A Global Bibliometric Analysis on Antibiotic-Resistant Active Pulmonary Tuberculosis over the Last 25 Years (1996–2020)
Abstract
:1. Introduction
2. Results
2.1. Search Results
2.2. Major Characteristics of the Included Studies
2.3. Trend of Publication and Citation
2.4. Most Productive Institutions and Their Collaboration Network
2.5. Most Influential Funding Agencies
2.6. Most Contributing Authors and Their Collaboration Networks
2.7. Most Productive Journals
2.8. World Research Production and Collaborations
2.9. Treemap and Thematic Map
3. Discussion
Strengths and Limitations
4. Methods
4.1. Eligibility Criteria and Data Source
4.2. Search Strategy
4.3. Bibliometric Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2020. Available online: https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf (accessed on 14 September 2021).
- MacNeil, A.; Glaziou, P.; Sismanidis, C.; Date, A.; Maloney, S.; Floyd, K. Global epidemiology of tuberculosis and progress toward meeting global targets—Worldwide, 2018. Morb. Mortal. Wkly. Rep. 2020, 69, 281–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeremiah, C.; Petersen, E.; Nantanda, R.; Mungai, B.N.; Migliori, G.B.; Amanullah, F.; Lungu, P.; Ntoumi, F.; Kumarasamy, N.; Maeurer, M. The WHO Global Tuberculosis 2021 Report–not so good news and turning the tide back to End TB. Int. J. Infect. Dis. 2022. [Google Scholar] [CrossRef] [PubMed]
- Hajissa, K.; Marzan, M.; Idriss, M.I.; Islam, M.A. Prevalence of Drug-Resistant Tuberculosis in Sudan: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10, 932. [Google Scholar] [CrossRef]
- Kundu, S.; Marzan, M.; Gan, S.H.; Islam, M.A. Prevalence of antibiotic-resistant pulmonary tuberculosis in bangladesh: A systematic review and meta-analysis. Antibiotics 2020, 9, 710. [Google Scholar] [CrossRef] [PubMed]
- Goyal, V.; Kadam, V.; Narang, P.; Singh, V. Prevalence of drug-resistant pulmonary tuberculosis in India: Systematic review and meta-analysis. BMC Public Health 2017, 17, 817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igwaran, A.; Edoamodu, C.E. Bibliometric Analysis on Tuberculosis and Tuberculosis-Related Research Trends in Africa: A Decade-Long Study. Antibiotics 2021, 10, 423. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.F.; Walker, C.K. A descriptive and historical review of bibliometrics with applications to medical sciences. Pharmacotherapy 2015, 35, 551–559. [Google Scholar] [CrossRef]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef] [Green Version]
- Nafade, V.; Nash, M.; Huddart, S.; Pande, T.; Gebreselassie, N.; Lienhardt, C.; Pai, M. A bibliometric analysis of tuberculosis research, 2007–2016. PLoS ONE 2018, 13, e0199706. [Google Scholar] [CrossRef] [Green Version]
- Boehme, C.C.; Nabeta, P.; Hillemann, D.; Nicol, M.P.; Shenai, S.; Krapp, F.; Allen, J.; Tahirli, R.; Blakemore, R.; Rustomjee, R. Rapid molecular detection of tuberculosis and rifampin resistance. N. Engl. J. Med. 2010, 363, 1005–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandhi, N.R.; Moll, A.; Sturm, A.W.; Pawinski, R.; Govender, T.; Lalloo, U.; Zeller, K.; Andrews, J.; Friedland, G. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet 2006, 368, 1575–1580. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Musser, J.M. Molecular genetic basis of antimicrobial agent resistance inMycobacterium tuberculosis: 1998 update. Tuber. Lung Dis. 1998, 79, 3–29. [Google Scholar] [CrossRef] [Green Version]
- Palomino, J.-C.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; Portaels, F. Resazurin microtiter assay plate: Simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2002, 46, 2720–2722. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, N.R.; Nunn, P.; Dheda, K.; Schaaf, H.S.; Zignol, M.; Van Soolingen, D.; Jensen, P.; Bayona, J. Multidrug-resistant and extensively drug-resistant tuberculosis: A threat to global control of tuberculosis. Lancet 2010, 375, 1830–1843. [Google Scholar] [CrossRef]
- Boehme, C.C.; Nicol, M.P.; Nabeta, P.; Michael, J.S.; Gotuzzo, E.; Tahirli, R.; Gler, M.T.; Blakemore, R.; Worodria, W.; Gray, C. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: A multicentre implementation study. Lancet 2011, 377, 1495–1505. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.; Bai, G.; Barrera, L.; Boulahbal, F.; Martin-Casabona, N.; Gilpin, C.; Drobniewski, F.; Havelková, M.; Lepe, R.; Lumb, R. Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs--worldwide, 2000–2004. Morb. Mortal. Wkly. Rep. 2006, 55, 301–306. [Google Scholar]
- Diacon, A.H.; Pym, A.; Grobusch, M.; Patientia, R.; Rustomjee, R.; Page-Shipp, L.; Pistorius, C.; Krause, R.; Bogoshi, M.; Churchyard, G. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N. Engl. J. Med. 2009, 360, 2397–2405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helb, D.; Jones, M.; Story, E.; Boehme, C.; Wallace, E.; Ho, K.; Kop, J.; Owens, M.R.; Rodgers, R.; Banada, P. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J. Clin. Microbiol. 2010, 48, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.; Glynn, R.; O’Briain, D.; Felle, P.; McCabe, J. The 100 classic papers of orthopaedic surgery: A bibliometric analysis. J. Bone Jt. Surgery. Br. Vol. 2010, 92, 1338–1343. [Google Scholar] [CrossRef]
- Sugimoto, C.R.; Ahn, Y.-Y.; Smith, E.; Macaluso, B.; Larivière, V. Factors affecting sex-related reporting in medical research: A cross-disciplinary bibliometric analysis. Lancet 2019, 393, 550–559. [Google Scholar] [CrossRef] [Green Version]
- Lou, J.; Tian, S.-J.; Niu, S.-M.; Kang, X.-Q.; Lian, H.-X.; Zhang, L.-X.; Zhang, J.-J. Coronavirus disease 2019: A bibliometric analysis and review. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 3411–3421. [Google Scholar]
- Allen, L.; Jones, C.; Dolby, K.; Lynn, D.; Walport, M. Looking for landmarks: The role of expert review and bibliometric analysis in evaluating scientific publication outputs. PLoS ONE 2009, 4, e5910. [Google Scholar] [CrossRef] [Green Version]
- Koo, M. Systemic lupus erythematosus research: A bibliometric analysis over a 50-Year Period. Int. J. Environ. Res. Public. Health 2021, 18, 7095. [Google Scholar] [CrossRef]
- Kawuki, J.; Yu, X.; Musa, T.H. Bibliometric analysis of Ebola research indexed in web of science and scopus (2010–2020). Biomed. Res. Int. 2020, 2020, 5476567. [Google Scholar] [CrossRef]
- Treatment Action Group. Tuberculosis Research Funding Trends 2005–2018. New York, USA. 2020. Available online: https://www.treatmentactiongroup.org/wp-content/uploads/2019/12/tbrd_2019_web.pdf (accessed on 13 September 2021).
- Ramos, J.; Padilla, S.; Masia, M.; Gutierrez, F. A bibliometric analysis of tuberculosis research indexed in PubMed, 1997–2006. Int. J. Tuberc. Lung Dis. 2008, 12, 1461–1468. [Google Scholar]
- Charan, J.; Tank, N.; Reljic, T.; Singh, S.; Bhardwaj, P.; Kaur, R.; Goyal, J.P.; Kumar, A. Prevalence of multidrug resistance tuberculosis in adult patients in India: A systematic review and meta-analysis. J. Family Med. Prim. Care 2019, 8, 3191–3201. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, H.; Wu, B.; Zhang, M.; Zhu, Y.; Pang, Y.; Wang, X. Is rifampin resistance a reliable predictive marker of multidrug-resistant tuberculosis in China: A meta-analysis of findings. J. Infect. 2019, 79, 349–356. [Google Scholar] [CrossRef]
- Garfield, E. The history and meaning of the journal impact factor. JAMA 2006, 295, 90–93. [Google Scholar] [CrossRef]
- Abramo, G.; D’Angelo, C.; Di Costa, F. Citations versus journal impact factor as proxy of quality: Could the latter ever be preferable? Scientometrics 2010, 84, 821–833. [Google Scholar] [CrossRef]
- Dadu, A.; Hovhannesyan, A.; Ahmedov, S.; van der Werf, M.J.; Dara, M. Drug-resistant tuberculosis in eastern Europe and central Asia: A time-series analysis of routine surveillance data. Lancet Infect. Dis. 2020, 20, 250–258. [Google Scholar] [CrossRef]
- Musa, B.M.; Adamu, A.L.; Galadanci, N.A.; Zubayr, B.; Odoh, C.N.; Aliyu, M.H. Trends in prevalence of multi drug resistant tuberculosis in sub-Saharan Africa: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0185105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinueza, L.C.; Arias, P.J. Distribution of Mycobacterium tuberculosis lineages in South America. Anat. Digit. 2021, 4, 34–58. [Google Scholar] [CrossRef]
- Hanis, T.M.; Islam, M.A.; Musa, K.I. Top 100 Most-Cited Publications on Breast Cancer and Machine Learning Research: A Bibliometric Analysis. Curr. Med. Chem. 2022, 29, 1426–1435. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
Rank | Study ID [references] | Title of the Document | Document Type | Journal Name | Total Citations | DOI |
---|---|---|---|---|---|---|
1 | Boehme 2010 [11] | Rapid Molecular Detection of Tuberculosis and Rifampin Resistance | Research Article | The New England Journal of Medicine | 1609 | 10.1056/NEJMoa0907847 |
2 | Gandhi 2006 [12] | Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa | Research Article | The Lancet | 1307 | 10.1016/S0140-6736(06)69573-1 |
3 | Tacconelli 2018 [13] | Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis | Research Article | The Lancet Infectious Diseases | 1259 | 10.1016/S1473-3099(17)30753-3 |
4 | Ramaswamy 1998 [14] | Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update | Review article | Tubercle and Lung Disease | 886 | 10.1054/tuld.1998.0002 |
5 | Palomino 2002 [15] | Resazurin Microtiter Assay Plate: Simple and Inexpensive Method for Detection of Drug Resistance in Mycobacterium tuberculosis | Research Article | Antimicrobial Agents and Chemotherapy | 790 | 10.1128/AAC.46.8.2720-2722.2002 |
6 | Gandhi 2010 [16] | Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis | Review article | The Lancet | 751 | 10.1016/S0140-6736(10)60410-2 |
7 | Boehme 2011 [17] | Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study | Research Article | The Lancet | 743 | 10.1016/S0140-6736(11)60438-8 |
8 | Centers for Disease Control and Prevention (CDC) 2006 [18] | Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs—Worldwide, 2000–2004 | Review article | Morbidity and Mortality Weekly Report | 681 | Not available |
9 | Diacon 2009 [19] | The Diarylquinoline TMC207 for Multidrug-Resistant Tuberculosis | Research Article | The New England Journal of Medicine | 642 | 10.1056/NEJMoa0808427 |
10 | Helb 2010 [20] | Rapid Detection of Mycobacterium tuberculosis and Rifampin Resistance by Use of On-Demand, Near-Patient Technology | Research Article | Journal of Clinical Microbiology | 625 | 10.1128/JCM.01463-09 |
Rank | Journal Name | Country | Number of Papers Published on the Topic (%), n = 7024 | h-Index | Total Citations | JCR® 2020 Impact Factor | JCR® 2020 Category (Quartile) |
---|---|---|---|---|---|---|---|
1 | International Journal of Tuberculosis and Lung Disease | France | 616 (8.8%) | 59 | 16183 | 2.373 | Respiratory system (Q4); Infectious diseases (Q4) |
2 | PLoS One | USA | 358 (5.1%) | 46 | 8561 | 3.240 | Multidisciplinary sciences (Q2) |
3 | Journal of Clinical Microbiology | USA | 297 (4.2%) | 68 | 14,535 | 5.948 | Microbiology (Q1) |
4 | Antimicrobial Agents and Chemotherapy | USA | 288 (4.1%) | 69 | 15,916 | 5.191 | Pharmacology & Pharmacy (Q1); Microbiology (Q2) |
5 | BMC Infectious Diseases | England | 157 (2.2%) | 26 | 2672 | 3.090 | Infectious Diseases (Q3) |
6 | Clinical Infectious Diseases | USA | 146 (2.1%) | 49 | 6700 | 9.079 | Microbiology (Q1); Infectious Diseases (Q1); Immunology (Q1) |
7 | Tuberculosis | England | 144 (2.1%) | 28 | 2619 | 3.131 | Microbiology (Q3); Respiratory System (Q3); Immunology (Q3) |
8 | Journal of Antimicrobial Chemotherapy | England | 112 (1.6%) | 44 | 5198 | 5.790 | Microbiology (Q1); Pharmacology & Pharmacy (Q1); Infectious Diseases (Q1) |
9 | International Journal of Mycobacteriology | India | 107 (1.5%) | 13 | 612 | ESCI | Microbiology (Q4) *; Infectious Diseases (Q4) |
10 | Emerging Infectious Diseases | USA | 100 (1.4%) | 32 | 3804 | 6.883 | Infectious Diseases (Q1); Immunology (Q1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.A.; Kundu, S.; Hanis, T.M.; Hajissa, K.; Musa, K.I. A Global Bibliometric Analysis on Antibiotic-Resistant Active Pulmonary Tuberculosis over the Last 25 Years (1996–2020). Antibiotics 2022, 11, 1012. https://doi.org/10.3390/antibiotics11081012
Islam MA, Kundu S, Hanis TM, Hajissa K, Musa KI. A Global Bibliometric Analysis on Antibiotic-Resistant Active Pulmonary Tuberculosis over the Last 25 Years (1996–2020). Antibiotics. 2022; 11(8):1012. https://doi.org/10.3390/antibiotics11081012
Chicago/Turabian StyleIslam, Md Asiful, Shoumik Kundu, Tengku Muhammad Hanis, Khalid Hajissa, and Kamarul Imran Musa. 2022. "A Global Bibliometric Analysis on Antibiotic-Resistant Active Pulmonary Tuberculosis over the Last 25 Years (1996–2020)" Antibiotics 11, no. 8: 1012. https://doi.org/10.3390/antibiotics11081012
APA StyleIslam, M. A., Kundu, S., Hanis, T. M., Hajissa, K., & Musa, K. I. (2022). A Global Bibliometric Analysis on Antibiotic-Resistant Active Pulmonary Tuberculosis over the Last 25 Years (1996–2020). Antibiotics, 11(8), 1012. https://doi.org/10.3390/antibiotics11081012