Formulation, In Vitro Characterization and Antibacterial Activity of Chitosan-Decorated Cream Containing Bacitracin for Topical Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. ATR-FTIR Analysis
2.3. Preparation of Base Cream
2.4. In Vitro Characterization of Cream
2.4.1. Physical Appearance
2.4.2. Determination of pH
2.4.3. Homogeneity, Organoleptic and Smear Tests
2.4.4. Viscosity
2.4.5. Spreadability
2.4.6. Drug Content
2.4.7. Stability Studies
2.5. In Vitro Drug Release
2.6. Antibacterial Assay
2.6.1. Preparation of Nutrient Agar Media
2.6.2. Disc Plate Method
2.7. Statistical Analysis
3. Results and Discussion
3.1. ATR-FTIR Analysis
3.2. Physicochemical Characterization of Cream
3.2.1. Physical Appearance
3.2.2. Determination of pH
3.2.3. Homogeneity and Smear Test
3.2.4. Viscosity
3.2.5. Spreadability
3.2.6. Drug Content
3.2.7. Stability Studies
3.3. In Vitro Drug Release
3.4. Antibacterial Activity Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karamchandani, B.M.; Chakraborty, S.; Dalvi, S.G.; Satpute, S.K. Chitosan and its derivatives: Promising biomaterial in averting fungal diseases of sugarcane and other crops. J. Basic Microbiol. 2022, 62, 533–554. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, L.J.; Díaz, A.; Puiggalí, J. Hydrogels for biomedical applications: Cellulose, chitosan, and protein/peptide derivatives. Gels 2017, 3, 27. [Google Scholar] [CrossRef] [PubMed]
- Shameli, K.; Saiful, S.A.; Yusefi, M. Cross-linked Chitosan-Based Hydrogels Nanocomposites for Treatment of Disease. J. Res. Nanosci. Nanotechnol. 2022, 5, 65–97. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Fundamentals and applications of chitosan. In Sustainable Agriculture Reviews 35; Springer International Publishing: Cham, Switzerland, 2019; pp. 49–123. [Google Scholar]
- Mumtaz, S.; Ali, S.; Mumtaz, S.; Mughal, T.A.; Tahir, H.M.; Shakir, H.A. Chitosan conjugated silver nanoparticles: The versatile antibacterial agents. Polym. Bull. 2022, 2022, 1–18. [Google Scholar] [CrossRef]
- Rashki, S.; Asgarpour, K.; Tarrahimofrad, H.; Hashemipour, M.; Ebrahimi, M.S.; Fathizadeh, H.; Khorshidi, A.; Khan, H.; Marzhoseyni, Z.; Salavati-Niasari, M.; et al. Chitosan-based nanoparticles against bacterial infections. Carbohydr. Polym. 2021, 251, 117108. [Google Scholar] [CrossRef] [PubMed]
- Ravanfar, K.; Amniattalab, A.; Mohammadi, R. Curcumin-polyethylene glycol loaded on chitosan-gelatin nanoparticles enhances burn wound healing in rat. J. Burn. Care. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Vanić, Ž.; Jøraholmen, M.W.; Škalko-Basnet, N. Nanomedicines for the topical treatment of vulvovaginal infections: Addressing the challenges of antimicrobial resistance. Adv. Drug Deliv. Rev. 2021, 178, 113855. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, Y.; Lu, R. Mechanism and Application of Chitosan and Its Derivatives in Promoting Permeation in Transdermal Drug Delivery Systems: A Review. Pharmaceuticals 2022, 15, 459. [Google Scholar] [CrossRef]
- King, A.L.; Finnin, M.S.; Kramer, C.M. Significance of Open Wounds Potentially Caused by Non-Lethal Weapons; Institute for Defense Analyses: Alexandria, VA, USA, 2019. [Google Scholar]
- Meng, L.; Deresinski, S.; Holubar, M. Intraoperative bacitracin irrigations for the prevention of surgical site infections—Consider the alternatives. Infect. Control Hosp. Epidemiol. 2020, 41, 831–832. [Google Scholar] [CrossRef]
- Sinha, P.; Dey, S.; Sen, A.; Akhter, K.; Kumar, A.; Singh, S. Bacteriological Profile of Organisms Isolated from Patients with Conjunctivitis in Katihar, Bihar. J. Evol. Med. Dent. Sci. 2021, 10, 1079–1083. [Google Scholar] [CrossRef]
- Lade, H.; Kim, J.-S. Bacterial Targets of Antibiotics in Methicillin-Resistant Staphylococcus aureus. Antibiotics 2021, 10, 398. [Google Scholar] [CrossRef] [PubMed]
- Negut, I.; Grumezescu, V.; Grumezescu, A.M. Treatment strategies for infected wounds. Molecules 2018, 23, 2392. [Google Scholar] [CrossRef]
- Ijaz, N.; Durrani, A.I.; Rubab, S.; Bahadur, S. Formulation and characterization of Aloe vera gel and tomato powder containing cream. Acta Ecol. Sin. 2022, 42, 34–42. [Google Scholar] [CrossRef]
- Limbraj, M.S.; Saher, Q.R.; Amol, J.; Prakash, P.M. FORMULATION AND EVALUATION OF HERBAL ANTISEPTIC BURN CREAM. IJRAR-Int. J. Res. Anal. Rev. 2020, 7, 195–202. [Google Scholar]
- Chaiwong, N.; Phimolsiripol, Y.; Leelapornpisid, P.; Ruksiriwanich, W.; Jantanasakulwong, K.; Rachtanapun, P.; Seesuriyachan, P.; Sommano, S.R.; Leksawasdi, N.; Simirgiotis, M.J.; et al. Synergistics of Carboxymethyl Chitosan and Mangosteen Extract as Enhancing Moisturizing, Antioxidant, Antibacterial, and Deodorizing Properties in Emulsion Cream. Polymers 2022, 14, 178. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Campos, F.; Clares Naveros, B.; Lopez Serrano, O.; Alonso Merino, C.; Calpena Campmany, A. Evaluation of novel nystatin nanoemulsion for skin candidosis infections. Mycoses 2013, 56, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Ali Ishaq, M. Formulation and In Vitro Evaluation of Cream Containing Vitis vinifera Fruit Extract. Ph.D. Thesis, The Islamia University of Bahawalpur, Bahawalpur, Pakistan, 2020. [Google Scholar]
- Katakam, L.N.R.; Katari, N.K. Development of in-vitro release testing method for permethrin cream formulation using Franz Vertical Diffusion Cell apparatus by HPLC. Talanta 2021, 4, 100056. [Google Scholar] [CrossRef]
- Bdewe Bdewe, S.A. Partial Purification and Characterization of Protease Enzymes from Bacillus cereus. Master Thesis, Erciyes Üniversitesi, Kayseri, Turkey, 2020. [Google Scholar]
- Joice, J.; Ramya, G.; Florence, J.F.; Kanmani, R.; Rakkini, A.M.; Rosaline, L.A.M.; Khalifa, A.S.; Elfasakhany, A.; Brindhadevi, K. Synthesis, characterization and photocatalytic activity of potassium Titanate nanocatalyst. Appl. Nanosci. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Rahmandari, F.; Swastawati, F.; Kurniasih, R. Quality Characteristics of Body Cream with the Addition of Gelatin from Tilapia (Oreochromis niloticus) Scales as an Emulsifier. IOP Conf. Ser. Earth Environ. Sci. 2021, 750, 012008. [Google Scholar] [CrossRef]
- Chhabra, R.P. Non-Newtonian fluids: An introduction. In Rheology of Complex Fluids; Springer International Publishing: Cham, Switzerland, 2010; pp. 3–34. [Google Scholar]
- Sadozai, S.K.; Zafar, A.; Sajjad, S. Topically Applied Products. In Essentials of Industrial Pharmacy; Springer International Publishing: Cham, Switzerland, 2022; pp. 151–175. [Google Scholar]
- Yadav, A.; Mishra, D.K.; Paliwal, P.; Farooqui, N.; Gawshinde, A. Formulation and Evaluation of Polyherbal Antiaging Cream. Asian J. Pharm. Technol. 2021, 11, 284–288. [Google Scholar] [CrossRef]
- Rudyak, V.Y.; Minakov, A.; Pryazhnikov, M. Preparation, characterization, and viscosity studding the single-walled carbon nanotube nanofluids. J. Mol. Liq. 2021, 329, 115517. [Google Scholar] [CrossRef]
- Rai, P.; Poudyl, A.P.; Das, S. Pharmaceutical Creams and their use in wound healing: A Review. J. Drug Deliv. Ther. 2019, 9, 907–912. [Google Scholar]
- Soriano-Ruiz, J.L.; Calpena-Capmany, A.C.; Cañadas-Enrich, C.; Bozal-de Febrer, N.; Suñer-Carbó, J.; Souto, E.B.; Clares-Naveros, B. Biopharmaceutical profile of a clotrimazole nanoemulsion: Evaluation on skin and mucosae as anticandidal agent. Int. J. Pharm. 2019, 554, 105–115. [Google Scholar]
- Estanqueiro, M.; Amaral, M.; Sousa Lobo, J. Comparison between sensory and instrumental characterization of topical formulations: Impact of thickening agents. Int. J. Cosmet. Sci. 2016, 378, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Dantas, M.G.B.; Reis, S.A.G.B.; Damasceno, C.M.D.; Rolim, L.A.; Rolim-Neto, P.J.; Carvalho, F.O.; Quintans Junior, L.J.; da Silva Almeida, J.R.G. Development and evaluation of stability of a gel formulation containing the monoterpene borneol. Sci. World J. 2016, 2016, 7394685. [Google Scholar] [CrossRef]
- Netto MPharm, G.; Jose, J. Development, characterization, and evaluation of sunscreen cream containing solid lipid nanoparticles of silymarin. J. Cosmet. Dermatol. 2018, 17, 1073–1083. [Google Scholar] [CrossRef]
- Rodrigues Ueoka, A.; Pedriali Moraes, C.A. Development and stability evaluation of liquid crystal-based formulations containing glycolic plant extracts and nano-actives. Cosmetics 2018, 5, 25. [Google Scholar] [CrossRef]
- Pakzad, Y.; Fathi, M.; Omidi, Y.; Mozafari, M.; Zamanian, A. Synthesis and characterization of timolol maleate-loaded quaternized chitosan-based thermosensitive hydrogel: A transparent topical ocular delivery system for the treatment of glaucoma. Int. J. Biol. Macromol. 2020, 159, 117–128. [Google Scholar] [CrossRef]
- Murthy, S.N.; Shivakumar, H.N.; Suresh, S. Challenges in Design of Drug Delivery Systems. Fund. Drug Deliv. 2021, 15–38. [Google Scholar]
- Daood, N.M.; Jassim, Z.E.; Gareeb, M.M.; Zeki, H. Studying the effect of different gelling agent on the preparation and characterization of metronidazole as topical emulgel. Asian J. Pharm. Clin. Res. 2019, 12, 571–577. [Google Scholar]
- Jhaveri, J.; Raichura, Z.; Khan, T.; Momin, M.; Omri, A. Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics. Molecules 2021, 26, 272. [Google Scholar] [CrossRef] [PubMed]
- Matuschek, E.; Brown, D.F.; Kahlmeter, G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin. Microbiol. Infect. 2014, 20, O255–O266. [Google Scholar] [CrossRef] [PubMed]
- Matica, M.A.; Aachmann, F.L.; Tøndervik, A.; Sletta, H.; Ostafe, V. Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. Int. J. Mol. Sci. 2019, 20, 5889. [Google Scholar] [CrossRef] [PubMed]
- Mauro, M.; Pinto, P.; Settanni, L.; Puccio, V.; Vazzana, M.; Hornsby, B.L.; Fabbrizio, A.; Di Stefano, V.; Barone, G.; Arizza, V. Chitosan Film Functionalized with Grape Seed Oil—Preliminary Evaluation of Antimicrobial Activity. Sustainability 2022, 14, 5410. [Google Scholar] [CrossRef]
- Confederat, L.G.; Tuchilus, C.G.; Dragan, M.; Sha’at, M.; Dragostin, O.M. Preparation and antimicrobial activity of chitosan and its derivatives: A concise review. Molecules 2021, 26, 3694. [Google Scholar] [CrossRef] [PubMed]
- Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 2015, 16, 1133–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
S. No. | Ingredients | C1 | C2 |
---|---|---|---|
1 | Bacitracin | 1 g | 1 g |
2 | Chitosan | - | 1 g |
3 | Beeswax | 18 g | 18 g |
4 | Liquid paraffin | 20 g | 20 g |
5 | Cetyl alcohol | 4 g | 4 g |
6 | Distilled water | 20 g | 19 g |
7 | White soft paraffin | 37 g | 37 g |
Time Period | 8 ± 2 °C | 25 ± 2 °C | 40 ± 2 °C | |||
---|---|---|---|---|---|---|
C1 | C2 | C1 | C2 | C1 | C2 | |
Fresh | 5.3 | 5.6 | 5.3 | 5.6 | 5.3 | 5.6 |
12 h | 5.35 | 5.5 | 5.31 | 5.52 | 5.59 | 5.68 |
24 h | 5.31 | 5.52 | 5.29 | 5.57 | 5.5 | 5.61 |
36 h | 5.27 | 5.6 | 5.23 | 5.48 | 5.49 | 5.58 |
48 h | 5.24 | 5.5 | 5.2 | 5.52 | 5.43 | 5.51 |
72 h | 5.18 | 5.48 | 5.19 | 5.4 | 5.31 | 5.43 |
1 week | 5.14 | 5.41 | 5.5 | 5.34 | 5.24 | 5.3 |
2 weeks | 5.09 | 5.3 | 5.09 | 5.2 | 5.12 | 5.35 |
3 weeks | 4.98 | 5.2 | 4.64 | 4.9 | 5.01 | 5.1 |
4 weeks | 4.72 | 5.21 | 4.53 | 4.7 | 4.91 | 4.9 |
Parameters | C1 | C2 |
---|---|---|
Color | Light yellow | Off white |
Phase Separation | Nil | Nil |
Homogeneity | V. Good | Excellent |
Consistency | V. Good | V. Good |
Smear Test | Greasy | Greasy |
Spreadability (g × cm/s) | 44.31 ± 1.24 | 41.34 ± 1.45 |
Drug Content (%) | 95.16 | 96.12 |
Parameters | Codes | Fresh | 24 h | 36 h | 48 h | 72 h | 7 d | 21 d | 28 d | 60 d |
---|---|---|---|---|---|---|---|---|---|---|
Color | C1 | OW | OW | OW | OW | OW | OW | OW | OW | OW |
C2 | OW | OW | OW | OW | OW | OW | OW | OW | OW | |
Odor | C1 | -ve | -ve | -ve | -ve | -ve | -ve | -ve | -ve | -ve |
C2 | -ve | -ve | -ve | -ve | -ve | -ve | -ve | -ve | -ve | |
Phase Separation | C1 | -ve | -ve | -ve | -ve | -ve | -ve | -ve | -ve | -ve |
C2 | -ve | -ve | -ve | -ve | -ve | -ve | -ve | -ve | -ve |
Zone of Inhibition (mm) | ||||
---|---|---|---|---|
Strains | E. coli | S. aureus | P. aeruginosa | B. cereus |
C1 | 2 ± 0.2 | 28 ± 0.92 | 15 ± 0.5 | 11 ± 1.25 |
C2 | 10 ± 0.6 | 34 ± 1.5 | 31 ± 0.76 | 21 ± 2.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khattak, R.Z.; Nawaz, A.; Alnuwaiser, M.A.; Latif, M.S.; Rashid, S.A.; Khan, A.A.; Alamoudi, S.A. Formulation, In Vitro Characterization and Antibacterial Activity of Chitosan-Decorated Cream Containing Bacitracin for Topical Delivery. Antibiotics 2022, 11, 1151. https://doi.org/10.3390/antibiotics11091151
Khattak RZ, Nawaz A, Alnuwaiser MA, Latif MS, Rashid SA, Khan AA, Alamoudi SA. Formulation, In Vitro Characterization and Antibacterial Activity of Chitosan-Decorated Cream Containing Bacitracin for Topical Delivery. Antibiotics. 2022; 11(9):1151. https://doi.org/10.3390/antibiotics11091151
Chicago/Turabian StyleKhattak, Rumana Zaib, Asif Nawaz, Maha Abdallah Alnuwaiser, Muhammad Shahid Latif, Sheikh Abdur Rashid, Asghar Ali Khan, and Soha A. Alamoudi. 2022. "Formulation, In Vitro Characterization and Antibacterial Activity of Chitosan-Decorated Cream Containing Bacitracin for Topical Delivery" Antibiotics 11, no. 9: 1151. https://doi.org/10.3390/antibiotics11091151
APA StyleKhattak, R. Z., Nawaz, A., Alnuwaiser, M. A., Latif, M. S., Rashid, S. A., Khan, A. A., & Alamoudi, S. A. (2022). Formulation, In Vitro Characterization and Antibacterial Activity of Chitosan-Decorated Cream Containing Bacitracin for Topical Delivery. Antibiotics, 11(9), 1151. https://doi.org/10.3390/antibiotics11091151