Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii Isolated from Intensive Care Unit Patients in Jordanian Hospitals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of A. baumannii Specimens
2.2. Identification of Acinetobacter baumannii Isolates
2.3. Antibiotic Susceptibility Testing
2.4. Identification of ESBL-Positive A. baumannii Isolates
2.5. Detection of blaOXA-51, blaOXA-23, blaOXA-24, blaOXA-58 Genes and the ISAba1 Insertion Sequence
2.6. Plasmid Profiling of MDR-A. baumannii Isolates
2.7. Statistical Analysis
3. Results
3.1. Characteristics of A. baumannii Specimens
3.2. Antibiotic Susceptibility Testing
3.3. Detection of ESBL-Positive A. baumannii Isolates
3.4. Detection of blaOXA-51, blaOXA-23, blaOXA-24, blaOXA-58 Genes and the ISAba1 Insertion Sequence
3.5. Plasmid DNA Profiling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Almasaudi, S.B. Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi J. Biol. Sci. 2018, 25, 586–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fournier, P.E.; Richet, H.; Weinstein, R.A. The Epidemiology and Control of Acinetobacter baumannii in Health Care Facilities. Clin. Infect. Dis. 2006, 42, 692–699. [Google Scholar] [CrossRef] [Green Version]
- Montefour, K.; Frieden, J.; Hurst, S.; Helmich, C.; Headley, D.; Martin, M.; Boyle, D.A. Acinetobacter baumannii: An emerging multidrug-resistant pathogen in critical care. Crit. Care Nurse 2008, 28, 15–25, quiz 26. [Google Scholar] [CrossRef] [PubMed]
- Manchanda, V.; Sanchaita, S.; Singh, N. Multidrug resistant acinetobacter. J. Glob. Infect. Dis. 2010, 2, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Alsulaiman, D.; Al-Hamed, N.; Alziadi, A.; Almalaihi, A.; Alessa, M.; Khalil, R.; Joseph, R.; Alshayban, D. Evaluation of acinetobacter baumannii pneumonia among critically ill patients in a tertiary care hospital in Saudi Arabia. Heliyon 2020, 6, e03976. [Google Scholar] [CrossRef]
- Tsakris, A.; Ikonomidis, A.; Poulou, A.; Spanakis, N.; Vrizas, D.; Diomidous, M.; Pournaras, S.; Markou, F. Clusters of imipenem-resistant Acinetobacter baumannii clones producing different carbapenemases in an intensive care unit. Clin. Microbiol. Infect. 2008, 14, 588–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meletis, G.; Chatzidimitriou, D.; Malisiovas, N. Double- and multi-carbapenemase-producers: The excessively armored bacilli of the current decade. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1487–1493. [Google Scholar] [CrossRef]
- Rossolini, G.; Mantengoli, E.; Docquier, J.-D.; Musmanno, R.; Coratza, G. Epidemiology of infections caused by multiresistant Gram-negatives: ESBLs, MBLs, panresistant strains. New Microbiol. 2007, 30, 332–339. [Google Scholar]
- Cicek, A.C.; Saral, A.; Iraz, M.; Ceylan, A.; Duzgun, A.O.; Peleg, A.Y.; Sandalli, C. OXA- and GES-type β-lactamases predominate in extensively drug-resistant Acinetobacter baumannii isolates from a Turkish University Hospital. Clin. Microbiol. Infect. 2014, 20, 410–415. [Google Scholar] [CrossRef] [Green Version]
- Nowak, P.; Paluchowska, P.; Budak, A. Distribution of blaOXA genes among carbapenem-resistant Acinetobacter baumannii nosocomial strains in Poland. New Microbiol. 2012, 35, 317–325. [Google Scholar]
- Woodford, N.; Ellington, M.J.; Coelho, J.M.; Turton, J.F.; Ward, M.E.; Brown, S.; Amyes, S.G.; Livermore, D.M. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents 2006, 27, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Naas, T.; Nordmann, P. Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrob. Agents Chemother. 2010, 54, 24–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turton, J.F.; Ward, M.E.; Woodford, N.; Kaufmann, M.E.; Pike, R.; Livermore, D.M.; Pitt, T.L. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol. Lett. 2006, 258, 72–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, A.; O’Donoghue, M.; Feeney, A.; Sleator, R.D. Acinetobacter baumannii: An emerging opportunistic pathogen. Virulence 2012, 3, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tafreshi, N.; Babaeekhou, L.; Ghane, M. Antibiotic resistance pattern of Acinetobacter baumannii from burns patients: Increase in prevalence of bla (OXA-24-like) and bla (OXA-58-like) genes. Iran. J. Microbiol. 2019, 11, 502–509. [Google Scholar] [CrossRef]
- Wayne, P.A. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Test. Inf. Supply. 2011, 31, 100–121. [Google Scholar]
- Segal, H.; Garny, S.; Elisha, B.G. Is ISABA-1 customized for Acinetobacter? FEMS. Microbiol. Lett. 2005, 243, 425–429. [Google Scholar] [CrossRef] [Green Version]
- Alshari, O.; Al Zu’bi, Y.O.; Al Sharie, A.H.; Wafai, F.H.; Aleshawi, A.J.; Atawneh, F.H.; Obeidat, H.A.; Daoud, M.N.; Khrais, M.Z.; Albals, D.; et al. Evaluating the Prognostic Role of Monocytopenia in Chemotherapy-Induced Febrile Neutropenia Patients Treated with Granulocyte Colony-Stimulating Factor. Clin. Risk Manag. 2021, 17, 963–973. [Google Scholar] [CrossRef]
- Altal, O.F.; Al Sharie, A.H.; Al Zu’bi, Y.O.; Rawabdeh, S.A.; Khasawneh, W.; Dawaymeh, T.; Tashtoush, H.; Obeidat, R.; Halalsheh, O.M. A Comparative Study of the Respiratory Neonatal Outcomes Utilizing Dexamethasone Sodium Phosphate versus a Mixture of Betamethasone Dipropionate and Betamethasone Sodium Phosphate as an Antenatal Corticosteroid Therapy. Int. J. Gen. Med. 2021, 14, 9471–9481. [Google Scholar] [CrossRef]
- Butler, D.A.; Biagi, M.; Tan, X.; Qasmieh, S.; Bulman, Z.P.; Wenzler, E. Multidrug Resistant Acinetobacter baumannii: Resistance by Any Other Name Would Still be Hard to Treat. Curr. Infect. Dis. Rep. 2019, 21, 46. [Google Scholar] [CrossRef] [PubMed]
- Al Bshabshe, A.; Joseph, M.R.P.; Al Hussein, A.; Haimour, W.; Hamid, M.E. Multidrug resistance Acinetobacter species at the intensive care unit, Aseer Central Hospital, Saudi Arabia: A one year analysis. Asian Pac. J. Trop. Med. 2016, 9, 903–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouad, M.; Attia, A.S.; Tawakkol, W.M.; Hashem, A.M. Emergence of carbapenem-resistant Acinetobacter baumannii harboring the OXA-23 carbapenemase in intensive care units of Egyptian hospitals. Int. J. Infect. Dis. 2013, 17, e1252–e1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owlia, P.; Azimi, L.; Gholami, A.; Asghari, B.; Lari, A.R. ESBL- and MBL-mediated resistance in Acinetobacter baumannii: A global threat to burn patients. Infez Med 2012, 20, 182–187. [Google Scholar]
- Safari, M.; Mozaffari Nejad, A.S.; Bahador, A.; Jafari, R.; Alikhani, M.Y. Prevalence of ESBL and MBL encoding genes in Acinetobacter baumannii strains isolated from patients of intensive care units (ICU). Saudi J. Biol. Sci. 2015, 22, 424–429. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.C.; Chiu, S.K.; Hsueh, P.R.; Wang, N.C.; Wang, C.C.; Fang, C.T. Risk factors for healthcare-associated extensively drug-resistant Acinetobacter baumannii infections: A case-control study. PLoS ONE 2014, 9, e85973. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, S. Prevalence of Extended Spectrum Betalactamase (ESBL) and Metallobetalactamase (MBL) Producing Pseudomonas aeruginosa and Acinetobacter baumannii Isolated from Various Clinical Samples. J. Pathog. 2018, 2018, 6845985. [Google Scholar] [CrossRef] [Green Version]
- Ghaima, K.K. Distribution of extended spectrum beta-lactamase (ESBL) genes among Acinetobacter baumannii isolated from burn infections. MOJ Cell Sci. Rep. 2018, 5, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Abdar, M.H.; Taheri-Kalani, M.; Taheri, K.; Emadi, B.; Hasanzadeh, A.; Sedighi, A.; Pirouzi, S.; Sedighi, M. Prevalence of extended-spectrum beta-lactamase genes in Acinetobacter baumannii strains isolated from nosocomial infections in Tehran, Iran. GMS Hyg. Infect. Control 2019, 14, Doc02. [Google Scholar] [CrossRef]
- Singla, P.; Sikka, R.; Deeep, A.; Gagneja, D.; Chaudhary, U. Co-production of ESBL and AmpC beta-Lactamases in Clinical Isolates of A. baumannii and A. lwoffii in a Tertiary Care Hospital From Northern India. J. Clin. Diagn. Res. 2014, 8, DC16–DC19. [Google Scholar] [CrossRef]
- Alyamani, E.J.; Khiyami, M.A.; Booq, R.Y.; Alnafjan, B.M.; Altammami, M.A.; Bahwerth, F.S. Molecular characterization of extended-spectrum beta-lactamases (ESBLs) produced by clinical isolates of Acinetobacter baumannii in Saudi Arabia. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, J.R. Genetics and evolution of antibiotic resistance. Br. Med. Bull. 1984, 40, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Saranathan, R.; Sudhakar, P.; Karthika, R.U.; Singh, S.K.; Shashikala, P.; Kanungo, R.; Prashanth, K. Multiple drug resistant carbapenemases producing Acinetobacter baumannii isolates harbours multiple R-plasmids. Indian J. Med. Res. 2014, 140, 262–270. [Google Scholar] [PubMed]
- Nourkhoda, S.; Reza, R.; Javad, Z.; Mohammad Yousef, A.; Sobhan, G.; Mohammad, R.; Ahmed Sahib, A.; Ali, D.; Reza, M.; Fatimah Abu, B. Antimicrobial susceptibility, plasmid profiles, and RAPD-PCR typing of Acinetobacter bacteria. Asian Biomed. 2010, 4, 901–911. [Google Scholar]
- Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef] [PubMed]
Gene/Insertion Element | Primer | Sequence (5′–3′) | Amplicon Size (bp) | Reference |
---|---|---|---|---|
blaOXA-51a | F | TAA TGC TTT GAT CGG CCT TG | 353 | [11] |
R | TGG ATT GCA CTT CAT CTT GG | |||
blaOXA-23b | F | GAT CGG ATT GGA GAA CCAGA | 501 | [11] |
R | ATT TCT GAC CGC ATT TCC AT | |||
blaOXA-24b | F | GGT TAG TTG GCC CCC TTA AA | 246 | [11] |
R | AGT TGA GCG AAA AGG GGA TT | |||
blaOXA-58b | F | AAG TAT TGG GGC TTG TGC TG | 599 | [11] |
R | CCC CTC TGC GCT CTA CAT AC | |||
ISAba1 b | F | CAC GAA TGC AGA AGT TG | 549 | [18] |
R | CGA CGA ATA CTA TGA CAC |
Antibiotics | ESBL (+) | blaOXA-51 * | blaOXA-23 | blaOXA-24 | blaOXA-58 * | ISAab1 * | ||||
---|---|---|---|---|---|---|---|---|---|---|
Negative | Positive | Present | Absent | Present | Absent | Present | Absent | Present | ||
Amikacin | R | 84 | 16 | 16 | 1 | 15 | 15 | 1 | 16 | 16 |
S | 12 | 8 | 8 | 2 | 6 | 8 | 0 | 8 | 8 | |
p-value | 0.014 | - | 0.19 | 0.47 | - | - | ||||
Aztreonam | I | 3 | 4 | 4 | 1 | 3 | 4 | 0 | 4 | 4 |
R | 93 | 20 | 20 | 2 | 18 | 19 | 1 | 20 | 20 | |
p-value | 0.011 | N | 0.408 | 0.648 | - | - | ||||
Cefepime | I | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
R | 95 | 24 | 24 | 3 | 21 | 23 | 1 | 24 | 24 | |
p-value | 0.616 | - | - | - | - | - | ||||
Cefoperazone | I | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
R | 95 | 23 | 23 | 2 | 21 | 22 | 1 | 23 | 23 | |
p-value | 0.285 | - | 0.007 | 0.831 | - | - | ||||
Ceftazidime | I | 2 | 2 | 2 | 1 | 1 | 2 | 0 | 2 | 2 |
R | 94 | 19 | 19 | 1 | 18 | 18 | 1 | 19 | 19 | |
S | 0 | 3 | 3 | 1 | 2 | 3 | 0 | 3 | 3 | |
p-value | 0.001 | - | 0.097 | 0.872 | - | - | ||||
Ceftriaxone | I | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
R | 95 | 23 | 23 | 2 | 21 | 22 | 1 | 23 | 23 | |
p-value | 0.285 | - | 0.007 | 0.831 | - | - | ||||
Ciprofloxacin | R | 94 | 21 | 21 | 1 | 20 | 20 | 1 | 21 | 21 |
S | 2 | 3 | 3 | 2 | 1 | 3 | 0 | 3 | 3 | |
p-value | 0.022 | - | 0.002 | 0.699 | - | - | ||||
Gentamycin | I | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
R | 86 | 18 | 18 | 1 | 17 | 17 | 1 | 18 | 18 | |
S | 10 | 5 | 5 | 2 | 3 | 5 | 0 | 5 | 5 | |
p-value | 0.046 | - | 0.111 | 0.84 | - | - | ||||
Imipenem | I | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
R | 90 | 21 | 21 | 1 | 20 | 20 | 1 | 21 | 21 | |
S | 4 | 3 | 3 | 2 | 1 | 3 | 0 | 3 | 3 | |
p-value | 0.238 | - | 0.002 | 0.699 | - | - |
Plasmid Profiles | % of ESBL Isolates | Plasmid Profiling |
---|---|---|
Profile A | 29 | 1 band ≥ 23,130 bp, (1 band ≥9416 bp–<23,130) |
Profile B | 29 | 1 band (≥9416 bp–23,13 bp) |
Profile C | 4 | 1 band ≥ 23,130 bp, (1 band ≥9416 bp–<23,130 bp), (2 bands ≥2322 bp–<4361 bp), (2 bands ≥564–<2027 bp) |
Profile D | 8 | 1 band ≥ 23,130 bp, (1 band ≥9416 bp–<23,130 bp), (1 band ≥4361 bp–<6557 bp), (1 band ≥2322 bp–<4361 bp) |
Profile E | 4 | 1 band ≥ 23,130 bp, (1 band ≥6557 bp–<9416 bp), (3 bands ≥2322–<4361 bp) |
Profile F | 4 | 2 band ≥ 23,130 bp, (3 bands ≥2322 bp–<4361 bp), (1 band ≥2027 bp–<2322 bp), (4 bands ≥564–<2027 bp) |
Profile G | 4 | 1 band ≥ 23,130 bp, (1 band ≥9416 bp–<23,130 bp), (1 band ≥4361 bp–<6557 bp) |
Profile H | 8 | 1 band ≥ 23,130 bp, (2 bands ≥9416 bp–<23,130 bp), (1 band ≥6557 bp–<9416 bp), (3 bands ≥2322 bp–<4361 bp) |
Profile I | 4 | 1 band ≥ 23,130 bp, (1 band ≥9416 bp–<23,130 bp), (3 bands ≥2322 bp–<4361 bp), (4 bands ≥564–<2027 bp) |
Profile J | 4 | 1 band ≥ 23,130 bp, (1 band ≥9416 bp–<23,130 bp), (1 band ≥6557 bp–<9416 bp), (2 bands ≥2322 bp–<4361 bp), (1 band ≥2027 bp–<2022 bp) |
Plasmid Profiles | % of ESBL Isolates | Plasmid Profiling |
---|---|---|
Profile A | 40 | 1 band ≥9416 bp–<23,130 bp |
Profile B | 5 | 1 band ≥ 23,130 bp, (1 band ≥9416 bp–<23,130 bp) |
Profile C | 10 | 1 band ≥ 23,130 bp, (1 band ≥9416 bp–<23,130 bp), (1 band ≥4361 bp–<6557 bp), (1 band ≥567 bp–<2027 bp) |
Profile D | 5 | 1 band ≥ 23,130 bp, (1 band ≥9416 bp–<23,130 bp), (1 band ≥567 bp–<2027 bp) |
Profile E | 5 | 1 band ≥9416 bp–<23,130 bp), (1 band ≥567 bp–<2027 bp) |
Profile F | 5 | 1 band ≥ 23,130 bp, (1 band ≥9416 bp–<23,130 bp), (1 band ≥4361 bp–<6557 bp) |
Profile G | 5 | 1 band ≥ 23,130 bp, (1 band ≥9416 bp–<23,130 bp), (1 band ≥4361 bp–<6557 bp), (1 band ≥2322 bp–<4361 bp), (2 bands ≥2027–<2322 bp), (2 bands ≥567 bp–<2027 bp) |
Profile H | 5 | 1 band ≥2027–<2322 bp |
Profile I | 5 | 2 bands ≥ 23,130 bp, (1 band ≥9416 bp–<23,130 bp), (1 band ≥4361 bp–<6557 bp), (1 band ≥2322 bp–<4361 bp) |
Profile J | 5 | (1 band ≥9416 bp–<23,130 bp), (1 band ≥567 bp–<2027 bp) |
Antibiotics | Number of Plasmids | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
Amikacin | R | 14 | 8 | 3 | 3 | 2 | 0 | 2 | 0 | 0 | 0 |
S | 2 | 2 | 0 | 1 | 0 | 2 | 0 | 1 | 1 | 1 | |
p-value | 0.022 | ||||||||||
Aztreonam | I | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
R | 14 | 10 | 3 | 4 | 2 | 1 | 1 | 1 | 1 | 1 | |
p-value | 0.344 | ||||||||||
Cefepime | R | 16 | 10 | 3 | 4 | 2 | 2 | 2 | 1 | 1 | 1 |
p-value | - | ||||||||||
Cefoperazone | I | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
R | 16 | 10 | 3 | 4 | 2 | 1 | 2 | 1 | 1 | 1 | |
p-value | 0.015 | ||||||||||
Ceftazidime | I | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
R | 15 | 9 | 3 | 4 | 2 | 1 | 2 | 0 | 0 | 0 | |
S | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | |
p-value | <0.001 | ||||||||||
Ceftriaxone | I | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
R | 16 | 10 | 3 | 4 | 2 | 1 | 2 | 1 | 1 | 1 | |
p-value | 0.015 | ||||||||||
Ciprofloxacin | R | 15 | 9 | 3 | 4 | 2 | 1 | 2 | 1 | 1 | 1 |
S | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
p-value | 0.662 | ||||||||||
Gentamicin | I | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
R | 15 | 8 | 3 | 3 | 2 | 0 | 1 | 1 | 1 | 1 | |
S | 1 | 2 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | |
p-value | 0.056 | ||||||||||
Imipenem | I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
R | 15 | 9 | 3 | 4 | 2 | 1 | 2 | 0 | 1 | 1 | |
S | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
p-value | <0.001 | ||||||||||
Levofloxacin | I | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
R | 10 | 8 | 3 | 4 | 2 | 1 | 2 | 1 | 1 | 1 | |
S | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
p-value | 0.763 | ||||||||||
Meropenem | R | 15 | 9 | 3 | 4 | 2 | 1 | 2 | 1 | 1 | 1 |
S | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
p-value | 0.662 | ||||||||||
Piperacillin/Tazobactam | I | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
R | 15 | 9 | 3 | 4 | 2 | 1 | 2 | 1 | 1 | 1 | |
S | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
p-value | 0.761 | ||||||||||
Piperacillin | I | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
R | 15 | 10 | 3 | 4 | 2 | 1 | 2 | 1 | 1 | 1 | |
S | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
p-value | 0.227 | ||||||||||
Tetracycline | I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
R | 15 | 10 | 2 | 4 | 2 | 2 | 2 | 0 | 0 | 1 | |
S | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
p-value | <0.001 | ||||||||||
Tobramycin | R | 14 | 8 | 3 | 3 | 2 | 0 | 1 | 1 | 1 | 1 |
S | 2 | 2 | 0 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | |
p-value | 0.204 | ||||||||||
Trimethoprim/Sulfamethoxazole | R | 16 | 9 | 3 | 4 | 2 | 1 | 2 | 0 | 0 | 0 |
S | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | |
p-value | 0.001 | ||||||||||
Colistin | S | 16 | 10 | 3 | 4 | 2 | 2 | 2 | 1 | 1 | 1 |
p-value | - | ||||||||||
ESBL | (−) | 9 | 3 | 2 | 2 | 1 | 0 | 0 | 1 | 0 | 0 |
(+) | 7 | 7 | 1 | 2 | 1 | 2 | 2 | 0 | 1 | 1 | |
p-value | 0.485 | ||||||||||
blaOXA-51 | (+) | 7 | 7 | 1 | 2 | 1 | 2 | 2 | 0 | 1 | 1 |
p-value | - | ||||||||||
blaOXA-23 | (−) | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
(+) | 6 | 6 | 1 | 2 | 1 | 1 | 2 | 0 | 1 | 1 | |
p-value | 0.879 | ||||||||||
blaOXA-24 | (−) | 6 | 7 | 1 | 2 | 1 | 2 | 2 | 0 | 1 | 1 |
(+) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
p-value | 0.962 | ||||||||||
blaOXA-24 | (−) | 7 | 7 | 1 | 2 | 1 | 2 | 2 | 0 | 1 | 1 |
p-value | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Sheboul, S.A.; Al-Moghrabi, S.Z.; Shboul, Y.; Atawneh, F.; Sharie, A.H.; Nimri, L.F. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii Isolated from Intensive Care Unit Patients in Jordanian Hospitals. Antibiotics 2022, 11, 835. https://doi.org/10.3390/antibiotics11070835
Al-Sheboul SA, Al-Moghrabi SZ, Shboul Y, Atawneh F, Sharie AH, Nimri LF. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii Isolated from Intensive Care Unit Patients in Jordanian Hospitals. Antibiotics. 2022; 11(7):835. https://doi.org/10.3390/antibiotics11070835
Chicago/Turabian StyleAl-Sheboul, Suhaila A., Salam Z. Al-Moghrabi, Yasemin Shboul, Farah Atawneh, Ahmed H. Sharie, and Laila F. Nimri. 2022. "Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii Isolated from Intensive Care Unit Patients in Jordanian Hospitals" Antibiotics 11, no. 7: 835. https://doi.org/10.3390/antibiotics11070835
APA StyleAl-Sheboul, S. A., Al-Moghrabi, S. Z., Shboul, Y., Atawneh, F., Sharie, A. H., & Nimri, L. F. (2022). Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii Isolated from Intensive Care Unit Patients in Jordanian Hospitals. Antibiotics, 11(7), 835. https://doi.org/10.3390/antibiotics11070835