European Wild Carnivores and Antibiotic Resistant Bacteria: A Review
Abstract
:1. Introduction
2. European Wild Carnivorous
3. Antibiotic Resistance in Wild Carnivores
3.1. Species and Spatial Distribution
3.2. Bacteria, Antibiotic Resistance Pattern, and Resistance Genes
4. Carnivores and Antibiotic Resistance
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mo, S.S.; Urdahl, A.M.; Madslien, K.; Sunde, M.; Nesse, L.L.; Slettemeås, J.S.; Norström, M. What Does the Fox Say? Monitoring Antimicrobial Resistance in the Environment Using Wild Red Foxes as an Indicator. PLoS ONE 2018, 13, e0198019. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.; Poeta, P.; Sáenz, Y.; Vinué, L.; Coelho, A.C.; Matos, M.; Rojo-Bezares, B.; Rodrigues, J.; Torres, C. Mechanisms of Antibiotic Resistance in Escherichia coli Isolates Recovered from Wild Animals. Microb. Drug Resist. 2008, 14, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.; Gonçalves, A.; Silva, N.; Serra, R.; Alcaide, E.; Zorrilla, I.; Torres, C.; Caniça, M.; Igrejas, G.; Poeta, P. Acquired Antibiotic Resistance among Wild Animals: The Case of Iberian Lynx (Lynx pardinus). Vet. Q. 2014, 34, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Pérez, A.; Corbera, J.A.; González-Martín, M.; Tejedor-Junco, M.T. Multidrug-Resistant Phenotypes of Escherichia coli Isolates in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis). Animals 2021, 11, 1692. [Google Scholar] [CrossRef]
- Baros Jorquera, C.; Moreno-Switt, A.I.; Sallaberry-Pincheira, N.; Munita, J.M.; Flores Navarro, C.; Tardone, R.; González-Rocha, G.; Singer, R.S.; Bueno, I. Antimicrobial Resistance in Wildlife and in the Built Environment in a Wildlife Rehabilitation Center. One Health 2021, 13, 100298. [Google Scholar] [CrossRef] [PubMed]
- CDC. One Health. Available online: https://www.who.int/news-room/questions-and-answers/item/one-health (accessed on 11 April 2023).
- Smoglica, C.; Di Francesco, C.E.; Angelucci, S.; Antonucci, A.; Innocenti, M.; Marsilio, F. Occurrence of the Tetracycline Resistance Gene tetA(P) in Apennine Wolves (Canis lupus italicus) from Different Human–Wildlife Interfaces. J. Glob. Antimicrob. Resist. 2020, 23, 184–185. [Google Scholar] [CrossRef]
- Ramey, A.M.; Ahlstrom, C.A. Antibiotic resistant bacteria in wildlife: Perspectives on trends, acquisition and dissemination, data gaps, and future directions. J. Wildl. Dis. 2019, 56, 1–15. [Google Scholar] [CrossRef]
- Sens-Junior, H.; Trindade, W.A.; Oliveira, A.F.; Zaniolo, M.M.; Serenini, G.F.; Araujo-Ceranto, J.B.; Gonçalves, D.D.; Germano, R.M. Bacterial Resistance in Bats from the Phyllostomidae Family and Its Relationship with Unique Health. Pesq. Vet. Bras. 2018, 38, 1207–1216. [Google Scholar] [CrossRef]
- Sherley, M.; Gordon, D.M.; Collignon, P.J. Variations in Antibiotic Resistance Profile in Enterobacteriaceae Isolated from Wild Australian Mammals. Env. Microbiol 2000, 2, 620–631. [Google Scholar] [CrossRef] [PubMed]
- Gharout-Sait, A.; Touati, A.; Ahmim, M.; Brasme, L.; Guillard, T.; Agsous, A.; de Champs, C. Occurrence of Carbapenemase-Producing Klebsiella pneumoniae in Bat Guano. Microb. Drug Resist. 2019, 25, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
- Blanco, G.; Lemus, J.A.; Grande, J.; Gangoso, L.; Grande, J.M.; Donázar, J.A.; Arroyo, B.; Frías, O.; Hiraldo, F. Retracted Geographical Variation in Cloacal Microflora and Bacterial Antibiotic Resistance in a Threatened Avian Scavenger in Relation to Diet and Livestock Farming Practices. Environ. Microbiol. 2007, 9, 1738–1749. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Pedroso, N.; Sales-Luís, T.; Santos-Reis, M.; Tavares, L.; Vilela, C. Evidence of Antimicrobial Resistance in Eurasian Otter (Lutra lutra Linnaeus, 1758) Fecal Bacteria in Portugal. In Wildlife: Destruction, Conservation and Biodiversity; Nova Science Publishers: New York, NY, USA, 2009; pp. 201–221. ISBN 978-1-60692-974-2. [Google Scholar]
- Dwi Ash-Santri, A.; Cantya Prakasita, V.; Kristian Adi, Y.; Budipitojo, T.; Endang Tri Hastuti Wahyuni, A. Isolation, Identification, and Antimicrobial Susceptibility Test of Bacteria from Vulva Swab of African Pygmy Hedgehog (Atelerix albiventris) and Sunda Porcupine (Hystrix javanica). BIO Web Conf. 2021, 33, 06009. [Google Scholar] [CrossRef]
- Baker, P.J.; Harris, S. Urban Mammals: What Does the Future Hold? An Analysis of the Factors Affecting Patterns of Use of Residential Gardens in Great Britain. Mammal Rev. 2007, 37, 297–315. [Google Scholar] [CrossRef]
- Oliveira, M.; Pedroso, N.; Sales-Luís, T.; Santos-Reis, M.; Tavares, L.; Vilela, C. Antimicrobial-Resistant Salmonella Isolated from Eurasian Otters (Lutra Lutra Linnaeus, 1758) in Portugal. J. Wildl. Dis. 2010, 46, 1257–1261. [Google Scholar] [CrossRef]
- Bellani, G.G. Chapter 1—Order of Carnivores (Carnivora). In Felines of the World; Bellani, G.G., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 1–12. ISBN 978-0-12-816503-4. [Google Scholar]
- Clark, T.W.; Curlee, A.P.; Reading, R.P. Crafting Effective Solutions to the Large Carnivore Conservation Problem. Conserv. Biol. 1996, 10, 940–948. [Google Scholar] [CrossRef]
- Carnivore-Mammal Classification|Britannica. Available online: https://www.britannica.com/animal/carnivore-mammal (accessed on 31 October 2023).
- Farris, Z.J.; Golden, C.D.; Karpanty, S.; Murphy, A.; Stauffer, D.; Ratelolahy, F.; Andrianjakarivelo, V.; Holmes, C.M.; Kelly, M.J. Hunting, Exotic Carnivores, and Habitat Loss: Anthropogenic Effects on a Native Carnivore Community, Madagascar. PLoS ONE 2015, 10, e0136456. [Google Scholar] [CrossRef]
- Trouwborst, A. Managing the Carnivore Comeback: International and EU Species Protection Law and the Return of Lynx, Wolf and Bear to Western Europe. J. Environ. Law 2010, 22, 347–372. [Google Scholar] [CrossRef]
- Martes foina. Britannica. Available online: https://naturdata.com/especie/ (accessed on 1 November 2023).
- Mustela putorius. Britannica. Available online: https://naturdata.com/especie/ (accessed on 1 November 2023).
- Dewey, T.; Ballenger, L. Ursus arctos (Brown Bear). Available online: https://animaldiversity.org/accounts/Ursus_arctos/ (accessed on 1 November 2023).
- Jirik, K. Polar Bear (Ursus maritimus). Available online: https://ielc.libguides.com/sdzg/factsheets/polarbear/summary (accessed on 1 November 2023).
- Letková, V.; Lazar, P.; Čurlík, J.; Goldová, M.; Košuthová, L.; Mojžišová, J. The Red Fox (Vulpes vulpes L.) as a Source of Zoonoses. Vet. Arh. 2006, 76, 73–81. [Google Scholar]
- Rafferty, R. Badger. Available online: https://www.britannica.com/animal/badger (accessed on 29 November 2023).
- Fusillo, R.; Romanucci, M.; Marcelli, M.; Massimini, M.; Della Salda, L. Health and Mortality Monitoring in Threatened Mammals: A First Post Mortem Study of Otters (Lutra lutra L.) in Italy. Animals 2022, 12, 609. [Google Scholar] [CrossRef]
- Canis lupus subsp. italicus Altobello. 1921. Available online: https://www.gbif.org/species/165635864 (accessed on 2 November 2023).
- Canis lupus signatus. Britannica. Available online: https://naturdata.com/especie/ (accessed on 2 November 2023).
- Lynx pardinus. Britannica. Available online: https://naturdata.com/especie/ (accessed on 2 November 2023).
- Ivory, A. Canis aureus (Golden Jackal). Available online: https://animaldiversity.org/accounts/Canis_aureus/ (accessed on 2 November 2023).
- Foti, M.; Fisichella, V. Study of the Spread of the Antibiotic Resistance Phenomenon in a Wolf Population (Canis lupus, Linneaus 1758) in the Aspromonte National Park; Iris: San Francisco, CA, USA, 2017. [Google Scholar]
- Smoglica, C.; Angelucci, S.; Di Tana, F.; Antonucci, A.; Marsilio, F.; Di Francesco, C. Antibiotic Resistance in the Apennine Wolf (Canis lupus italicus): Implications for Wildlife and Human Health. Antibiotics 2023, 12, 950. [Google Scholar] [CrossRef] [PubMed]
- Simões, R.; Ferreira, C.; Gonçalves, J.; Álvares, F.; Rio-Maior, H.; Roque, S.; Brandão, R.; Martins da Costa, P. Occurrence of Virulence Genes in Multidrug-Resistant Escherichia coli Isolates from Iberian Wolves (Canis lupus signatus) in Portugal. Eur. J. Wildl. Res. 2012, 58, 677–684. [Google Scholar] [CrossRef]
- Gonçalves, A.; Igrejas, G.; Radhouani, H.; Santos, T.; Monteiro, R.; Pacheco, R.; Alcaide, E.; Zorrilla, I.; Serra, R.; Torres, C.; et al. Detection of Antibiotic Resistant Enterococci and Escherichia coli in Free Range Iberian Lynx (Lynx pardinus). Sci. Total Environ. 2013, 456–457, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.; Igrejas, G.; Radhouani, H.; López, M.; Guerra, A.; Petrucci-Fonseca, F.; Alcaide, E.; Zorrilla, I.; Serra, R.; Torres, C.; et al. Detection of Vancomycin-Resistant Enterococci from Faecal Samples of Iberian Wolf and Iberian Lynx, Including Enterococcus faecium Strains of CC17 and the New Singleton ST573. Sci. Total Environ. 2011, 410–411, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, A.; Salvatore, D.; Gobbi, M.; Morandi, B. Antimicrobial Resistance Genes in a Golden Jackal (Canis aureus L. 1758) from Central Italy. Vet. Res. Commun. 2023, 1–5. [Google Scholar] [CrossRef]
- Radhouani, H.; Igrejas, G.; Gonçalves, A.; Pacheco, R.; Monteiro, R.; Sargo, R.; Brito, F.; Torres, C.; Poeta, P. Antimicrobial Resistance and Virulence Genes in Escherichia coli and Enterococci from Red Foxes (Vulpes vulpes). Anaerobe 2013, 23, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Radhouani, H.; Igrejas, G.; Carvalho, C.; Pinto, L.; Gonçalves, A.; Lopez, M.; Sargo, R.; Cardoso, L.; Martinho, A.; Rego, V.; et al. Clonal Lineages, Antibiotic Resistance and Virulence Factors in Vancomycin-Resistant Enterococci Isolated from Fecal Samples of Red Foxes (Vulpes vulpes). J. Wildl. Dis. 2011, 47, 769–773. [Google Scholar] [CrossRef] [PubMed]
- O’Hagan, M.J.H.; Pascual-Linaza, A.V.; Couzens, C.; Holmes, C.; Bell, C.; Spence, N.; Huey, R.J.; Murphy, J.A.; Devaney, R.; Lahuerta-Marin, A. Estimation of the Prevalence of Antimicrobial Resistance in Badgers (Meles meles) and Foxes (Vulpes vulpes) in Northern Ireland. Front. Microbiol. 2021, 12, 596891. [Google Scholar] [CrossRef]
- Dias, D.; Hipólito, D.; Figueiredo, A.; Fonseca, C.; Caetano, T.; Mendo, S. Unravelling the Diversity and Abundance of the Red Fox (Vulpes vulpes) Faecal Resistome and the Phenotypic Antibiotic Susceptibility of Indicator Bacteria. Animals 2022, 12, 2572. [Google Scholar] [CrossRef] [PubMed]
- Bertelloni, F.; Cagnoli, G.; Biagini, F.; Poli, A.; Bibbiani, C.; Ebani, V.V. Virulence Genes of Pathogenic Escherichia coli in Wild Red Foxes (Vulpes vulpes). Animals 2022, 12, 1959. [Google Scholar] [CrossRef]
- Botti, V.; Navillod, F.V.; Domenis, L.; Orusa, R.; Pepe, E.; Robetto, S.; Guidetti, C. Salmonella spp. and Antibiotic-Resistant Strains in Wild Mammals and Birds in North-Western Italy from 2002 to 2010. Vet. Ital. 2013, 94, 195–202. [Google Scholar]
- Monecke, S.; Gavier-Widen, D.; Mattsson, R.; Rangstrup-Christensen, L.; Lazaris, A.; Coleman, D.C.; Shore, A.C.; Ehricht, R. Detection of mecC-Positive Staphylococcus aureus (CC130-MRSA-XI) in Diseased European Hedgehogs (Erinaceus europaeus) in Sweden. PLoS ONE 2013, 8, e66166. [Google Scholar] [CrossRef]
- Hamarova, L.; Kopcakova, A.; Kocianova-Adamcova, M.; Piknova, M.; Javorsky, P.; Pristas, P. Antimicrobial Resistance of Enterococci from Wild Animals in Slovakia. Pol. J. Environ. Stud. 2021, 30, 2085–2091. [Google Scholar] [CrossRef] [PubMed]
- Carson, M.; Meredith, A.L.; Shaw, D.J.; Giotis, E.S.; Lloyd, D.H.; Loeffler, A. Foxes As a Potential Wildlife Reservoir for mecA-Positive Staphylococci. Vector-Borne Zoonotic Dis. 2012, 12, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Gambino, D.; Vicari, D.; Vitale, M.; Schirò, G.; Mira, F.; Giglia, M.L.; Riccardi, A.; Gentile, A.; Giardina, S.; Carrozzo, A.; et al. Study on Bacteria Isolates and Antimicrobial Resistance in Wildlife in Sicily, Southern Italy. Microorganisms 2021, 9, 203. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, M. An Investigation Study on Antimicrobial Resistance in Arctic Environments. Bull. Pure Appl. Sci.-Bot. 2014, 33b, 37. [Google Scholar] [CrossRef]
- Glad, T.; Bernhardsen, P.; Nielsen, K.M.; Brusetti, L.; Andersen, M.; Aars, J.; Sundset, M.A. Bacterial Diversity in Faeces from Polar Bear (Ursus maritimus) in Arctic Svalbard. BMC Microbiol. 2010, 10, 10. [Google Scholar] [CrossRef]
- Vadnov, M.; Barbič, D.; Žgur-Bertok, D.; Erjavec, M.S. Escherichia coli Isolated from Feces of Brown Bears (Ursus arctos) Have a Lower Prevalence of Human Extraintestinal Pathogenic E. coli Virulence-Associated Genes. Can. J. Vet. Res. 2017, 81, 59–63. [Google Scholar]
- Gonçalves, A.; Igrejas, G.; Radhouani, H.; Santos, T.; Monteiro, R.; Marinho, C.; Perez, M.J.; Canales, R.; Mendonza, J.L.; Serra, R.; et al. Iberian Lynx (Lynx pardinus) from the Captive Breeding Program as Reservoir of Antimicrobial Resistant Enterococci and Escherichia coli Isolates. J. Integr. OMICS 2013, 3, 138–144. [Google Scholar] [CrossRef]
- Semedo-Lemsaddek, T.; Nóbrega, C.S.; Ribeiro, T.; Pedroso, N.M.; Sales-Luís, T.; Lemsaddek, A.; Tenreiro, R.; Tavares, L.; Vilela, C.L.; Oliveira, M. Virulence Traits and Antibiotic Resistance among Enterococci Isolated from Eurasian Otter (Lutra lutra). Vet. Microbiol. 2013, 163, 378–382. [Google Scholar] [CrossRef]
- Semedo-Lemsaddek, T.; Pedroso, N.M.; Freire, D.; Nunes, T.; Tavares, L.; Verdade, L.M.; Oliveira, M. Otter Fecal Enterococci as General Indicators of Antimicrobial Resistance Dissemination in Aquatic Environments. Ecol. Indic. 2018, 85, 1113–1120. [Google Scholar] [CrossRef]
- Oliveira, M.; Sales-Luís, T.; Semedo-Lemsaddek, T.; Ribeiro, T.; Pedroso, N.; Tavares, L.; Vilela, C. Chapter 6—Antimicrobial Resistant Aeromonas Isolated from Eurasian Otters (Lutra lutra Linnaeus, 1758) in Portugal. In Animal Diversity, Natural History and Conservation; Daya Publishing House: New Delhi, India, 2011; Volume 1, pp. 123–143. [Google Scholar]
- Mengistu, T.S.; Garcias, B.; Castellanos, G.; Seminati, C.; Molina-López, R.A.; Darwich, L. Occurrence of Multidrug Resistant Gram-Negative Bacteria and Resistance Genes in Semi-Aquatic Wildlife-Trachemys scripta, Neovison vison and Lutra lutra-as Sentinels of Environmental Health. Sci. Total Environ. 2022, 830, 154814. [Google Scholar] [CrossRef]
- Loncaric, I.; Kübber-Heiss, A.; Posautz, A.; Stalder, G.; Hoffmann, D.; Rosengarten, D.; Walzer, C. Characterization of Methicillin-Resistant Staphylococcus spp. Carrying the mecC Gene, Isolated from Wildlife. J. Antimicrob. Chemother. 2013, 68, 2222–2225. [Google Scholar] [CrossRef]
- Vingino, A.; Roberts, M.; Wainstein, M.; West, J.; Norman, S.; Lambourn, D.; Lahti, J.; Ruiz, R.; D’angeli, M.; Weissman, S.; et al. Antibiotics Surveillance for Antibiotic-Resistant E. coli in the Salish Sea Ecosystem. Antibiotics 2021, 10, 1201. [Google Scholar] [CrossRef] [PubMed]
- Alonso, C.A.; Alcalá, L.; Simón, C.; Torres, C. Novel Sequence Types of Extended-Spectrum and Acquired AmpC Beta-Lactamase Producing Escherichia coli and Escherichia Clade V Isolated from Wild Mammals. FEMS Microbiol. Ecol. 2017, 93, fix097. [Google Scholar] [CrossRef]
- Wilson, J.S.; Hazel, S.M.; Williams, N.J.; Phiri, A.; French, N.P.; Hart, C.A. Nontyphoidal salmonellae in United Kingdom badgers: Prevalence and spatial distribution. Appl. Environ. Microbiol. 2003, 69, 4312–4315. [Google Scholar] [CrossRef] [PubMed]
- Darwich, L.; Vidal, A.; Seminati, C.; Albamonte, A.; Casado, A.; López, F.; Molina-López, R.A.; Migura-Garcia, L. High Prevalence and Diversity of Extended-Spectrum β-Lactamase and Emergence of OXA-48 Producing Enterobacterales in Wildlife in Catalonia. PLoS ONE 2019, 14, e0210686. [Google Scholar] [CrossRef]
- Osińska, M.; Nowakiewicz, A.; Zięba, P.; Gnat, S.; Łagowski, D.; Trościańczyk, A. Wildlife Carnivorous Mammals As a Specific Mirror of Environmental Contamination with Multidrug-Resistant Escherichia coli Strains in Poland. Microb. Drug Resist. 2020, 26, 1120–1131. [Google Scholar] [CrossRef]
- García, L.A.; Torres, C.; López, A.R.; Rodríguez, C.O.; Espinosa, J.O.; Valencia, C.S. Staphylococcus spp. from Wild Mammals in Aragón (Spain): Antibiotic Resistance Status. J. Vet. Res. 2020, 64, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Steele, C.M.; Brown, R.N.; Botzler, R.G. Prevalences of Zoonotic Bacteria Among Seabirds in Rehabilitation Centers Along the Pacific Coast of California and Washington, USA. J. Wildl. Dis. 2005, 41, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Garcês, A. Why Do Antibiotics Fail? A Veterinary Perspective. J. Small Anim. Adv. 2022, 1, 10–15. [Google Scholar] [CrossRef]
- Jacobsen, L.; Wilcks, A.; Hammer, K.; Huys, G.; Gevers, D.; Andersen, S.R. Horizontal Transfer of tet(M) and erm(B) Resistance Plasmids from Food Strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the Gastrointestinal Tract of Gnotobiotic Rats. FEMS Microbiol. Ecol. 2007, 59, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, B.; Persson, L.; Ekström, K.; Unnerstad, H.; Uhlhorn, H.; Börjesson, S. High Occurrence of mecC-MRSA in Wild Hedgehogs (Erinaceus europaeus) in Sweden. Vet. Microbiol. 2017, 207, 103–107. [Google Scholar] [CrossRef]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Bonnedahl, J.; Järhult, J.D. Antibiotic Resistance in Wild Birds. Upsala J. Med. Sci. 2014, 119, 113–116. [Google Scholar] [CrossRef]
- Gorski, L.; Jay-Russell, M.T.; Liang, A.S.; Walker, S.; Bengson, Y.; Govoni, J.; Mandrell, R.E. Diversity of Pulsed-Field Gel Electrophoresis Pulsotypes, Serovars, and Antibiotic Resistance Among Salmonella Isolates from Wild Amphibians and Reptiles in the California Central Coast. Foodborne Pathog. Dis. 2013, 10, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [PubMed]
- Joosten, P.; Ceccarelli, D.; Odent, E.; Sarrazin, S.; Graveland, H.; Van Gompel, L.; Battisti, A.; Caprioli, A.; Franco, A.; Wagenaar, J.A.; et al. Antimicrobial Usage and Resistance in Companion Animals: A Cross-Sectional Study in Three European Countries. Antibiotics 2020, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Kruuk, H. Carnivores. In Encyclopedia of Biodiversity; Levin, S.A., Ed.; Elsevier: New York, NY, USA, 2001; pp. 629–640. ISBN 978-0-12-226865-6. [Google Scholar]
- Amusa, C.; Rothman, J.; Odongo, S.; Matovu, H.; Ssebugere, P.; Baranga, D.; Sillanpää, M. The endangered African Great Ape: Pesticide residues in soil and plants consumed by Mountain Gorillas (Gorilla beringei) in Bwindi Impenetrable National Park, East Africa. Sci. Total Environ. 2021, 758, 143692. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.J.; Ashley, W.; Gil-Fernandez, M.; Newsome, T.M.; Di Giallonardo, F.; Ortiz-Baez, A.S.; Mahar, J.E.; Towerton, A.L.; Gillings, M.; Holmes, E.C.; et al. Red Fox Viromes in Urban and Rural Landscapes. Virus Evol. 2020, 6, veaa065. [Google Scholar] [CrossRef]
- Vittecoq, M.; Laurens, C.; Brazier, L.; Durand, P.; Elguero, E.; Arnal, A.; Thomas, F.; Aberkane, S.; Renaud, N.; Prugnolle, F.; et al. VIM-1 Carbapenemase-Producing Escherichia coli in Gulls from Southern France. Ecol. Evol. 2017, 7, 1224–1232. [Google Scholar] [CrossRef]
- Blanco, G.; Junza, A.; Segarra, D.; Barbosa, J.; Barrón, D. Wildlife Contamination with Fluoroquinolones from Livestock: Widespread Occurrence of Enrofloxacin and Marbofloxacin in Vultures. Chemosphere 2016, 144, 1536–1543. [Google Scholar] [CrossRef]
- Smoglica, C.; Vergara, A.; Angelucci, S.; Festino, A.R.; Antonucci, A.; Marsilio, F.; Di Francesco, C.E. Antibiotic-Resistant Bacteria Dissemination in the Wildlife, Livestock, and Water of Maiella National Park, Italy. Animals 2023, 13, 432. [Google Scholar] [CrossRef]
- Ulstad, C.R.; Solheim, M.; Berg, S.; Lindbæk, M.; Dahle, U.R.; Wester, A.L. Carriage of ESBL/AmpC-Producing or Ciprofloxacin Non-Susceptible Escherichia coli and Klebsiella spp. in Healthy People in Norway. Antimicrob. Resist. Infect. Control 2016, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Grijjs, J. A Guide to SDG Interactions: From Science to Implementation; International Council for Science (ICSU): Paris, France, 2017. [Google Scholar]
- Gajdács, M.; Urbán, E.; Stájer, A.; Baráth, Z. Antimicrobial Resistance in the Context of the Sustainable Development Goals: A Brief Review. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 71–82. [Google Scholar] [CrossRef] [PubMed]
- WHO Study Group. Antimicrobial Resistance and the United Nations Sustainable Development Cooperation Framework: Guidance for United Nations Country Teams. Available online: https://www.who.int/publications-detail-redirect/9789240036024 (accessed on 28 November 2023).
Species | Family | Distribution | Diet | Habitat | Behavior | Conservation Status | Ref. |
---|---|---|---|---|---|---|---|
Beech marten (Martes foina, Erxleben, 1777) | Mustelidae | Europe, except most Mediterranean islands, the Balkan peninsula, the Scandinavian peninsula, and the United Kingdom | Plants, fruit, rats, mice, small mammals, birds | Urban areas, forest habitats, and rural areas | Crepuscular and nocturnal | LC | [22] |
European polecat (Mustela putorius, Linnaeus, 1758) | Mustelidae | Western European Russia, Western Belarus, Western Ukraine, Central and Western Europe, and North Africa | Lagomorphs, small rodents, amphibians, birds, reptiles, and insects | Riparian and agricultural areas to meadows and forest areas | Nocturnal | LC | [23] |
Brown bear (Ursus arctos, Linnaeus, 1758) | Ursidae | Europe, Asia, Atlas Mountains, North America | Omnivore | Mountain woodlands, forest | Crepuscular | LC | [24] |
Polar bear (Ursus maritimus, Phipps, 1774) | Ursidae | Greenland, Canada, Alaska, Russia, and the Svalbard Archipelago of Norway | Seals, walruses, sea birds, eggs, small mammals, fish, reindeer/caribou, seaweed/kelp, land plants | Ice fields | Diurnal | V | [25] |
Red fox (Vulpes vulpes, Linnaeus, 1758) | Canidae | Northern hemisphere | Plants, rodents, birds, leporids, porcupines, raccoons, opossums, reptiles, insects, invertebrates | Scrubland, forest, agricultural fields, urban areas | Nocturnal | LC | [26] |
European badger (Meles meles, Linnaeus, 1758) | Mustelidae | Europe (except Scandinavia), Russia, and parts of Asia | Omnivores: plants, earthworms, large insects, small mammals, fruits | Deciduous, mixed, and coniferous forests, agro-silver-pastoral landscapes, Mediterranean scrub forests, and open areas with patches of riparian vegetation | Crepuscular and nocturnal | LC | [27] |
European otter (Lutra lutra, Linnaeus, 1758) | Mustelidae | Eurasia, North Africa, the Middle East, Sri Lanka, a part of India, and Indonesia | Fish, amphibians, insects | Rivers, streams, marshes, lagoons, and reservoirs | Nocturnal | NT | [28] |
Apennine wolf (Canis lupus italicus, Altobello, 1921) | Canidae | Italy, France, Spain, Switzerland | Roe deer, wild boar, red deer, livestock sheep, horses, Mouflon, Italian hare, birds, invertebrates, fruit, berries, grasses, herbs, and garbage | Temperate coniferous forests | Crepuscular, diurnal | V | [29] |
Iberian wolves (Canis lupus signatus, Cabrera, 1907) | Canidae | Portugal, Spain | Wild boars, rabbits, roe deer, red deer, ibexes, small carnivores, and fish | Temperate forests | Crepuscular, diurnal | EN | [30] |
Iberian Lynx (Lynx pardinus, Temminck, 1827) | Felidae | Portugal, Spain | Rabbits, small rodents | Mediterranean forests of woodland and shrubland interspersed with natural and artificial pastures | Crepuscular and nocturnal | EN | [31] |
Golden jackal (Canis aureus, Linnaeus, 1758) | Canidae | Southeastern Europe, Moldova, Asia Minor, and the Caucasus | Omnivorous diet, plants, fruit, rodents, rabbits | Valleys, beside rivers canals, lakes, seashores | Crepuscular | LC | [32] |
Species | Country | Year | Type of Sample | Isolated Bacteria | Antibiotic Resistance * | Resistance Genes | Ref. |
---|---|---|---|---|---|---|---|
Apennine wolf (Canis lupus italicus) | Italy | 2015–2017 | Feces | Citrobacter spp., Escherichia coli, Hafnia alvei, Salmonella spp., Serratia spp. | AMC, AMP, STR | n/a | [33] |
Italy | 2017 | Feces | n/a | TE | tetA, tetP | [7] | |
Italy | 2022 | Endocardial swab, lung, thoracic effusion | Staphylococcus pseudointermedius, Enterococcus faecalis, E. coli | AMC, E, ENR, MAR, CXT, C, SXT, TE, P, DXT | n/a | [34] | |
Italy | 2022 | Peritoneal effusion, lung, endocardial swab, liver parenchyma, pleural effusion | Klebsiella oxytoca | AMP | n/a | [34] | |
Italy | 2022 | Forearm wound, exposed fracture | Streptococcus dysgalactiae spp. equisimilis, Leclercia adecarboxilara | AMP, C, CEF, CEP, CN, CPN, DX, ENR, INN, MAR, PRA, PX, SXT, TE | n/a | [34] | |
Italy | 2022 | Carpal wound, intraarticular swab | Streptococcus canis, E. coli, Pseudomonas aeruginosa | AMP, C, CPN, CEP, DXT, ENR, INN, MAR, NEO, PRA, SXT, TE, AMC, CEF, CN, CPN, IMI, F | n/a | [34] | |
Iberian wolves (Canis lupus signatus) | Portugal | 2008–2010 | Feces | E. coli | TE, AMP, STR, CEP, N, SXT, CIP | cdt, chuA, cvaC, eaeA, paa, bfpA, blaCTX-M-1, blaCTX-M-9 | [35] |
Portugal | 2008–2009 | Feces | Enterococcus faecium, E. hirae, E. faecalis, E. durans | AMP, TE, STR | tetM, tetL, ermB, blaTEM, tetA, tetB, aadA, strA-strB | [36] | |
Portugal | 2008–2010 | Feces | E. faecium, E. gallinarum | TET, VAN, AMP, E, KAN | vanC1, vanA, tetM, ermB; aph(3′)-IIIa, tet(L); Tn916, hyl | [37] | |
Golden jackal (Canis aureus) | Italy | 2023 | Lung, liver, spleen, kidney, and intestine | n/a | n/a | tetM, tetP, mcr-1, tetA, tetL, tetM, tetO, sul3, blaTEM−1 | [38] |
Red Fox (Vulpes vulpes) | Portugal | 2008–2009 | Feces | E. coli | STR, TE, SXT, AMP | adA, tetA, tetB, sul1, blaTEM | [39] |
Portugal | 2008–2009 | Feces | E. faecium | TE | tetM, tetL, ermB, aph(30)-IIIa | [39] | |
Portugal | 2008–2009 | Feces | E. faecium, E. durans | TE, E | ermB, tetM, tetL, Tn916 | [40] | |
Ireland | 2018–2019 | Fecal, nasopharyngeal swabs | E. coli | CZA, TE, SXT, CIP, AMP, FEP | n/a | [41] | |
Norway | 2006 | Fecal | E. coli | SXT, TE, CIP, N | n/a | [1] | |
Portugal | 2017–2019 | Fecal | E. coli, Enterococcus spp. | TE, C, CD, CN, AMC, AMP, BE, CEF, CEP, CZA, CPN, CRO | blaTEM, ermB, aadA, tetM, tetW, tetL, drfA1, drfA17 | [42] | |
Italy | 2016–2018 | Fecal | E. coli | n/a | eaeA, hlyA, stx1, and stx2, | [43] | |
Italy | 2002–2010 | Rectal swab | Salmonella enterica, S. typhimurium | AMC, TE, AMP, ENR | n/a | [44] | |
Germany, Austria, Sweden | 2013, 2006, 2005, 2014 | Nasal swab | S. aureus | n/a | gapA, katA, CoA, Spa, sbi, nuc1, sarA, saeS, vraS, agrl, hid | [45] | |
Slovakia | 2020 | Feces | Enterococcus spp. | TE, AMP, VAN, E | n/a | [46] | |
Spain | 2012–2015 | Nasal and rectal swabs | Staphylococcus spp. | CD, F, AMP, BE, FOX, FA, NEO | n/a | [47] | |
Italy | 2017–2019 | Oral, skin, rectal, tracheal swab, feces | K. oxytoca | AMP, CD | n/a | [48] | |
UK | 2007–2008 | Tissues | S. sciuri group, S. equorum, S. capitis | MET, CL, AMC, AMP, ENR, FD, DA, TET | mecA | [8] |
Species | Country | Year | Type of Sample | Isolated Bacteria | Antibiotic Resistance * | Resistance Genes | Ref. |
---|---|---|---|---|---|---|---|
Polar bear (Ursus maritimus) | Svalbard | 2014 | Fecal | Clostridiales | n/a | blaTEM | [49] |
Svalbard | 2004–2006 | Fecal | Clostridiales, Firmicutes, E. coli | n/a | blaTEM | [50] | |
Brown bears (Ursus arctos) | Slovenia | 2010–2012 | Fecal | E. coli | n/a | fimH, ompT, kpsMT, ibeA, traT | [51] |
Slovakia | 2020 | Feces | Enterococcus spp. | TE, AMP, VAN, E | [46] |
Species | Country | Year | Type of Sample | Isolated Bacteria | Antibiotic Resistance * | Resistance Genes | Ref. |
---|---|---|---|---|---|---|---|
Iberian Lynx (Lynx pardinus) | Portugal | 2008–2010 | Feces | E. casseliflavus | TE, Q–D, E, STR | vanC2, tetM, ermB, hyl, cylA, cylL, | [37] |
Portugal | 2008–2010 | Feces | Enterococcus spp., E. coli | TE, E, STR, N, SXT, | cpd, cylB, and cylL, blaTEM, tetA, aadA, cmlA, dfrA1 + aadA1, dfrA12 + aadA2, fimA | [36] | |
Portugal | 2008–2010 | Feces | Enterococcus spp. | TE, E, KAN, N | tetM, tetL, ermB, aac (6′)-Ie-aph(2″)-Ia, ant(6)-Ia, aph(3′)-IIIa | [52] | |
Portugal | 2008–2010 | Feces | E. coli | TE, STR, SXT, N, AMP, CIP | blaTEM, blaSHV, tetA, tetB, aadA, strA-strB, aac(3)-II, aac (3)-IV, aadA1, dfrA1 + aadA1, estX + psp + aadA2, aer, cnf1, fimA, papC, papG-allele III | [52] | |
Wild cat (Felis silvestris) | Germany | 2014 | Nasal swab | S. aureus | n/a | gapA, katA, CoA, Spa, sbi, nuc1, sarA, saeS, vraS, agrl, hid | [45] |
Lynx (Lynx lynx) | Sweden | 2006 | Liver tissue | S. aureus | n/a | gapA, katA, CoA, Spa, sbi, nuc1, sarA, saeS, vraS, agrl, hid, agrlV, mecC | [45] |
Species | Country | Year | Type of Sample | Isolated Bacteria | Antibiotic Resistance * | Resistance Genes | Ref. |
---|---|---|---|---|---|---|---|
Eurasian otter (Lutra lutra) | Portugal | 2006–2008 | Feces | E. faecalis, E. faecium, E. durans | n/a | ace, acm, ebpABC, gelE, cylA, tetM, pbp5, vanB, vanD, aac(60)-Ie-aph | [53] |
Portugal | 2015–2016 | Feces | Enterococcus spp. | AMC, AMP, C, CN, DA, ENR, P, TE, VAN | n/a | [54] | |
Portugal | 2006 | Feces | Aeromonas hydrophila, A. hydrophila/caviae, A. sobria | P, CLI, E, VAN, AMP | n/a | [55] | |
Portugal | 2006–2008 | Feces | S. arizona, S. pullorum, S. choleraesuis arizona | AMC, C, P, AMP, CL, ENR, GN, NA, S, TE | n/a | [16] | |
Portugal | 2009 | Feces | E. coli, Enterococcus spp. | CTX, ENR, S | n/a | [13] | |
Spain | 2018–2021 | Feces | E. coli, Pseudomonas fluorescens, Hafnia alvei, Serratia marcescens | CIP, ENR, CN, SXT, TE, C | ermB, blaCTX-M-15, tetM, blaCMY-2, tetM | [56] | |
Germany | 2000–2012 | Nasal and perineal swabs | S. aureus | AMC, AMP, P, | mecC | [57] | |
Portugal | 2018–2019 | Feces | E. coli, | AMP, SXT, TE, CTX, KAN, CN, PX, DXT, T | aac(3)-IV, aph(4)-Ia, aph(6)-Id, blaTEM-1B, lnu(F), tet(B), aac(3)-Iva, aadA1, aac(2′)-Iia, qnrB19, adA5, aph(3″)-Ib, catA1, qnrB19, qnrB82, sulII, dfrA17 | [58] | |
Slovakia | 2020 | Feces | Enterococcus spp. | TE, E, AMP, VAN | n/a | [46] | |
Spain | 2012–2015 | Nasal and rectal swabs | Staphylococcus spp. | N, P, FOX, FA | n/a | [49] | |
Spain | 2015–2015 | Fecal | E. coli | AMP, TET, SXT | dfrA1 aadA1 qacE 1, sul1, sul2, tetA | [59] | |
Badger (Meles meles) | Ireland | 2018–2019 | Fecal, nasopharyngeal swabs | Salmonella spp., E. coli | AMP, CZA, CEP, CTX | n/a | [60] |
Spain | 2016–2017 | Swabs | E. coli | CIP, N, C, S, T | blaSHV-12 | [61] | |
Poland | 2014–2018 | Rectal swabs | E. coli | AMP, S, KAN, C, CIP, S, N, TE | aph(3¢)-Ia, strA, aph(3¢)-Ia, sul2, tetA, tetB, floR, cat, sul3 | [62] | |
Germany | 2011 | Pharyngeal swab | S. aureus | n/a | gapA, katA, CoA, Spa, sbi, nuc1, sarA, saeS, vraS, agrl, hid | [45] | |
Spain | 2015–2015 | Fecal | E. coli | AMP, TE | tetB | [59] | |
Spain | 2012–2015 | Nasal and rectal swabs | Staphylococcus spp. | N, P, FOX, FA, CLI | n/a | [63] | |
Beech marten (Martes foina) | Poland | 2014–2018 | Rectal swabs | E. coli | AMP, STR, KAN, C, CN, CIP, S, N, TE, CTX | strA, sul1, sul2, tetA, tetB, aph(3¢)-Ia, floR, cat, blaTEM-135 | [62] |
Spain | 2012–2015 | Nasal and rectal swabs | Staphylococcus spp. | N, PEN, FOX, TE | n/a | [49] | |
Spain | 2015–2015 | Fecal | E. coli | AMP, NAL, CIP | blaTEM-1b | [59] | |
Spain | 2016–2017 | Swabs | Citrobacter freundii | CIP, NAL, GEN, TET, SUL, TMP | black my-2, blaSHV-12 | [61] | |
European pine marten (Martes martes) | Slovakia | 2020 | Feces | Enterococcus spp. | TE, E, AMP, VAN | n/a | [46] |
Italy | 2002–2010 | Rectal swab | Salmonella spp. | AM, AMC, TE | n/a | [44] | |
Italy | 2017–2019 | Oral, skin, rectal, tracheal swab, feces | E. coli | AMP, CD | n/a | [48] | |
European polecat (Mustela putorius) | Poland | 2014–2018 | Rectal swabs | E. coli | AMP, STR, S, TET | strA, sul2, tetA | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcês, A.; Pires, I. European Wild Carnivores and Antibiotic Resistant Bacteria: A Review. Antibiotics 2023, 12, 1725. https://doi.org/10.3390/antibiotics12121725
Garcês A, Pires I. European Wild Carnivores and Antibiotic Resistant Bacteria: A Review. Antibiotics. 2023; 12(12):1725. https://doi.org/10.3390/antibiotics12121725
Chicago/Turabian StyleGarcês, Andreia, and Isabel Pires. 2023. "European Wild Carnivores and Antibiotic Resistant Bacteria: A Review" Antibiotics 12, no. 12: 1725. https://doi.org/10.3390/antibiotics12121725
APA StyleGarcês, A., & Pires, I. (2023). European Wild Carnivores and Antibiotic Resistant Bacteria: A Review. Antibiotics, 12(12), 1725. https://doi.org/10.3390/antibiotics12121725