Influence of Multiplex PCR in the Management of Antibiotic Treatment in Patients with Bacteremia
Abstract
:1. Introduction
2. Results
2.1. Sample Characteristics
2.2. Analysis of Samples Tested Negative by the BCID Panel
2.3. Profile of the Pathogens Detected
2.4. Antimicrobial Susceptibility
2.5. Influence of the BCID Panel on Antimicrobial Treatment
2.6. The Influence of BCID on Reducing the Time to Obtaining the Blood Culture Results
3. Discussion
4. Materials and Methods
Laboratory Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 23, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Leligdowicz, A.; Dodek, P.M.; Norena, M.; Wong, H.; Kumar, A.; Kumar, A. Association between Source of Infection and Hospital Mortality in Patients Who Have Septic Shock. Am. J. Respir. Crit. Care Med. 2014, 189, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.S.; Mannino, D.M.; Eaton, S.; Moss, M. The Epidemiology of Sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003, 16, 1546–1554. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Ling, L.; Qin, H.; Arabi, Y.M.; Myatra, S.N.; Egi, M.; Kim, J.H.; Mat Nor, M.B.; Son, D.N.; Fang, W.F.; et al. Epidemiology, Management, and Outcomes of Sepsis in ICUs among Countries of Differing National Wealth across Asia. Am. J. Respir. Crit. Care Med. 2022, 9, 1107–1116. [Google Scholar] [CrossRef]
- Paolucci, M.; Landini, M.P.; Sambri, V. Conventional and molecular techniques for the early diagnosis of bacteraemia. Int. J. Antimicrob. Agents 2010, 36, S6–S16. [Google Scholar] [CrossRef] [Green Version]
- Melville, J.; Ranjan, S.; Morgan, P. ICU mortality rates in patients with sepsis before and after the Surviving Sepsis Campaign. Crit. Care 2015, 19 (Suppl. S1), 15. [Google Scholar] [CrossRef] [Green Version]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Wen, H.; Xie, S.; Liang, Y.; Liu, Y.; Wei, H.; Sun, Q.; Wang, W.; Wen, B.; Zhao, J. Direct Identification, Antimicrobial Susceptibility Testing, and Extended-Spectrum β-Lactamase and Carbapenemase Detection in Gram-Negative Bacteria Isolated from Blood Cultures. Infect. Drug Resist. 2022, 15, 1587–1599. [Google Scholar] [CrossRef]
- Altun, O.; Almuhayawi, M.; Ullberg, M.; Ozenci, V. Clinical Evaluation of the Filmarray Blood Culture Identification Panel in Identification of Bacteria and Yeasts from Positive Blood Culture Bottles. J. Clin. Microbiol. 2013, 51, 4130–4136. [Google Scholar] [CrossRef] [Green Version]
- Oviaño, M.; Rodríguez-Sánchez, B. MALDI-TOF Mass Spectrometry in the 21st Century Clinical Microbiology Laboratory. Enferm. Infecc. Microbiol. Clin. 2021, 39, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Seng, P.; Drancourt, M.; Gouriet, F.; la Scola, B.; Fournier, P.E.; Rolain, J.M.; Raoult, D. Ongoing Revolution in Bacteriology: Routine Identification of Bacteria by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Clin. Infect. Dis. 2009, 49, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Martiny, D.; Busson, L.; Wybo, I.; Ait El Haj, R.; Dediste, A.; Vandenberg, O. Comparison of the Microflex LT and Vitek MS Systems for Routine Identification of Bacteria by Matrix-Assisted Laser Desorption Ionization—Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2012, 50, 1313–1325. [Google Scholar] [CrossRef] [Green Version]
- Verroken, A.; Defourny, L.; le Polain De Waroux, O.; Belkhir, L.; Laterre, P.F.; Delmée, M.; Glupczynski, Y. Clinical Impact of MALDI-TOF MS Identification and Rapid Susceptibility Testing on Adequate Antimicrobial Treatment in Sepsis with Positive Blood Cultures. PLoS ONE 2016, 11, e0156299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verroken, A.; Despas, N.; Rodriguez-Villalobos, H.; Laterre, P.F. The Impact of a Rapid Molecular Identification Test on Positive Blood Cultures from Critically Ill with Bacteremia: A Pre-Post Intervention Study. PLoS ONE 2019, 14, e0223122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messacar, K.; Hurst, A.L.; Child, J.; Campbell, K.; Palmer, C.; Hamilton, S.; Dowell, E.; Robinson, C.C.; Parker, S.K.; Dominguez, S.R. Clinical Impact and Provider Acceptability of Real-Time Antimicrobial Stewardship Decision Support for Rapid Diagnostics in Children with Positive Blood Culture Results. J. Pediatr. Infect. Dis. Soc. 2017, 6, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Berinson, B.; Both, A.; Berneking, L.; Christner, M.; Lütgehetmann, M.; Aepfelbacher, M.; Rohde, H. Usefulness of Biofire Filmarray Bcid2 for Blood Culture Processing in Clinical Practice. J. Clin. Microbiol. 2021, 59, e0054321. [Google Scholar] [CrossRef]
- Peri, A.M.; Bauer, M.J.; Bergh, H.; Butkiewicz, D.; Paterson, D.L.; Harris, P.N. Performance of the BioFire Blood Culture Identification 2 Panel for the Diagnosis of Bloodstream Infections. Heliyon 2022, 8, e09983. [Google Scholar] [CrossRef]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; Macdougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef] [Green Version]
- Timbrook, T.T.; Morton, J.B.; Mcconeghy, K.W.; Caffrey, A.R.; Mylonakis, E.; LaPlante, K.L. The Effect of Molecular Rapid Diagnostic Testing on Clinical Outcomes in Bloodstream Infections: A Systematic Review and Meta-Analysis. Clin. Infect. Dis. 2017, 64, 15–23. [Google Scholar] [CrossRef] [Green Version]
- MacIntyre, C.R.; Chughtai, A.A.; Barnes, M.; Ridda, I.; Seale, H.; Toms, R.; Heywood, A. The Role of Pneumonia and Secondary Bacterial Infection in Fatal and Serious Outcomes of Pandemic Influenza a(H1N1)Pdm09 11 Medical and Health Sciences 1103 Clinical Sciences 11 Medical and Health Sciences 1117 Public Health and Health Services. BMC Infect. Dis. 2018, 18, 637. [Google Scholar] [CrossRef] [Green Version]
- Daniel, S.C.; Matthew, J.M. Bacterial Coinfection in Influenza A Grand Rounds Review. JAMA 2013, 3, 275–282. [Google Scholar] [CrossRef]
- Pasquini, Z.; Barocci, I.; Brescini, L.; Candelaresi, B.; Castelletti, S.; Iencinella, V.; Mazzanti, S.; Procaccini, G.; Orsetti, E.; Pallotta, F.; et al. Bloodstream Infections in the COVID-19 Era: Results from an Italian Multi-Centre Study. Int. J. Infect. Dis. 2021, 111, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Kollef, M.H.; Timsit, J.F. Bacterial and Fungal Superinfections in Critically Ill Patients with COVID-19. Intensive Care Med. 2020, 46, 2071–2074. [Google Scholar] [CrossRef]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-Infections in People with COVID-19: A Systematic Review and Meta-Analysis. J. Infect 2020, 81, 266–275. [Google Scholar] [CrossRef]
- Mormeneo Bayo, S.; Palacián Ruíz, M.P.; Moreno Hijazo, M.; Villuendas Usón, M.C. Bacteremia during COVID-19 Pandemic in a Tertiary Hospital in Spain. Enferm. Infecc. Microbiol. Clin. 2021, 9, 2016. [Google Scholar] [CrossRef]
- Graff, K.E.; Palmer, C.; Anarestani, T.; Velasquez, D.; Hamilton, S.; Pretty, K.; Parker, S.; Dominguez, S.R. Clinical Impact of the Expanded BioFire Blood Culture Identification 2 Panel in a U.S. Children’s Hospital. Microbiol. Spectr. 2021, 9, e0042921. [Google Scholar] [CrossRef]
- Sparks, R.; Balgahom, R.; Janto, C.; Polkinghorne, A.; Branley, J. Evaluation of the BioFire Blood Culture Identification 2 Panel and Impact on Patient Management and Antimicrobial Stewardship. Pathology 2021, 53, 889–895. [Google Scholar] [CrossRef]
- Rule, R.; Paruk, F.; Becker, P.; Neuhoff, M.; Chausse, J.; Said, M. Clinical Utility of the BioFire FilmArray Blood Culture Identification Panel in the Adjustment of Empiric Antimicrobial Therapy in the Critically Ill Septic Patient. PLoS ONE 2021, 16, e0254389. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2021, 28, 521–547. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Infectious Diseases Society of America 2023, Version 3.0. Available online: https://www.idsociety.org/practice-guideline/amr-guidance/ (accessed on 7 April 2023).
- The European Committee on Antimicrobial Susceptibility Testings. Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 10.0–12.0; EUCAST: Basel, Switzerland, 2020–2022; Available online: https://www.eucast.org/ast_of_bacteria/previous_versions_of_documents/ (accessed on 9 December 2022).
- The European Committee on Antimicrobial Susceptibility Testing. EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistance of Clinical and/or Epidemiological Importance; Version 2.0; EUCAST: Basel, Switzerland, 2017; Available online: https://www.eucast.org/resistance_mechanisms/ (accessed on 9 September 2022).
Category | BioFire Blood Culture Identification Panel | BioFire Blood Culture Identification Panel 2 |
---|---|---|
Target | Target | |
Gram-positive bacteria | Staphylococcus spp. Staphylococcus aureus Streptococcus spp. Streptococcus agalactiae Streptococcus pyogenes Streptococcus pneumoniae Enterococcus spp. Listeria monocytogenes | Staphylococcus spp. Staphylococcus aureus Staphylococcus epidermidis Staphylococcus lugdunensis Streptococcus spp. Streptococcus agalactiae Streptococcus pyogenes Streptococcus pneumoniae Enterococcus spp. Enterococcus faecalis Enterococcus faecium Listeria monocytogenes |
Gram-negative bacteria | Enterobacterales Escherichia coli Enterobacter cloacae complex Klebsiella oxytoca Klebsiella pneumoniae Serratia marcescens Proteus spp. Haemophilus influenzae Acinetobacter baumannii Pseudomonas aeruginosa Neisseria meningitidis | Enterobacterales Escherichia coli Enterobacter cloacae complex Klebsiella oxytoca Klebsiella pneumoniae group Klebsiella aerogenes Serratia marcescens Proteus spp. Salmonella spp. Haemophilus influenzae Acinetobacter baumannii Pseudomonas aeruginosa Neisseria meningitidis Stenotrophomonas maltophilia Bacteroides fragilis |
Yeast | Candida albicans Candida glabrata Candida parapsilosis Candida tropicalis Candida krusei | Candida albicans Candida glabrata Candida parapsilosis Candida tropicalis Candida krusei Candida auris Cryptococcus (C.neoformans/C.gattii) |
Resistance genes | mecA vanA/vanB KPC | mecA/C mecA/C and MREJ (MRSA) vanA/vanB KPC IMP NDM OXA-48-like VIM mcr-1 CTX-M |
Antimicrobial | Staphylococcus aureus N | Enterococcus faecalis N | Enterococcus faecium N | |||
---|---|---|---|---|---|---|
Susceptible | Resistant | Susceptible | Resistant | Susceptible | Resistant | |
Oxacillin | 6 | 3 | - | - | - | - |
Ampicillin | - | - | 11 | 0 | 0 | 1 |
Gentamicin * | 9 | 0 | 10 | 1 | 0 | 1 |
Erythromycin | 4 | 5 | - | - | - | - |
Clindamycin | 5 | 4 | - | - | - | - |
Linezolid | 9 | 0 | 11 | 0 | 1 | 0 |
Vancomycin | 9 | 0 | 11 | 0 | 1 | 0 |
Trimethoprim-sulfamethoxazole | 9 | 0 | - | - | - | - |
Antimicrobial | E. coli N | K. pneumoniae N | A. baumannii N | P. aeruginosa N | ||||
---|---|---|---|---|---|---|---|---|
Susceptible | Resistant | Susceptible | Resistant | Susceptible | Resistant | Susceptible | Resistant | |
Ampicillin | 3 | 14 | - | - | - | - | - | - |
Piperacillin-tazobactam | 16 | 1 | 3 | 16 | - | - | 1 I | 2 |
Ceftazidime | 14 | 3 | 3 | 16 | - | - | 2 I | 2 |
Meropenem | 17 | 0 | 7 (5 S + 2 I) | 12 | 0 | 14 | 2 | 2 |
Amikacin | 17 | 0 | 4 | 15 | 3 | 11 | 3 | 1 |
Ciprofloxacin | 12 | 5 | 4 | 15 | 0 | 14 | 2 I | 2 |
Colistin | 17 | 0 | 12 | 7 | 14 | 0 | 4 | 0 |
Trimethoprim-sulfamethoxazole | 7 | 10 | 7 | 12 | 1 I | 13 | - | - |
Category | Number (%) |
---|---|
Therapy adjusted after BCID panel results | 28 (27.5) |
Therapy changed without any relation to BCID panel results | 23 (22.5) |
Therapy changed after susceptibility testing results | 18 (17.6) |
No antimicrobial therapy adjustment | 20 (19.6) |
Contamination | 7 (6.9) |
No data available | 6 (5.9) |
Total | 102 (100) |
Category | Number | Time to BCID Results (h) | Time to Classic Methods Results (h) | Time Saved (h) |
---|---|---|---|---|
Therapy adjusted after BCID results | 28/116 (24.1%) | 20.77 ± 10.7 (SD = 10.7) | 67.38 (SD = 22.5) | 1305.1 |
Therapy not adjusted after BCID results, but could have been adjusted | 41/116 (35.3%) | 26.14 (SD = 14.05) | 85.06 (SD = 41.06) | 2415.7 |
Therapy not adjustable after BCID results | 33/116 (28.5%) | NA | ||
Negative BCID | 14/116 (12.1%) | NA | ||
Total/mean | 116 (100%) | 23.9 | 80.4 | 3720.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrei, A.-I.; Tălăpan, D.; Rafila, A.; Popescu, G.A. Influence of Multiplex PCR in the Management of Antibiotic Treatment in Patients with Bacteremia. Antibiotics 2023, 12, 1038. https://doi.org/10.3390/antibiotics12061038
Andrei A-I, Tălăpan D, Rafila A, Popescu GA. Influence of Multiplex PCR in the Management of Antibiotic Treatment in Patients with Bacteremia. Antibiotics. 2023; 12(6):1038. https://doi.org/10.3390/antibiotics12061038
Chicago/Turabian StyleAndrei, Alina-Ioana, Daniela Tălăpan, Alexandru Rafila, and Gabriel Adrian Popescu. 2023. "Influence of Multiplex PCR in the Management of Antibiotic Treatment in Patients with Bacteremia" Antibiotics 12, no. 6: 1038. https://doi.org/10.3390/antibiotics12061038
APA StyleAndrei, A. -I., Tălăpan, D., Rafila, A., & Popescu, G. A. (2023). Influence of Multiplex PCR in the Management of Antibiotic Treatment in Patients with Bacteremia. Antibiotics, 12(6), 1038. https://doi.org/10.3390/antibiotics12061038