6.70 b | 62.2 b | None observed | Use with caution | [37] | |
Subcutaneous | |||||||
15 mg/kg SD | Caribbean flamingo | 0.25 0.5 | ≥8 ≥8 (but only 3/7 birds > 4 μg/mL) | >100 <100 (but 3 of 7 birds had AUC > 50 μg·h/mL) | None observed | 15 mg/kg PO or SC Q24 h suitable for bacteria with MIC ≤ 0.25 μg/mL | [48] |
15 mg/kg q12 h × 3 days | Common ostrich (adult) | 0.06 0.25 | 13.07 ± 2.63 3.13 ± 0.63 | 210.7 ± 52.98 50.44 ± 12.71 | None observed | SC 15 mg/kg q12 h | [35] |
Oral | |||||||
3 mg/kg SD crop gavage | African grey parrot | - | - | - | Not reported | - | [36] |
10 mg/kg SD | Houbara bustard | 0.5 2.0 | 3.68 0.92 | 36.6 9.15 | Elevated CK, LDH, and AST activity were observed at 12 h, likely caused by restraint | - | [4] |
15 mg/kg SD crop gavage | African grey parrot | - | - | - | Not reported | 15 mg/kg PO bd | [36] |
15 mg/kg SD pill in fish | African penguin | 0.5 | >8 for 5/6 birds, last bird ratio of 7.4 | >125 in 4/6 birds, other 2 had ratio of 115 and 108 | Well tolerated (no adverse effects reported) | 15 mg/kg PO in fish or pill q24 h | [42] |
15 mg/kg SD pill | African penguin | 0.5 | >8 for 4/6 birds, other 2 had ratio of 5.9 and 7.6 | >125 in 6/6 birds | Well tolerated (no adverse effects reported) | 15 mg/kg PO in fish or pill q24 h | |
15 mg/kg SD oesophagus gavage | Caribbean flamingo | 0.25 0.5 | ≥8 ≥8 | >100 <100 (but 5/7 birds had above 50 μg·h/mL) | None observed | 15 mg/kg SC or PO recommended for bacteria with MIC ≤ 0.25 μg/mL | [48] |
15 mg/kg SD in prey | Great horned owl | 1 | 2.6 b | 44 b | None observed | PO 15 mg/kg in prey q24 h | [37] |
Red-tailed hawk | 1 | 2.8 b | 47.2 b | None observed | |||
30 mg/kg SD crop gavage | African grey parrot | - | - | - | Not reported | - | [36] |
30 mg/kg q12 h × 10 days crop gavage | African grey parrot | - | - | - | Water consumption increased; 3 birds became slightly polyuric and 1 bird became markedly polyuric; polyuria resolved 2–3 days after treatment ended | - | |
0.09, 0.19, 0.38, 0.75, 1.5 and 3.0 mg/mL × 7 days medicated water | African grey parrot | - | Only trough concentration measured | - | Acceptance of the water at doses of 1.5 and 3.0 mg/mL was unsatisfactory | - | [49] |
Dosage | Species | Weight (kg) | Cmax (μg/mL) | Tmax (h) | Half-Life (h) | AUC (μg·h/mL) | V (L/kg) | Clearance (mL/min/kg) | BA (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Intramuscular | ||||||||||
5 mg/kg SD | Common ostrich (young) | 34–53 | 0.44 ± 0.12 | 1.05 ± 0.57 | 0.867 ± 0.367 | 0.91 ± 0.12 | - | - | 91 ± 5 | [44] |
10 mg/kg SD | Houbara bustard | 0.945–1.655 | 2.75 ± 0.11 | 1.72 ± 0.19 | 6.39 ± 1.49 | 27.5 ± 3.67 | 3.18 ± 0.32 | 6.56 ± 0.95 | 97.3 | [4] |
Southern crested caracara | 1.33 ± 0.06 | 3.92 | 0.72 | 6.58 | 21.92 | - | - | 78.76 | [45] | |
15 mg/kg SD | African grey parrot | 0.47–0.55 | 3.87 | 1 | 2.31 | 13.28 | - | 0.0188 a | - | [36] |
Great horned owl | 0.96–1.33 | 3.8 | 2.1 | 11.4 | 65.3 | 3.4 | - | - | [37] | |
Greater rhea | 3.35 ± 0.34 | 3.30 ± 0.90 | 0.403 ± 0.153 | 2.85 ± 0.54 | 4.18 ± 0.69 | - | - | - | [34] | |
Red-tailed hawk | 0.96–1.54 | 4.5 | 1.1 | 11.0 | 54.0 | 2.4 | - | 87 | [37] | |
Common ostrich (adult) | 84–99 | 1.09 ± 0.38 | 2.41 ± 1.2 | 2.36 ± 0.66 | 6.33 ± 2.15 | - | - | - | [35] | |
15 mg/kg q12 h × 3 days | Common ostrich (adult) | 84–99 | 1.13 ± 0.47 | - | - | - | - | - | - | |
Intravenous | ||||||||||
2.2 ± 0.03 mg/kg SD | Emu | 25–26 | 3.25, 15.09 and 104.40 for the 3 emus | 0 | 3.33 | 8.26 | 0.0584 c | 6.00 b | - | [46] |
5 mg/kg SD | Common ostrich (young) | 34–53 | 1.6 ± 0.05 | 0 | 0.783 ± 0.06 | 0.96 ± 0.10 | 3.4 ± 0.41 | 76 ± 5.3 | - | [44] |
Southern crested caracara | 1.33 ± 0.06 | - | - | 7.81 | 34.38 | 2.3 | - | - | [45] | |
10 mg/kg SD | Houbara bustard | 0.945–1.638 | - | - | 5.63 ± 0.54 | 29.8 ± 1.74 | 2.98 ± 0.32 | 5.71 ± 0.41 | - | [4] |
15 mg/kg SD | African penguin | 3.6 ± 0.57 | 7.86 | 0 | 13.7 | 82.5 | 3 | 3.03 | - | [42] |
Greater rhea | 2.97 ± 0.26 | 0.27 ± 0.07 | 0.37 ± 0.14 | 2.66 | 3.57 d | 5.01 | 65.8 b | - | [47] | |
Red-tailed hawk | 0.96–1.54 | 6.7 | - | 19.4 | 62.2 | 2.3 | - | - | [37] | |
Subcutaneous | ||||||||||
15 mg/kg SD | Caribbean flamingo | 2.2–3.6 | 5.77 | 1.1 | 6.46 | 47.3 | 5.28 | [48] | ||
Common ostrich (adult) | 84–99 | 1.51 ± 0.79 | 1.45 ± 0.6 | 3.19 ± 1.09 | 8.15 ± 2.05 | - | - | - | [35] | |
15 mg/kg q12 h × 3 days | Common ostrich (adult) | 84–99 | 0.78 ± 0.16 | - | - | - | - | - | - | |
Oral | ||||||||||
3 mg/kg SD crop gavage | African grey parrot | 0.47–0.55 | 0.32 | 2–4 | 2.59 | 1.80 | - | 0.0323 a | - | [36] |
10 mg/kg SD | Houbara bustard | 0.945–1.655 | 1.84 ± 0.16 | 0.66 ± 0.05 | 6.80 ± 0.79 | 18.3 ± 1.81 | 5.12 ± 0.51 | 9.21 ± 0.94 | 62.7 ± 11.1 | [4] |
15 mg/kg SD crop gavage | African grey parrot | 0.47–0.55 | 1.12 | 2–4 | 2.52 | 6.73 | - | 0.0372 a | - | [36] |
15 mg/kg SD pill in fish | African penguin | 3.6 ± 0.57 | 4.77 | 1.59 | 11.9 | 80.5 | - | 3.05 | - | [42] |
15 mg/kg SD pill | African penguin | 3.6 ± 0.57 | 4.38 | 4.80 | 13.8 | 92.9 | - | 2.67 | - | |
15 mg/kg SD oesophagus gavage | Caribbean flamingo | 2.2–3.6 | 5.25 | 1.49 | 5.83 | 49.9 | - | 5.01 | - | [48] |
15 mg/kg SD in prey | Great horned owl | 0.96–1.33 | 2.6 | 7.1 | 7.2 | 44.0 | 4.2 | - | - | [37] |
Red-tailed hawk | 0.96–1.54 | 2.8 | 5.4 | 8.9 | 47.2 | 4.2 | 76 | |||
30 mg/kg SD crop gavage | African grey parrot | 0.47–0.55 | 1.69 | 2–4 | 2.74 | 12.84 | - | 0.039 a | - | [36] |
30 mg/kg q12 h × 10 days crop gavage | African grey parrot | 0.47–0.55 | - | - | 2.96 (first interval) 1.90 (last interval) | 1.90 | - | - | - | |
0.09, 0.19, 0.38, 0.75, 1.5 and 3.0 mg/mL × 7 days medicated water | African grey parrot | 0.470–0.550 | - | - | - | - | - | - | - | [49] |
6.2. Marbofloxacin
Dosage | Species | MIC (μg/mL) | Cmax:MIC | AUC:MIC (h) | Adverse Effects | Dosage Recommended by Authors | Ref. |
---|---|---|---|---|---|---|---|
Intramuscular | |||||||
5 mg/kg SD | Common ostrich | 0.2 0.02 | 5.63 56.33 | 11.26 112.60 | Not reported | - | [53] |
Intravenous | |||||||
2 mg/kg SD | Eurasian buzzards | - | - | - | None observed | IV 2 mg/kg q12 h | [54] |
Eurasian griffon vulture | 0.2 | - | 97.3 a | Not reported | IV 2.73 mg/kg q24 h | [51] | |
2.5 mg/kg SD | Blue-and-gold macaw | 1 | - | 9.41 ± 2.84 a | None observed | PO 2.5 mg/kg q24 h | [52] |
5 mg/kg SD | Common ostrich | 0.2 0.02 | 17.07 170.67 | 11.58 115.84 | Not reported | - | [53] |
Common pheasant | - | - | - | Not reported | - | [55] | |
Intraosseous | |||||||
2 mg/kg SD | Eurasian buzzard | 0.1 | 19.2 | 85.3 | None observed | - | [50] |
Oral | |||||||
crop gavage 2.5 mg/kg SD | Blue-and-gold macaw | 1 | 1.08 ± 0.316 a | 7.94 ± 2.08 a | None observed | PO 2.5 mg/kg q24 h | [52] |
Common pheasant | - | - | - | Not reported | - | [55] | |
crop gavage 10 mg/kg SD | Eurasian buzzard | 0.25 | 14.8 | 181.75 | None observed | PO 10 mg/kg OD | [56] |
Dosage | Species | Weight (kg) | Half-Life (h) | Cmax (μg/mL) | Tmax (h) | V (L/kg) | CL (mL/min/kg) | Ref. |
---|---|---|---|---|---|---|---|---|
Intramuscular | ||||||||
5 mg/kg SD | Common ostrich | 43.48 ± 6.02 | 1.96 ± 0.35 | 1.13 ± 0.29 | 0.61 ± 0.36 | - | - | [53] |
2 mg/kg SD | Eurasian buzzards | 0.730–1 | 4.11 ± 0.77 | - | - | 1.16 ± 0.21 | 3.98 b | [54] |
2 mg/kg SD | Eurasian griffon vulture | 6–8.5 | 12.51 ± 2.52 | - | - | 0.208 ± 0.0303 a | 1.82 ± 0.383 c | [51] |
2.5 mg/kg SD | Blue-and-gold macaw | 1.04 | 4.3 | - | - | 1.3 ± 0.32 | 4.83 ± 1.3 c | [52] |
5 mg/kg SD | Common ostrich | 43.48 ± 6.02 | 1.47 ± 0.31 | 0.0740 ± 0.022 a | 48.5 ± 4.5 c | [53] | ||
Common pheasant | 1.0 ± 0.04 | 8.4 ± 0.74 | 1.4 ± 0.11 | 3.17 ± 0.217 c | ||||
Intraosseous | ||||||||
2 mg/kg SD | Eurasian buzzard | 0.730–0.875 | 4.91 ± 0.65 | 1.92 ± 0.78 | 0.11 ± 0.08 | - | 0.0557 ± 0.002 d | [50] |
Oral | ||||||||
Crop gavage 2.5 mg/kg SD | Blue-and-gold macaw | 1.04 | 3.9 | 1.08 ± 0.316 | 2.6 ± 0.8 | - | - | [52] |
Common pheasant | 1.0 ± 0.04 | 6.6 ± 3.10 | 3.0 ± 0.27 | 5.7 ± 0.62 | - | - | ||
Crop gavage 10 mg/kg SD | Eurasian buzzard | 0.6–0.9 | 9.48 | 3.70 | 2.92 | - | - | [56] |
7. Aminoglycosides
7.1. Gentamicin
Dosage | Species | MIC (μg/mL) | Cmax:MIC (μg/mL) | Adverse Effects | Ref. |
---|---|---|---|---|---|
Intramuscular | |||||
5 mg/kg SD | Budgerigar | - | - |
| [57] |
Galah | - | - | Not reported. | [62] | |
Scarlet macaw | - | - | Not reported. | ||
Greater sandhill crane | - | - | Not reported. IM 5 mg/kg q8 h will produce potentially toxic plasma concentrations for approximately 1 h following injection. | [63] | |
Ring-necked pheasant | - | - | Not reported. IM 5 mg/kg q8 h will produce potentially toxic plasma concentrations for approximately 1 h following injection. | ||
5 mg/kg q24 h × 4 days | Lanner falcon | - | - |
| [60] |
5 mg/kg q12 h × 3 days | Cockatiel | - | - |
| [61] |
5 mg/kg q12 h × 7 days | Galah | - | - |
| [62] |
5 mg/kg q12 h × 7 days | Scarlet macaw | - | - |
| |
10 mg/kg SD | Budgerigar |
| [57] | ||
Galah | 4 | 9.36 a | Not reported. | [62] | |
Scarlet macaw | 4 | 9.36 a | Not reported. | ||
Golden eagle | - | - | Not reported. | [64] | |
Great horned owl | - | - | Not reported. | ||
Greater sandhill crane | - | - | Not reported. | [63] | |
Red-tailed hawk | - | - | Not reported. | [64] | |
Ring-necked pheasant | - | - | Not reported. | [63] | |
10 mg/kg q12 h × 5 days | Great horned owl | - | - |
| [58] |
20 mg/kg SD | Greater sandhill crane | - | - | Not reported. | [63] |
Ring-necked pheasant | - | - | Not reported. | ||
Intravenous | |||||
10 mg/kg SD | Golden eagle | - | - | Not reported. | [64] |
Great horned owl | - | - | Not reported. | ||
Red-tailed hawk | - | - | Not reported. | ||
10 mg/kg q12 h × 4 days | Red-tailed hawk | - | - |
| [59] |
20 mg/kg q12 h × 6 days | Red-tailed hawk | - | - |
|
Dosage | Species | Weight (kg) | Half-Life (h) | Cmax (μg/mL) | Tmax (h) | V (L/kg) | Clearance (mL/kg/min) | Ref. |
---|---|---|---|---|---|---|---|---|
Intramuscular | ||||||||
5 mg/kg SD | Budgerigar | 0.025–0.035 a | 0.53 | 17.3 | 0.25 | - | - | [57] |
Galah | 0.310–0.510 | 1.23 | - | - | 0.216 | 0.0337 b | [62] | |
Greater sandhill crane | 3.6–5.3 | 2.74 ± 0.617 | - | - | - | - | [63] | |
Ring-necked pheasant | 0.9–1.5 | 1.25 ± 0.252 | - | - | - | - | ||
Scarlet macaw | 0.750–1.05 | 1.17 | - | - | 0.176 | 0.029 b | [62] | |
5 mg/kg q12 h × 7 days | Scarlet macaw | 0.750–1.05 | - | - | - | - | - | |
5 mg/kg q24 h × 4 days | Lanner falcon | 0.5–0.9 a | - | - | - | - | - | [60] |
5 mg/kg q12 h × 7 days | Galah | 0.310–0.510 | - | - | - | - | - | [62] |
5 mg/kg q12 h × 3 days | Cockatiel | 0.081–0.136 | 1.18 | 4.66 ± 1.45 | 1.5 | - | - | [61] |
10 mg/kg SD | Budgerigar | 0.025–0.035 a | 0.53 | 37.0 | 0.25 | - | - | [57] |
Galah | 0.310–0.510 | 1.44 | 37.44 ± 2.60 | 0.5 | 0.0332 b | [62] | ||
Golden eagle | 2.73–4.42 | 2.46 ± 0.32 | 35 | 0.5 | 0.21 ± 0.01 | 1.01 ± 0.06 | [64] | |
Great horned owl | 1.09–2.02 | 1.93 ± 0.24 | 35 | 0.5 | 0.23 ± 0.02 | 1.41 ± 0.10 | ||
Greater sandhill crane | 3.6–5.3 | 2.74 ± 0.617 | 37.5 c | 1 c | - | - | [63] | |
Red-tailed hawk | 0.94–1.71 | 1.35 ± 0.18 | 35 | 0.5 | 0.24 ± 0.03 | 2.09 ± 0.16 | [64] | |
Ring-necked pheasant | 0.9–1.5 | 1.25 ± 0.252 | 35.3 ± 11.4 c | 0.75 c | - | - | [63] | |
Scarlet macaw | 0.750–1.05 | 1.07 | 37.44 ± 2.60 | 0.5 | 0.172 | 0.031 b | [62] | |
10 mg/kg q12 h × 5 days | Great horned owl | 0.910–2.5 a | - | - | - | - | - | [58] |
20 mg/kg SD | Greater sandhill crane | 3.6–5.3 | 2.74 ± 0.617 | - | - | - | - | [63] |
Ring-necked pheasant | 0.9–1.5 | 1.25 ± 0.252 | - | - | - | - | ||
Intravenous | ||||||||
10 mg/kg SD | Golden eagle | 2.73–4.42 | 2.46 ± 0.32 | 48 | 0.5 | 0.21 ± 0.01 | 1.01 ± 0.06 | [64] |
Great horned owl | 1.09–2.02 | 1.93 ± 0.24 | 39 | 0.5 | 0.23 ± 0.02 | 1.41 ± 0.10 | ||
Red-tailed hawk | 0.94–1.71 | 1.35 ± 0.18 | 35 | 0.5 | 0.24 ± 0.03 | 2.09 ± 0.16 | ||
10 mg/kg q12 h × 4 days | Red-tailed hawk | 0.690–1.460 a | - | - | - | - | - | [59] |
20 mg/kg q12 h × 6 days | Red-tailed hawk | 0.690–1.460 a | - | - | - | - | - |
7.2. Amikacin
8. Cephalosporins
9. Tetracyclines
Dosage | Product | Species | MIC (μg/mL) | T > MIC | Adverse Effects | Ref. |
---|---|---|---|---|---|---|
Intramuscular | ||||||
15 mg/kg SD | Doxycycline hyclate powder | Common ostrich | 1 | ≥1 h | Not reported. | [88] |
100 mg/kg SD | Pharmacist compounded 75 mg/mL | Goffin’s cockatoo | 1 | ≥7 days | Markedly higher AST, CK, LD. LD levels that were normal by 96 h. | [80] |
Orange-winged amazon parrot | 1 | ~18 h | Markedly higher AST and CK. | |||
Pharmacist compounded 100 mg/mL | Goffin’s cockatoo | 1 | 0 h | Injection site abnormalities on day 7. Most birds had a firm 8–10 mm mass that resolved by 15–28 days after treatment. | ||
Orange-winged amazon parrot | 1 | 0 h | Injection site abnormalities on day 7. Most had a palpable 10–15 mm mass even at 38 days after injection. | |||
Tinneh African grey parrot | 1 | 0 h | Marked, moderate, and slight increase in CK, AST, and LD, respectively, on day 1. Values normal by day 7. All birds had palpable 10–12 mm injection site masses. By day 38, 50% of birds still had palpable 5–8 mm masses. | |||
Vibravenos® (20 mg/mL) | Orange-winged amazon parrot | 1 | 5 days | None observed. | ||
100 mg/kg q10 days × 5 doses | Pharmacist compounded 100 mg/mL | Cockatiel | 1 | Not given; 5/35 samples were >1 μg/mL; samples collected at 0700 on days 7, 10, 20, 30, 40, 51 | Mild-moderate swelling, bruising, and drug leakage from site of injection. Most local reactions were resolved within 10 days. However, muscle swelling, and a firm nodule that was present lasted several weeks. | [81] |
100 mg/kg × 7 doses at intervals 7, 7, 7, 6, 6, 5 days | Vibravenos® (20 mg/mL) | Houbara bustard | 1 | 45 days | Reversible darkening of iris pigmentation. Moderate macroscopic changes at injection site, even after 7th injection. A small haemorrhage and drug leakage occasionally seen. | [79] |
Intravenous | ||||||
15 mg/kg SD | Doxycycline hyclate powder | Common ostrich | 1 | ≥12 h | Not reported. | [88] |
Subcutaneous | ||||||
100 mg/kg SD | Pharmacist compounded 100 mg/mL | Tinneh African grey parrot | 1 | 0 | Injection site changes: yellow-stained skin, swelling, redness, 0.5 × 1 × 2 cm scab. Increased CK on day 1, normal by day 7. By day 38, scars began to form. Repeated injection may lead to the unacceptable sloughing of skin. | [80] |
100 mg/kg × 7 doses at intervals 7, 7, 7, 6, 6, 5 days | Vibravenos® (20 mg/mL) | Houbara bustard | 1 | 45 days | Reversible darkening of iris pigmentation. Injection site showed slight irritation, sometimes in the form of a thickening of the skin or mild inflammation. | [79] |
Oral | ||||||
300 mg/kg of pellets for 47 days | - | Cockatiel | 1 | Not given (all but 1 measured sample > 1 μg/mL) samples collected at 0830 on days 3, 7, 14, 21, 28, 35, 42 | 1 bird became markedly obese. | [82] |
300 mg/kg of seeds for 42 days | - | Budgerigar | - | - | No notable adverse effects. | [84] |
500 mg/kg of seed mixture for 45 days | - | Cockatiel | 1 | Not given (all samples > 1 μg/mL, except one sample of 0.82 μg/mL on day 35) samples collected at 0700 on days 3, 7, 15, 25, 35, 45 | 1 bird died on day 14. | [81] |
1000 mg/kg of corn for 45 days | - | Blue-and-gold macaws, scarlet macaws | 1 | Not given (87% of samples were >1 μg/mL) samples collected on days 3, 15, 30, and 45) | None observed. | [86] |
1000 mg/kg of mash for 45 days | - | Cockatiel | 1 | Not given (all samples > 1 μg/mL) samples collected at 0700 on days 3 and 7 | Severe signs of toxicosis: reduced body weight, severe anorexia and lethargy, 1 bird died. Treatment terminated on day 3. | [81] |
0, 50, 100, 200, 400 mg/L for 14 days | Medicated water | Budgerigar | - | Water containing ≤ 400 mg/L did not maintain plasma doxycycline concentrations of ≥1 μg/mL | No notable adverse effects. | [84] |
280 mg/L for 45 days | Cockatiel | 1 | Not given (all but 1 sample on day 45 (0.92 μg/mL) >1 μg/mL) samples collected at 0700 on days 10, 20, 30, 45 | Water consumption was significantly higher at the end of the trial. One bird consistently polyuric and polydipsic throughout trial, for reasons unknown. | [81] | |
400 mg/L for 30 days | Cockatiel | - | - | No clinically important adverse effects were associated with treatment. | [83] | |
400 mg/L for 7 days | Goffin’s cockatoo | 1 | Not given (all samples > 1 μg/mL) samples collected on days 3 and 7 | Not reported. | [85] | |
African grey parrot | 1 | 0 | Not reported. | |||
Orange-winged amazon parrot | 1 | Not given (about 1 μg/mL in all samples) samples collected on days 3 and 7 | Not reported. | |||
500 mg/L for 45 days | Beautiful, black-naped, Jambu and ring-necked fruit doves | 1 | Not given (64/96 (66%) of samples ≥1 μg/mL) samples collected at 1100 on days 3, 8, 14, 21, 35, 42 | None observed. | [87] | |
800 mg/L for 7 days | African grey parrot | 1 | 0 | Not reported. | [85] | |
Goffin’s cockatoo | 1 | Not given (all samples > 1 μg/mL) samples collected on days 3 and 7 | Not reported. | |||
Orange-winged amazon parrot | 1 | Not given (about 1 μg/mL in all samples) samples collected on days 3 and 7 | Not reported. | |||
800 mg/L for 42 days | African grey parrot | 1 | Not given (>1 μg/mL in 73% of samples); samples collected at 0830 on days 4, 7, 14, 21, 28, 35, 42 | None observed. | ||
Goffin’s cockatoo | 1 | Not given (all samples > 1 μg/mL) samples collected at 0830 on days 4, 7, 14, 21, 28, 35, 42 | AST and LD were elevated in 3 birds, 1 bird had high acid concentration, suggestive of mild hepatic damage. All parameters returned to normal within 7 days of treatment termination. | |||
830 mg/L for 45 days | Cockatiel | 1 | Not given (all samples > 1 μg/mL) samples collected at 0700 on days 10, 20, 30, 45. | None observed. | [81] | |
15 mg/kg SD | Stomach tube | Common ostrich | 1 | 0 | Not reported. | [88] |
35 mg/kg q24 h for 21 days | Crop gavage | Cockatiel | 1 | Not given (samples taken on day 14 and 21 at 2–4 h post-injection were >1 μg/mL) | None observed. | [89] |
35 mg/kg q24 h for 45 days | Crop gavage | Cockatiel | 1 | Not given (samples taken on day 14 and 21 at 2–4 h post-injection were >1 μg/mL) | None observed. | |
50 mg/kg SD for 45 days | Oral gavage | Exotic Columbiformes | - | - | None observed. | [90] |
Dosage | Product | Species | Weight (kg) | Half-Life (h) | Cmax (μg/mL) | Tmax (h) | Ref. |
---|---|---|---|---|---|---|---|
Intramuscular | |||||||
15 mg/kg SD | Doxycycline hyclate powder | Common ostrich | 70–90 | 25.02 ± 3.98 | 1.35 ± 0.33 | 0.75 ± 0.18 | [88] |
100 mg/kg SD | Pharmacist compounded 75 mg/mL | Goffin’s cockatoo | 0.281 ± 0.036 | - | 3.49 ± 0.18 | - | [80] |
Orange-winged amazon parrot | 0.416 ± 0.035 | - | 2.54 ± 0.38 | - | |||
Pharmacist compounded 100 mg/mL | Goffin’s cockatoo | 0.281 ± 0.036 | - | - | - | ||
Orange-winged amazon parrot | 0.416 ± 0.035 | - | - | - | |||
Tinneh African grey parrot | 0.324 ± 0.023 | - | - | - | |||
Vibravenos® (20 mg/mL) | Orange-winged amazon parrot | 0.416 ± 0.035 | 74.2 ± 8.4 | 9.33 ± 0.82 | 3 | ||
100 mg/kg q10 d × 5 doses | Pharmacist compounded 100 mg/mL | Cockatiel | 0.082–0.126 | - | - | - | [81] |
100 mg/kg × 7 doses at intervals 7, 7, 7, 6, 6, 5 days | Vibravenos® (2%) | Houbara bustard | 0.985–1.765 | IM1: 85.98 IM7: 77.12 | IM1: 10.25 a IM7: 5.9 a | IM1: 12 h IM7: 24 h | [79] |
Intravenous | |||||||
15 mg/kg SD | Doxycycline hyclate powder | Common ostrich | 70–90 | - | - | - | [88] |
Subcutaneous | |||||||
100 mg/kg SD | Pharmacist compounded 100 mg/mL | Tinneh African grey parrot | 0.324 ± 0.023 | - | - | - | [80] |
100 mg/kg × 7 doses at intervals 7, 7, 7, 6, 6, 5 days | Vibravenos® (2%) | Houbara bustard | 0.985–1.765 | SC1: 63.15 SC2: 58.93 | SQ1: 6.75 a SQ7: 5.75 a | SQ1: 12 SQ7: 24 | [79] |
Oral | |||||||
300 mg/kg of pellets for 47 days | - | Cockatiel | 0.080–0.109 | - | - | - | [82] |
300 mg/kg of seeds for 42 days | - | Budgerigar | 0.025–0.035 b | - | - | - | [84] |
500 mg/kg of seed mixture for 45 days | - | Cockatiel | 0.080–0.109 | - | - | - | [81] |
1000 mg/kg of corn for 45 days | - | Blue-and-gold macaws, scarlet macaws | 0.854–1.191 | - | - | - | [86] |
1000 mg/kg of mash for 45 days | - | Cockatiel | 0.080–0.109 | - | - | - | [81] |
0, 50, 100, 200, 400 mg/L for 14 days | Medicated water | Budgerigar | 0.025–0.035 b | - | - | - | [84] |
280 mg/L for 45 days | Cockatiel | 0.082–0.126 | - | - | - | [81] | |
400 mg/L for 7 days | African grey parrot | 0.333 ± 0.020 | - | - | - | [85] | |
Goffin’s cockatoo | 0.275 ± 0.031 | - | - | - | |||
Orange-winged amazon parrot | 0.406 ± 0.033 | - | - | - | |||
400 mg/L for 30 days | Cockatiel | 0.08–0.125 b | - | - | - | [83] | |
500 mg/L | Beautiful, black-naped, Jambu and ring-necked fruit doves | - | - | - | - | [87] | |
800 mg/L for 7 days | African grey parrot | 0.333 ± 0.020 | - | - | - | [85] | |
Goffin’s cockatoo | 0.275 ± 0.031 | - | - | - | |||
Orange-winged amazon parrot | 0.406 ± 0.033 | - | - | - | |||
800 mg/L for 42 days | African grey parrot | 0.333 ± 0.020 | - | - | - | ||
800 mg/L for 42 days | Goffin’s cockatoo | 0.275 ± 0.031 | - | - | - | ||
830 mg/L for 45 days | Cockatiel | 0.082–0.126 | - | - | - | [81] | |
PO 15 mg/kg SD | Stomach tube | Common ostrich | 70–90 | 19.25 ± 2.53 | 0.30 ± 0.04 | 3.03 ± 0.48 | [88] |
PO 35 mg/kg q24 h for 21 days | Crop gavage | Cockatiel | 0.08–0.125 b | - | - | - | [89] |
PO 35 mg/kg q24 h for 45 days | Crop gavage | Cockatiel | 0.08–0.125 b | - | - | - | |
PO 50 mg/kg q24 h for 45 days | Oral gavage | Exotic Columbiformes | - | - | - | - | [90] |
10. Recommendations for Practice
10.1. Doses Found for New Species
10.2. Doses That May Not Be Efficacious
10.2.1. Enrofloxacin
10.2.2. Doxycycline
10.3. Antibiotics That May Be Amendable for Dose Extrapolation
11. Recommendations for Research
12. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boseret, G.; Losson, B.; Mainil, J.G.; Thiry, E.; Saegerman, C. Zoonoses in pet birds: Review and perspective. Vet. Res. 2013, 44, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorn, K.S.; Thompson, K.M.; Larson, J.M.; Blair, J.E. Polly can make you sick: Pet bird-associated diseases. Clevel. Clin. J. Med. 2009, 76, 235–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balsamo, G.; Maxted, A.M.; Midla, J.W.; Murphy, J.M.; Wohrle, R.; Edling, T.M.; Fish, P.H.; Flammer, K.; Hyde, D.; Kutty, P.K.; et al. Compendium of Measures to Control Chlamydia psittaci Infection Among Humans (Psittacosis) and Pet Birds (Avian Chlamydiosis), 2017. J. Avian Med. Surg. 2017, 31, 262–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, T.A.; Sheen, R.S.; Silvanose, C.; Samour, J.H.; Garner, A.; Harron, D.W.G. Pharmacokinetics of enrofloxacin after intravenous, intramuscular and oral administration in houbara bustard (Chlamydotis undulata macqueenii). J. Vet. Pharmacol. Ther. 1998, 21, 288–297. [Google Scholar] [CrossRef]
- Steger, L.; Rinder, M.; Korbel, R. Phenotypical antibiotic resistances of bacteriological isolates originating from pet, zoo and falconry birds. Tierarztl Prax Ausg K Kleintiere Heimtiere 2020, 48, 260–269. [Google Scholar] [PubMed]
- Varriale, L.; Dipineto, L.; Russo, T.P.; Borrelli, L.; Romano, V.; D’Orazio, S.; Pace, A.; Menna, L.F.; Fioretti, A.; Santaniello, A. Antimicrobial Resistance of Escherichia coli and Pseudomonas aeruginosa from Companion Birds. Antibiotics 2020, 9, 780. [Google Scholar] [CrossRef]
- Guenther, S.; Grobbel, M.; Lübke-Becker, A.; Goedecke, A.; Friedrich, N.D.; Wieler, L.H.; Ewers, C. Antimicrobial resistance profiles of Escherichia coli from common European wild bird species. Vet. Microbiol. 2010, 144, 219–225. [Google Scholar] [CrossRef]
- Umar, S.; Maiyah, A.T.; Shareef, M.; Qadir, H.; Nisa, Q.; Abbas, S. Report-Susceptibility of avian pathogenic Escherichia coli from Zoo birds in Indonesia to antibiotics and disinfectants. Pak. J. Pharm. Sci. 2018, 31, 593–598. [Google Scholar]
- Dorrestein, G.M.; Van Gogh, H.; Rinzema, J.D.; Buitelaar, M.N. Comparative study of ampicillin and amoxycillin after intravenous, intramuscular and oral administration in homing pigeons (Columba livia). Res. Vet. Sci. 1987, 42, 343–348. [Google Scholar] [CrossRef]
- Toutain, P.-L.; Bousquet-Melou, A.; Damborg, P.; Ferran, A.A.; Mevius, D.; Pelligand, L.; Veldman, K.T.; Lees, P. En Route towards European Clinical Breakpoints for Veterinary Antimicrobial Susceptibility Testing: A Position Paper Explaining the VetCAST Approach. Front. Microbiol. 2017, 8, 2344. [Google Scholar] [CrossRef] [Green Version]
- Dorrestein, G.M.; Van Miert, A.S.P.A.M. Pharmacotherapeutic aspects of medication of birds. J. Vet. Pharmacol. Ther. 1988, 11, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Flammer, K. Antibiotic Drug Selection in Companion Birds. J. Exot. Pet Med. 2006, 15, 166–176. [Google Scholar] [CrossRef]
- Dorrestein, G.M.; Van Gogh, H.; Rinzema, J.D. Pharmacokinetic aspects of penicillins, aminoglycosides and chloramphenicol in birds compared to mammals. A review. Vet. Q. 1984, 6, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Toutain, P.; del Castillo, J.; Bousquet-Melou, A. The pharmacokinetic–pharmacodynamic approach to a rational dosage regimen for antibiotics. Res. Vet. Sci. 2002, 73, 105–114. [Google Scholar] [CrossRef]
- Gill, F.; Donsker, D.; Rasmussen, P. IOC World Bird List v10.2. Available online: http://dx.doi.org/10.14344/IOC.ML.10.2 (accessed on 22 June 2020).
- Scanes, C.G. Sturkie’s Avian Physiology, 6th ed.; Academic Press: London, UK, 2015. [Google Scholar]
- Bicudo, J.E.P.W. Ecological and Environmental Physiology of Birds; Oxford University Press: New York, NY, USA, 2010; Volume 2, pp. 1–317. [Google Scholar]
- Karlgren, M.; Bergström, C.A.S. CHAPTER 1 How Physicochemical Properties of Drugs Affect Their Metabolism and Clearance. In New Horizons in Predictive Drug Metabolism and Pharmacokinetics; The Royal Society of Chemistry: London, UK, 2016; pp. 1–26. [Google Scholar]
- Kok-Yong, S.; Lawrence, L. Drug Distribution and Drug Elimination. In Basic Pharmacokinetic Concepts and Some Clinical Applications; Ahmed, T.A., Ed.; BoD–Books on Demand: Nordstedt, Germany, 2015. [Google Scholar]
- Lindup, W.E.; Orme, M.C. Clinical pharmacology: Plasma protein binding of drugs. BMJ 1981, 282, 212–214. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, T.H.; Madden, J.C.; Naidoo, V.; Walker, C.H. Comparative metabolism as a key driver of wildlife species sensitivity to human and veterinary pharmaceuticals. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130583. [Google Scholar] [CrossRef] [Green Version]
- Walker, C.H.; Ronis, M.J.J. The monooxygenases of birds, reptiles and amphibians. Xenobiotica 1989, 19, 1111–1121. [Google Scholar] [CrossRef]
- Braun, E.J. Chapter 12-Osmoregulatory Systems of Birds. In Sturkie’s Avian Physiology, 6th ed.; Scanes, C.G., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 285–300. [Google Scholar]
- Wright, P.A. Nitrogen excretion: Three end products, many physiological roles. J. Exp. Biol. 1995, 198, 273–281. [Google Scholar] [CrossRef]
- Gill, F.B. Ornithology, 3rd ed.; W.H. Freeman: New York, NY, USA, 2007. [Google Scholar]
- Mealey, K.L. Pharmacotherapeutics for Veterinary Dispensing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Toutain, P.-L.; Ferran, A.A.; Bousquet-Melou, A. Species Differences in Pharmacokinetics and Pharmacodynamics. Comp. Vet. Pharmacol. 2010, 199, 19–48. [Google Scholar] [CrossRef]
- Wade, L. Restraint and administration of subcutaneous fluids and intramuscular injections in psittacine birds. Lab Anim. 2009, 38, 292–293. [Google Scholar] [CrossRef]
- Jessen, L.; Damborg, P.; Spohr, A.; Goericke-Pesch, S. Antibiotic Use Guidelines for Companion Animal Practice, 2nd ed.; Faggruppe Familiedyr; Den Danske Dyrlægeforening (DDD): Copenhagen, Denmark, 2018. [Google Scholar]
- Papich, M.G. Pharmacokinetic–pharmacodynamic (PK–PD) modeling and the rational selection of dosage regimes for the prudent use of antimicrobial drugs. Vet. Microbiol. 2014, 171, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Maaland, M.G.; Papich, M.G.; Turnidge, J.; Guardabassi, L. Pharmacodynamics of Doxycycline and Tetracycline against Staphylococcus pseudintermedius: Proposal of Canine-Specific Breakpoints for Doxycycline. J. Clin. Microbiol. 2013, 51, 3547–3554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunton, L.; Knollmann, B.; Hilal-Dandan, R. Goodman and Gilman’s The Pharmacological basis of Therapeutics, 13th ed.; McGraw-Hill: New York, NY, USA, 2018. [Google Scholar]
- Zwart, P. Bacterial Diseases. In Avian Medicine, 3rd ed.; Samour, J., Ed.; Mosby Ltd.: Maryland Heights, MO, USA, 2016; pp. 452–460. [Google Scholar]
- de Lucas, J.J.; Navarro, J.L.; Rubio, S.; Vignolo, P.E.; Asis, V.C.; González, F.; Rodríguez, C. Pharmacokinetic behaviour of enrofloxacin in greater rheas following a single-dose intramuscular administration. Vet. J. 2008, 175, 136–138. [Google Scholar] [CrossRef] [PubMed]
- De Lucas, J.J.; Solano, J.; Gonzalez, F.; Ballesteros, C.; Andrés, M.I.S.; Von Kauffmann, C.M.; Rodriguez, R. Pharmacokinetics of enrofloxacin after multiple subcutaneous and intramuscular administrations in adult ostriches. Br. Poult. Sci. 2013, 54, 391–397. [Google Scholar] [CrossRef]
- Flammer, K.; Aucoin, D.P.; Whitt, D.A. Intramuscular and oral disposition of enrofloxacin in African grey parrots following single and multiple doses. J. Vet. Pharmacol. Ther. 1991, 14, 359–366. [Google Scholar] [CrossRef]
- Harrenstien, L.A.; Tell, L.A.; Vulliet, R.; Needham, M.; Brandt, C.M.; Brondos, A.; Stedman, B.; Kass, P.H. Disposition of Enrofloxacin in Red-tailed Hawks (Buteo jamaicensis) and Great Horned Owls (Bubo virginianus) after a Single Oral, Intramuscular, or Intravenous Dose. J. Avian Med. Surg. 2000, 14, 228–236. [Google Scholar] [CrossRef]
- Elamaran, A.; Hariharan, P.; Ramesh, S.; Vairamuthu, S. Enrofloxacin induced oxidative stress and its amelioration with antioxidants in liver homogenates of broilers. Ind. J. Vet. Anim. Sci. Res. 2015, 44, 124–128. [Google Scholar]
- Vaccaro, E.; Giorgi, M.; Longo, V.; Mengozzi, G.; Gervasi, P.G. Inhibition of cytochrome p450 enzymes by enrofloxacin in the sea bass (Dicentrarchus labrax). Aquat Toxicol. 2003, 10, 27–33. [Google Scholar] [CrossRef]
- Hu, X.; Li, X.-C.; Sun, B.-B.; Fang, W.-H.; Zhou, S.; Hu, L.-L.; Zhou, J.-F. Effects of enrofloxacin on cytochromes P4501A and P4503A in Carassius auratus gibelio (crucian carp). J. Vet. Pharmacol. Ther. 2011, 35, 216–223. [Google Scholar] [CrossRef]
- Guo, M.; Sun, Y.; Zhang, Y.; Bughio, S.; Dai, X.; Ren, W.; Wang, L. E. coli Infection Modulates the Pharmacokinetics of Oral Enrofloxacin by Targeting P-Glycoprotein in Small Intestine and CYP450 3A in Liver and Kidney of Broilers. PLoS ONE 2014, 9, e87781. [Google Scholar] [CrossRef]
- Wack, A.N.; KuKanich, B.; Bronson, E.; Denver, M. Pharmacokinetics of enrofloxacin after single dose oral and intravenous administration in the African penguin (Spheniscus demersus). J. Zoo Wildl. Med. 2012, 43, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Doss, G.A.; Williams, J.M.; Mans, C. Contrast fluoroscopic evaluation of gastrointestinal transit times with and without the use of falconry hoods in red-tailed hawks (Buteo jamaicensis). J. Am. Vet. Med. Assoc. 2017, 251, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- De Lucas, J.J.; Rodriguez, C.; Waxman, S.; Gonzalez, F.; De Vicente, M.L.; Andrés, M.I.S. Pharmacokinetics of enrofloxacin after single intravenous and intramuscular administration in young domestic ostrich (Struthio camelus). J. Vet. Pharmacol. Ther. 2004, 27, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Waxman, S.; Prados, A.P.; De Lucas, J.J.; Andrés, M.I.S.; Sassaroli, J.C.; Orozco, M.; Argibay, H.; Rodríguez, C. Pharmacokinetic and Pharmacodynamic Properties of Enrofloxacin in Southern Crested Caracaras (Caracara plancus). J. Avian Med. Surg. 2013, 27, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Helmick, K.E.; Boothe, D.M.; Jensen, J.M. Disposition of single-dose intravenously administered enrofloxacin in emus (Dromaius novaehollandiae). J. Zoo Wildl. Med. 1997, 28, 43–48. [Google Scholar]
- De Lucas, J.J.; Rodriguez, C.; Martella, M.; Lábaque, M.; Navarro, J.; Andrés, M.S. Pharmacokinetics of enrofloxacin following intravenous administration to greater rheas: A preliminary study. Res. Vet. Sci. 2005, 78, 265–267. [Google Scholar] [CrossRef]
- Nau, M.R.; Carpenter, J.W.; KuKanich, B.; Warner, M. Pharmacokinetics of a single dose of oral and subcutaneous enrofloxacin in caribbean flamingos (Phoenicopterus ruber ruber). J. Zoo Wildl. Med. 2017, 48, 72–79. [Google Scholar] [CrossRef]
- Flammer, K.; Aucoin, D.P.; Whitt, D.A.; Prus, S.A. Plasma Concentrations of Enrofloxacin in African Grey Parrots Treated with Medicated Water. Avian Dis. 1990, 34, 1017. [Google Scholar] [CrossRef]
- García-Montijano, M.; Waxman, S.; De Lucas, J.J.; Luaces, I.; Zalba, J.; Gonzalez, F.; Andrés, M.I.S.; Rodríguez, C. The pharmacokinetic behaviour of marbofloxacin in Eurasian buzzards (Buteo buteo) after intraosseous administration. Vet. J. 2006, 171, 551–555. [Google Scholar] [CrossRef]
- Garcia-Montijano, M.; Waxman, S.; de Lucas, J.J.; Luaces, I.; Andrés, M.D.D.S.; Rodríguez, C. Disposition of marbofloxacin in vulture (Gyps fulvus) after intravenous administration of a single dose. Res. Vet. Sci. 2011, 90, 288–290. [Google Scholar] [CrossRef]
- Carpenter, J.W.; Hunter, R.P.; Olsen, J.H.; Henry, H.; Isaza, R.; Koch, D.E. Pharmacokinetics of marbofloxacin in blue and gold macaws (Ara ararauna). Am. J. Vet. Res. 2006, 67, 947–950. [Google Scholar] [CrossRef] [PubMed]
- De Lucas, J.J.; Rodríguez, C.; Waxman, S.; Gonzalez, F.; Uriarte, I.; Andrés, M.I.S. Pharmacokinetics of marbofloxacin after intravenous and intramuscular administration to ostriches. Vet. J. 2005, 170, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Montijano, M.; Waxman, S.; Sanchez, C.; Quetglas, J.; Andres, M.I.S.; Gonzalez, F.; Rodriguez, C. The disposition of marbofloxacin in Eurasian buzzards (Buteo buteo) after intravenous administration. J. Vet. Pharmacol. Ther. 2001, 24, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Lashev, L.; Dimitrova, D.; Milanova, A.; Moutafchieva, R. Pharmacokinetics of enrofloxacin and marbofloxacin in Japanese quails and common pheasants. Br. Poult. Sci. 2015, 56, 255–261. [Google Scholar] [CrossRef]
- García-Montijano, M.; González, F.; Waxman, S.; Sánchez, C.; De Lucas, J.J.; Andres, M.S.; Rodríguez, C. Pharmacokinetics of Marbofloxacin After Oral Administration to Eurasian Buzzards (Buteo buteo). J. Avian Med. Surg. 2003, 17, 185–190. [Google Scholar] [CrossRef]
- Itoh, N.; Okada, H. Pharmacokinetics and Potential Use of Gentamicin in Budgerigars (Melopsittacus undulatus). J. Vet. Med. Ser. A 1993, 40, 194–199. [Google Scholar] [CrossRef]
- Bauck, L.A.; Haigh, J.C. Toxicity of Gentamicin in Great Horned Owls (Bubo virginianus). J. Zoo Anim. Med. 1984, 15, 62. [Google Scholar] [CrossRef]
- Bird, J.E.; Walser, M.M.; Duke, G.E. Toxicity of gentamicin in red-tailed hawks. Am. J. Vet. Res. 1983, 44, 1289–1293. [Google Scholar]
- Fernández-Repollet, E.; Rowley, J.; Schwartz, A. Renal damage in gentamicin-treated lanner falcons. J. Am. Vet. Med. Assoc. 1982, 181, 1392–1394. [Google Scholar]
- Ramsay, E.C.; Vulliet, R. Pharmacokinetic Properties of Gentamicin and Amikacin in the Cockatiel. Avian Dis. 1993, 37, 628. [Google Scholar] [CrossRef]
- Flammer, K.; Clark, C.H.; Drewes, L.A.; Wilson, R.C.; Fiorello-Barrett, J. Adverse effects of gentamicin in scarlet macaws and galahs. Am. J. Vet. Res. 1990, 51, 404–407. [Google Scholar] [PubMed]
- Custer, R.S.; Bush, M.; Carpenter, J.W. Pharmacokinetics of gentamicin in blood plasma of quail, pheasants, and cranes. Am. J. Vet. Res. 1979, 40, 892–895. [Google Scholar] [PubMed]
- Bird, J.E.; Miller, K.W.; Larson, A.A.; Duke, G.E. Pharmacokinetics of gentamicin in birds of prey. Am. J. Vet. Res. 1983, 44, 1245–1247. [Google Scholar] [PubMed]
- Lin, J.H. Species similarities and differences in pharmacokinetics. Drug Metab. Dispos. 1995, 23, 1008–1021. [Google Scholar]
- Mordenti, J. Man versus Beast: Pharmacokinetic Scaling in Mammals. J. Pharm. Sci. 1986, 75, 1028–1040. [Google Scholar] [CrossRef]
- Gronwall, R.; Brown, M.P.; Clubb, S. Pharmacokinetics of amikacin in African gray parrots. Am. J. Vet. Res. 1989, 50, 250–252. [Google Scholar]
- Schroeder, E.C.; Frazier, D.L.; Morris, P.J.; Bemis, D.A.; Cox, S.K.; Orosz, S.E. Pharmacokinetics of Ticarcillin and Amikacin in Blue-Fronted Amazon Parrots (Amazona aestiva aestiva). J. Avian Med. Surg. 1997, 11, 260–267. [Google Scholar]
- Bloomfield, R.B.; Brooks, D.; Vulliet, R. The pharmacokinetics of a single intramuscular dose of amikacin in red-tailed hawks (Buteo jamaicensis). J. Zoo Wildl. Med. 1997, 28, 55–61. [Google Scholar]
- Helmick, K.E.; Boothe, D.M.; Jensen, J.M. Disposition of single-dose intravenously administered amikacin in emus (Dromaius novaehollandiae). J. Zoo Wildl. Med. 1997, 28, 49–54. [Google Scholar]
- Bush, M.; Locke, D.; Neal, L.A.; Carpenter, J.W. Pharmacokinetics of cephalothin and cephalexin in selected avian species. Am. J. Vet. Res. 1981, 42, 1014–1017. [Google Scholar]
- Tell, L.; Harrenstien, L.; Wetzlich, S.; Needham, M.; Nappier, J.; Hoffman, G.; Caputo, J.; Craigmill, A. Pharmacokinetics of ceftiofur sodium in exotic and domestic avian species. J. Vet. Pharmacol. Ther. 1998, 21, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Sadar, M.J.; Hawkins, M.G.; Byrne, B.A.; Cartoceti, A.N.; Keel, K.; Drazenovich, T.L.; Tell, L.A. Pharmacokinetics of a single intramuscular injection of ceftiofur crystalline-free acid in red-tailed hawks (Buteo jamaicensis). Am. J. Vet. Res. 2015, 76, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Valitutto, M.T.; Newton, A.L.; Wetzlich, S.; Kishbaugh, J.C.; Raphael, B.L.; Calle, P.P.; Tell, L.A. Pharmacokinetics and clinical safety of a sustained-release formulation of ceftiofur crystalline free acid in ringneck doves (Streptopelia risoria) after a single intramuscular injection. J. Zoo Wildl. Med. 2021, 52, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Waldoch, J.A.; Cox, S.K.; Armstrong, D.L. Pharmacokinetics of a Single Intramuscular Injection of Long-Acting Ceftiofur Crystalline-Free Acid in Cattle Egrets (Bubulcus ibis). J. Avian Med. Surg. 2017, 31, 314–318. [Google Scholar] [CrossRef]
- Kilburn, J.J.; Cox, S.K.; Backues, K.A. Pharmacokinetics of ceftiofur crystalline free acid, a long-acting cephalosporin, in american flamingos (Phoenicopterus ruber). J. Zoo Wildl. Med. 2016, 47, 457–462. [Google Scholar] [CrossRef]
- Wojick, K.B.; Langan, J.N.; Adkesson, M.J.; Cox, S.K.; Gamble, K.C. Pharmacokinetics of long-acting ceftiofur crystalline-free acid in helmeted guineafowl (Numida meleagris) after a single intramuscular injection. Am. J. Vet. Res. 2011, 72, 1514–1518. [Google Scholar] [CrossRef]
- Hope, K.L.; Tell, L.A.; Byrne, B.A.; Murray, S.; Wetzlich, S.E.; Ware, L.H.; Lynch, W.; Padilla, L.R.; Boedeker, N.C. Pharmacokinetics of a single intramuscular injection of ceftiofur crystalline-free acid in American black ducks (Anas rubripes). Am. J. Vet. Res. 2012, 73, 620–627. [Google Scholar] [CrossRef]
- Greth, A.; Gerlach, H.; Gerbermann, H.; Vassart, M.; Richez, P. Pharmacokinetics of Doxycycline after Parenteral Administration in the Houbara Bustard (Chlamydotis undulata). Avian Dis. 1993, 37, 31. [Google Scholar] [CrossRef]
- Flammer, K.; Papich, M. Assessment of Plasma Concentrations and Effects of Injectable Doxycycline in Three Psittacine Species. J. Avian Med. Surg. 2005, 19, 216–224. [Google Scholar] [CrossRef]
- Powers, L.V.; Flammer, K.; Papich, M. Preliminary Investigation of Doxycycline Plasma Concentrations in Cockatiels (Nymphicus hollandicus) After Administration by Injection or in Water or Feed. J. Avian Med. Surg. 2000, 14, 23–30. [Google Scholar] [CrossRef]
- Flammer, K.; Massey, J.G.; Roudybush, T.; Meek, C.J.; Papich, M.G. Assessment of Plasma Concentrations and Potential Adverse Effects of Doxycycline in Cockatiels (Nymphicus hollandicus) Fed a Medicated Pelleted Diet. J. Avian Med. Surg. 2013, 27, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.E.; Wade, L.L.; Flammer, K. Administration of doxycycline in drinking water for treatment of spiral bacterial infection in cockatiels. J. Am. Vet. Med. Assoc. 2008, 232, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Flammer, K.; Trogdon, M.M.; Papich, M. Assessment of plasma concentrations of doxycycline in budgerigars fed medicated seed or water. J. Am. Vet. Med. Assoc. 2003, 223, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Flammer, K.; Whitt-Smith, D.; Papich, M. Plasma Concentrations of Doxycycline in Selected Psittacine Birds When Administered in Water for Potential Treatment of Chlamydophila psittaci Infection. J. Avian Med. Surg. 2001, 15, 276–282. [Google Scholar] [CrossRef]
- Prus, S.E.; Clubb, S.L.; Flammer, K. Doxycycline Plasma Concentrations in Macaws Fed a Medicated Corn Diet. Avian Dis. 1992, 36, 480. [Google Scholar] [CrossRef] [PubMed]
- Padilla, L.R.; Flammer, K.; Miller, R.E. Doxycycline-Medicated Drinking Water for Treatment of Chlamydophila psittaci in Exotic Doves. J. Avian Med. Surg. 2005, 19, 88–91. [Google Scholar] [CrossRef]
- Abu-Basha, E.A.; Idkaidek, N.M.; Hantash, T.M. Pharmacokinetics and bioavailability of doxycycline in ostriches (Struthio camelus) at two different dose rates. J. Vet. Sci. 2006, 7, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Guzman, D.S.-M.; Diaz-Figueroa, O.; Tully, T.; Ciembor, P.; Morgan, T.; Walden, M.; Poston, R.P.; Flammer, K.; Mitchell, M.A.; Ritchie, B. Evaluating 21-day Doxycycline and Azithromycin Treatments for Experimental Chlamydophila psittaci Infection in Cockatiels (Nymphicus hollandicus). J. Avian Med. Surg. 2010, 24, 35–45. [Google Scholar] [CrossRef]
- Zuba, J.R.; Janssen, D.L.; Loomis, M.L.; Shima, A.L. Management of Chlamydiosis in Quarantined Exotic Columbiformes. J. Zoo Wildl. Med. 1992, 23, 86–91. [Google Scholar]
- Carpenter, J.; Marion, C. Exotic Animal Formulary, 5th ed.; Saunders: St. Louis, MO, USA, 2017. [Google Scholar]
- Lees, P.; Aliabadi, F.S. Rational dosing of antimicrobial drugs: Animals versus humans. Int. J. Antimicrob. Agents 2002, 19, 269–284. [Google Scholar] [CrossRef]
- Hunter, R.P.; Koch, D.E.; Coke, R.L.; Carpenter, J.W.; Isaza, R. Identification and comparison of marbofloxacin metabolites from the plasma of ball pythons (Python regius) and blue and gold macaws (Ara ararauna). J. Vet. Pharmacol. Ther. 2007, 30, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Baert, K.; De Backer, P. Comparative pharmacokinetics of three non-steroidal anti-inflammatory drugs in five bird species. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2002, 134, 25–33. [Google Scholar] [CrossRef]
- Lacasse, C.; Gamble, K.C.; Boothe, D.M. Pharmacokinetics of a single dose of intravenous and oral meloxicam in red-tailed hawks (Buteo jamaicensis) and great horned owls (Bubo virginianus). J. Avian. Med. Surg. 2013, 27, 204–210. [Google Scholar] [CrossRef]
- Dhondt, L.; Devreese, M.; Croubels, S.; De Baere, S.; Haesendonck, R.; Goessens, T.; Gehring, R.; De Backer, P.; Antonissen, G. Comparative population pharmacokinetics and absolute oral bioavailability of COX-2 selective inhibitors celecoxib, mavacoxib and meloxicam in cockatiels (Nymphicus hollandicus). Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molter, C.M.; Court, M.H.; Cole, G.A.; Gagnon, D.J.; Hazarika, S.; Paul-Murphy, J.R. Pharmacokinetics of meloxicam after intravenous, intramuscular, and oral administration of a single dose to Hispaniolan Amazon parrots (Amazona ventralis). Am. J. Vet. Res. 2013, 74, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, A.; Ardiaca, M.; Gilabert, J.A.; Bonvehí, C.; Oros, J.; Encinas, T. Pharmacokinetics of meloxicam after intravenous, intramuscular and oral administration of a single dose to African grey parrots (Psittacus erithacus). J. Vet. Pharmacol. Ther. 2017, 40, 279–284. [Google Scholar] [CrossRef]
- Zordan, M.A.; Papich, M.G.; Pich, A.A.; Unger, K.M.; Sánchez, C.R. Population pharmacokinetics of a single dose of meloxicam after oral and intramuscular administration to captive lesser flamingos (Phoeniconaias minor). Am. J. Vet. Res. 2016, 77, 1311–1317. [Google Scholar] [CrossRef]
- Morrison, J.; Greenacre, C.B.; George, R.; Cox, S.; Martín-Jiménez, T. Pharmacokinetics of a Single Dose of Oral and Intramuscular Meloxicam in African Penguins (Spheniscus demersus). J. Avian. Med. Surg. 2018, 32, 102–108. [Google Scholar] [CrossRef]
- Boonstra, J.L.; Cox, S.K.; Martin-Jimenez, T. Pharmacokinetics of meloxicam after intramuscular and oral administration of a single dose to American flamingos (Phoenicopertus ruber). Am. J. Vet. Res. 2017, 78, 267–273. [Google Scholar] [CrossRef]
- Miller, K.A.; Hill, N.J.; Carrasco, S.E.; Patterson, M.M. Pharmacokinetics and Safety of Intramuscular Meloxicam in Zebra Finches (Taeniopygia guttata). J. Am. Assoc. Lab. Anim. Sci. 2019, 58, 589–593. [Google Scholar] [CrossRef]
- Naidoo, V.; Wolter, K.; Cromarty, A.D.; Bartels, P.; Bekker, L.; McGaw, L.; Taggart, M.A.; Cuthbert, R.; Swan, G.E. The pharmacokinetics of meloxicam in vultures. J. Vet. Pharmacol. Ther. 2008, 31, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Lindemann, D.M.; Carpenter, J.W.; KuKanich, B. Pharmacokinetics of a Single Dose of Oral and Subcutaneous Meloxicam in Caribbean Flamingos (Phoenicopterus ruber ruber). J. Avian Med. Surg. 2016, 30, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Sim, R.R.; Cox, S.K. Pharmacokinetics of a sustained-release formulation of meloxicam after subcutaneous administration to american flamingos (Phoenicopterus ruber). J. Zoo Wildl. Med. 2018, 49, 839–843. [Google Scholar] [PubMed]
- Guzman, D.S.-M.; Court, M.H.; Zhu, Z.; Summa, N.; Paul-Murphy, J.R. Pharmacokinetics of a Sustained-release Formulation of Meloxicam After Subcutaneous Administration to Hispaniolan Amazon Parrots (Amazona ventralis). J. Avian Med. Surg. 2017, 31, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Musser, J.M.B.; Heatley, J.J.; Phalen, D.N. Pharmacokinetics after intravenous administration of flunixin meglumine in budgerigars (Melopsittacus undulatus) and Patagonian conures (Cyanoliseus patagonus). J. Am. Vet. Med. Assoc. 2013, 242, 205–208. [Google Scholar] [CrossRef]
- Fourie, T.; Cromarty, D.; Duncan, N.; Wolter, K.; Naidoo, V. The Safety and Pharmacokinetics of Carprofen, Flunixin and Phenylbutazone in the Cape Vulture (Gyps coprotheres) following Oral Exposure. PLoS ONE 2015, 29, e0141419. [Google Scholar] [CrossRef] [Green Version]
- De Lucas, J.J.; Rodriguez, C.; Marin, M.; Gonzalez, F.; Ballesteros, C.; San Andres, M.I. Pharmacokinetic of intramuscular ketamine in young ostriches premdicated with romifidine. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2007, 54, 48–50. [Google Scholar] [CrossRef]
- Clarke, C.R.; Kocan, A.; Webb, A.I.; Wang, Z.; Cudd, L.A. Intravenous pharmacokinetics of penicillin G and antipyrine in ostriches (Struthio camelus) and emus (Dromaius novaehollandiae). J. Zoo Wildl. Med. 2001, 32, 74–77. [Google Scholar]
- Abu-Basha, E.A.; Gehring, R.; Hantash, T.M.; Al-shunnaq, A.F.; Idkaidek, N.M. Pharmacokinetics and bioavailability of sulfadiazine and trimethorprim following intravenous, intramuscular and oral administration in ostriches (Struthio camelus). J. Vet. Pharmacol. Therap. 2008, 32, 258–263. [Google Scholar] [CrossRef]
- McNab, B.K. Ecological factors affect the level and scaling of avian BMR. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008, 152, 22–45. [Google Scholar] [CrossRef]
- Withers, P. Energy, Water, and Solute Balance of the Ostrich Struthio camelus. Physiol. Zool. 1983, 56, 568–579. [Google Scholar] [CrossRef]
- Ballesteros, F.J.; Martinez, V.J.; Luque, B.; Lacasa, L.; Valor, E.; Moya, A. On the thermodynamic origin of metabolic scaling. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, F. (Ed.) Physiology. In Ornithology, 3rd ed.; W.H. Freeman and Company: New York, NY, USA, 2006; pp. 141–161. [Google Scholar]
- Fudge, A.M. Diagnosis and treatment of avian bacterial disease. Semin. Avian Exot. Pet Med. 2001, 10, 3–11. [Google Scholar] [CrossRef]
- Orosz, S.E.; Jones, M.P.; Cox, S.K.; Zagaya, N.K.; Frazier, D.L. Pharmacokinetics of Amoxicillin Plus Clavulanic Acid in Blue-fronted Amazon Parrots (Amazona aestiva aestiva). J. Avian Med. Surg. 2000, 14, 107–112. [Google Scholar] [CrossRef]
- Escudero, E.; Vicente, M.S.; Carceles, C.M. Pharmacokinetics of amoxicillin/clavulanic acid combination after intravenous and intramuscular administration to pigeons. Res. Vet. Sci. 1998, 65, 77–81. [Google Scholar] [CrossRef]
English Name of Species | Scientific Name of Species |
---|---|
Red junglefowl | Gallus gallus |
Mallard duck | Anas platyrhynchos |
Muscovy duck | Cairina moschata |
Wild turkey | Meleagris gallopavo |
Greylag goose | Anser anser |
Swan goose | Anser cygnoides |
Dosage | Species | MIC (μg/mL) | Cmax:MIC | Adverse Effects | Dosage Recommended by Authors | Ref. |
---|---|---|---|---|---|---|
Intramuscular | ||||||
5 mg/kg SD | African grey parrot | ≤8 | ≥1.4 | Not reported | IV or IM 10–20 mg/kg q8–12 h, depending on MIC | [67] |
10 mg/kg SD | African grey parrot | ≤8 | ≥2.64 | Not reported | 10–20 mg/kg IV or IM q8–12 h, depending on MIC | |
15 mg/kg SD | Blue-fronted amazon parrot | 16 | 2.38 | Not reported | IV 15 mg/kg q8 h or IM 15 mg/kg q12 h | [68] |
15 mg/kg q12 h × 3 d | Cockatiel | - | - | Weight-loss of 8.9% due to handling stress | IM 15–20 mg/kg either bd or tds for infections caused by susceptible bacteria | [61] |
20 mg/kg SD | African grey parrot | ≤8 | ≥4.09 | Not reported | 10–20 mg/kg IV or IM q8–12 h, depending on MIC | [67] |
Red-tailed hawks | 0.5–8 | ~20 for most pathogens tested | None observed | IM 15–20 mg/kg/day either as a single dose or divided into 2 or 3 doses | [69] | |
Intravenous | ||||||
5 mg/kg SD | African grey parrot | ≤8 | ≥3.8 | Not reported | 10–20 mg/kg IV or IM q8–12 h, depending on MIC | [67] |
7.2 ± 0.12 mg/kg SD | Emu | 8 | ≥4 | Not reported | IV 7.2 ± 0.12 mg/kg q24 h | [70] |
10 mg/kg SD | African grey parrot | ≤8 | ≥11.1 | Not reported | 10–20 mg/kg IV or IM q8–12 h, depending on MIC | [67] |
15 mg/kg SD | Blue-fronted amazon parrot | 16 | 6.25 | Not reported | 15 mg/kg q8 h IV or 15 mg/kg q12 h IM | [68] |
20 mg/kg SD | African grey parrot | ≤8 | ≥12.5 | Not reported | 10–20 mg/kg IV or IM q8–12 h, depending on MIC | [67] |
Dosage | Species | Weight (kg) | Half-Life (h) | Cmax (μg/mL) | Tmax (h) | V (L/kg) | Clearance (mL/kg/h) | AUC (μg·h/mL) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Intramuscular | |||||||||
5 mg/kg SD | African grey parrot | 0.418–0.559 | 1.08 | 11.2 c | 0.25 | 0.34 | 191 | - | [67] |
10 mg/kg SD | African grey parrot | 0.418–0.559 | 1.04 | 21.1 c | 0.75 | 0.39 | 232 | - | |
15 mg/kg | Blue-fronted amazon parrot | 0.270–0.410 | 1.08 | 38 | 0.283 | - | - | 87.5 b | [68] |
15 mg/kg q12 h × 3 days | Cockatiel | 0.104 | 1.29 | 27.3 ± 6.9 | 1 | - | - | - | [61] |
20 mg/kg SD | African grey parrot | 0.418–0.559 | 0.97 | 32.7 c | 0.75 | 0.47 | 217 | - | [67] |
Red-tailed hawks | 0.900–1.825 | 2.02 ± 0.63 | 65 ± 12 | 0.5–0.75 | 0.28 ± 0.03 | - | 207 ± 46 | [69] | |
Intravenous | |||||||||
5 mg/kg SD | African grey parrot | 0.418–0.559 | 1.06 | 30.4 c | 0.0833 | 0.23 | 188 | - | [67] |
7.2 ± 0.12 mg/kg SD | Emu | 25–26 | 0.87 | ≥32.0 | - | 0.18 | 30 a | 269.66 | [70] |
10 mg/kg SD | African grey parrot | 0.418–0.559 | 0.9 | 88.8 c | 0.0833 | 0.12 | 142 | - | [67] |
15 mg/kg SD | Blue-fronted amazon parrot | 0.270–0.410 | 0.483 | 100 | - | - | - | 69.7 b | [68] |
20 mg/kg SD | African grey parrot | 0.418–0.559 | 1.34 | 99.8 c | 0.0833 | 0.31 | 229 | - | [67] |
Dosage | Species | MIC (μg/mL) | T > MIC (h) | Adverse Effects | Dose Recommended by Study | Ref. |
---|---|---|---|---|---|---|
Intramuscular | ||||||
10 mg/kg SD | American black duck | 1 and 4 | 123 and 73.3 | - b | IM 10 mg/kg q3 d for future studies | [78] |
American flamingo | 1 | 72 h in 100% of birds, 96 h in 82% of birds, 144 h in 18% of birds | Slight weight loss due to manual restraint | - | [76] | |
Cockatiel | 1 | At least 4 h | None observed | IM 10 mg/kg q4 h | [72] | |
Helmeted guineafowl | 1 | At least 56 h in all birds and for 72 h in 2 birds | None observed | [77] | ||
Orange-winged amazon parrot | 1 | At least 8 h | None observed | IM 10 mg/kg q8–12 h | [72] | |
Red-tailed hawk | 4 a | 36 h | Little to no muscle inflammation | - | [73] | |
20 mg/kg SD | Cattle egret | 1 | 72 h in all birds, 96 h in 50% of birds | Not reported | - | [75] |
Red-tailed hawk | 4 a | 96 h | Little to no muscle inflammation | - | [73] | |
50 mg/kg SD | Ringneck dove | 1 | 108 h | Very mild tissue inflammation at injection site, appears to be safe | - | [74] |
Subcutaneous | ||||||
10 mg/kg SD | American flamingo | 1 | 72 h and 96 h, respectively, for the 2 birds | Slight weight loss due to manual restraint | - | [76] |
Dosage | Species | Weight (kg) | Cmax (μg/mL) | Tmax (h) | Half-Life (h) | AUC (μg·h/mL) | Clearance (mL/kg/min) | Ref. |
---|---|---|---|---|---|---|---|---|
Intramuscular | ||||||||
10 mg/kg SD | American black duck | 0.720–1.640 a | 13.1 | 24 | 32 | 783 | - | [78] |
American flamingo | ≥2.4 | 7.49 ± 1.9 | 27 ± 13 | 39.9 ± 9.7 | 525 ± 123 | - | [76] | |
Cockatiel | 0.091 ± 0.008 | 5.25 | - | 2.5 | 14.7 | 11.3 | [72] | |
Helmeted guineafowl | 1–1.6 | 5.26 | 19.3 | 29.0 ± 4.93 | 306 ± 69.3 | - | [77] | |
Orange-winged amazon parrot | 0.393 ± 0.032 | 10.99 | - | 7.9 | 43.8 | 3.8 | [72] | |
Red-tailed hawk | 0.690–1.46 a | 6.8 | 6.4 | 29 | - | - | [73] | |
20 mg/kg SD | Cattle egret | 0.34 | 16.22 ± 5.11 | 3.20 ± 2.6 | 37.92 ± 7.49 | 451.30 ± 141.0 | - | [75] |
Red-tailed hawk | 0.690–1.46 a | 15.1 | 6.7 | 50 | - | - | [73] | |
50 mg/kg SD | Ringneck dove | 0.156 a | - | - | - | - | - | [74] |
Subcutaneous | ||||||||
10 mg/kg SD | American flamingo | ≥2.4 | 6 and 4.5 in 2 different birds | 48 and 12 in 2 different birds | - | - | - | [76] |
Antibiotic | Half-Life Range (h) | No. of Species | Elimination of Antibiotic | Ref. |
---|---|---|---|---|
Enrofloxacin | 0.723–82.5 | 11 | Metabolized to ciprofloxacin (in birds) | [36] |
Marbofloxacin | 1.61–15.03 | 4 | Metabolized by the liver (in birds) | [93] |
Gentamicin | 0.53–3.36 | 10 | Excreted primarily unchanged by the kidneys (in humans) | [32] |
Amikacin | 0.483–2.63 | 3 | Excreted primarily unchanged by the kidneys (in humans) | [32] |
Ceftiofur | 2.5–50 | 8 | Rapidly metabolized to desfuroylceftiofur metabolites (in birds) | [77] |
Doxycycline | 21.04–85.98 | 3 | Excreted mostly unchanged in the bile and urine (in humans) | [32] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soh, H.Y.; Tan, P.X.Y.; Ng, T.T.M.; Chng, H.T.; Xie, S. A Critical Review of the Pharmacokinetics, Pharmacodynamics, and Safety Data of Antibiotics in Avian Species. Antibiotics 2022, 11, 741. https://doi.org/10.3390/antibiotics11060741
Soh HY, Tan PXY, Ng TTM, Chng HT, Xie S. A Critical Review of the Pharmacokinetics, Pharmacodynamics, and Safety Data of Antibiotics in Avian Species. Antibiotics. 2022; 11(6):741. https://doi.org/10.3390/antibiotics11060741
Chicago/Turabian StyleSoh, Hui Yun, Prisca Xin Yi Tan, Tao Tao Magdeline Ng, Hui Ting Chng, and Shangzhe Xie. 2022. "A Critical Review of the Pharmacokinetics, Pharmacodynamics, and Safety Data of Antibiotics in Avian Species" Antibiotics 11, no. 6: 741. https://doi.org/10.3390/antibiotics11060741