Antibacterial and Antibiofilm Properties of the Alexidine Dihydrochloride (MMV396785) against Acinetobacter baumannii
Abstract
:1. Introduction
2. Material and Methods
2.1. Bacterial Isolates, Reagents, and Culturing Conditions
2.2. Screening Compounds from the Pandemic Box against A. baumannii
2.3. Time–Kill Assay
2.4. Biofilm Formation Inhibition
2.5. Biofilm Eradication Assay
2.6. Confocal Laser Scanning Microscopy
2.7. RNA Isolation and cDNA Preparation
2.8. Quantitative Real-Time PCR Assay
2.9. Checkerboard Assay
2.10. Statistical Analysis
3. Results
3.1. Antibacterial Compounds Identified against A. baumannii from the MMV Pandemic Response Box
3.2. Antibiofilm Efficacy of Compounds with Antibacterial Activity against A. baumannii
3.3. ADH Is Bactericidal for A. baumannii
3.4. Antibiofilm Effects of ADH on Biofilm Formation by A. baumannii
3.5. Confocal Laser Scanning Microscopy Shows Biofilm Eradication by ADH
3.6. Expression of Biofilm-Associated Genes Post-Biofilm Treatment with ADH
3.7. Combination of ADH along with Other Antibiotics for Synergy
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 7 April 2023).
- Zhou, M.; Wang, H.; Zeng, X.; Yin, P.; Zhu, J.; Chen, W.; Li, X.; Wang, L.; Wang, L.; Liu, Y.; et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 394, 1145–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collaborators, A.R. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Fournier, P.E.; Richet, H. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin. Infect. Dis. 2006, 42, 692–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.F.; Lan, C.Y. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J. Clin. Cases 2014, 2, 787–814. [Google Scholar] [CrossRef]
- Chang, H.C.; Chen, Y.C.; Lin, M.C.; Liu, S.F.; Chung, Y.H.; Su, M.C.; Fang, W.F.; Tseng, C.C.; Lie, C.H.; Huang, K.T.; et al. Mortality risk factors in patients with Acinetobacter baumannii ventilator: Associated pneumonia. J. Formos. Med. Assoc. 2011, 110, 564–571. [Google Scholar] [CrossRef] [Green Version]
- Cornejo-Juárez, P.; Cevallos, M.A.; Castro-Jaimes, S.; Castillo-Ramírez, S.; Velázquez-Acosta, C.; Martínez-Oliva, D.; Pérez-Oseguera, A.; Rivera-Buendía, F.; Volkow-Fernández, P. High mortality in an outbreak of multidrug resistant Acinetobacter baumannii infection introduced to an oncological hospital by a patient transferred from a general hospital. PLoS ONE 2020, 15, e0234684. [Google Scholar] [CrossRef]
- John, A.O.; Paul, H.; Vijayakumar, S.; Anandan, S.; Sudarsan, T.; Abraham, O.C.; Balaji, V. Mortality from Acinetobacter infections as compared to other infections among critically ill patients in South India: A prospective cohort study. Indian J. Med. Microbiol. 2020, 38, 24–31. [Google Scholar] [CrossRef]
- Vivo, A.; Fitzpatrick, M.A.; Suda, K.J.; Jones, M.M.; Perencevich, E.N.; Rubin, M.A.; Ramanathan, S.; Wilson, G.M.; Evans, M.E.; Evans, C.T. Epidemiology and outcomes associated with carbapenem-resistant Acinetobacter baumannii and carbapenem-resistant Pseudomonas aeruginosa: A retrospective cohort study. BMC Infect. Dis. 2022, 22, 491. [Google Scholar] [CrossRef]
- Alrahmany, D.; Omar, A.F.; Alreesi, A.; Harb, G.; Ghazi, I.M. Acinetobacter baumannii Infection-Related Mortality in Hospitalized Patients: Risk Factors and Potential Targets for Clinical and Antimicrobial Stewardship Interventions. Antibiotics 2022, 11, 1086. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Martí, S.; Soto, S.; Fernández-Cuenca, F.; Cisneros, J.M.; Pachón, J.; Pascual, A.; Martínez-Martínez, L.; McQueary, C.; Actis, L.A.; et al. Biofilm formation in Acinetobacter baumannii: Associated features and clinical implications. Clin. Microbiol. Infect. 2008, 14, 276–278. [Google Scholar] [CrossRef] [Green Version]
- Poorzargar, P.; Javadpour, S.; Karmostaji, A. Distribution and antibiogram pattern of Acinetobacter infections in Shahid Mohammadi Hospital, Bandar Abbas, Iran. Bimon. J. Hormozgan Univ. Med. Sci. 2017, 20, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Colquhoun, J.M.; Rather, P.N. Insights Into Mechanisms of Biofilm Formation in Acinetobacter baumannii and implications for uropathogenesis. Front. Cell. Infect. Microbiol. 2020, 10, 253. [Google Scholar] [CrossRef]
- Upmanyu, K.; Haq, Q.M.R.; Singh, R. Factors mediating Acinetobacter baumannii biofilm formation: Opportunities for developing therapeutics. Curr. Res. Microb. Sci. 2022, 3, 100131. [Google Scholar] [CrossRef]
- Eze, E.C.; Chenia, H.Y.; El Zowalaty, M.E. Acinetobacter baumannii biofilms: Effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect. Drug Resist. 2018, 11, 2277–2299. [Google Scholar] [CrossRef] [Green Version]
- Gayoso, C.M.; Mateos, J.; Méndez, J.A.; Fernández-Puente, P.; Rumbo, C.; Tomás, M.; Martínez de Ilarduya, O.; Bou, G. Molecular mechanisms involved in the response to desiccation stress and persistence in Acinetobacter baumannii. J. Proteome Res. 2014, 13, 460–476. [Google Scholar] [CrossRef]
- Shenkutie, A.M.; Yao, M.Z.; Siu, G.K.; Wong, B.K.C.; Leung, P.H. Biofilm-induced antibiotic resistance in clinical Acinetobacter baumannii isolates. Antibiotics 2020, 9, 817. [Google Scholar] [CrossRef]
- Roy, S.; Chowdhury, G.; Mukhopadhyay, A.K.; Dutta, S.; Basu, S. Convergence of biofilm formation and antibiotic resistance in Acinetobacter baumannii infection. Front. Med. 2022, 9, 793615. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022. [Google Scholar]
- Raorane, C.J.; Lee, J.-H.; Lee, J. Rapid Killing and Biofilm Inhibition of Multidrug-Resistant Acinetobacter baumannii Strains and Other Microbes by Iodoindoles. Biomolecules 2020, 10, 1186. [Google Scholar] [CrossRef]
- Cantillon, D.; Goff, A.; Taylor, S.; Salehi, E.; Fidler, K.; Stoneham, S.; Waddell, S.J. Searching for new therapeutic options for the uncommon pathogen Mycobacterium chimaera: An open drug discovery approach. Lancet Microbe 2022, 3, e382–e391. [Google Scholar] [CrossRef]
- Elshikh, M.; Ahmed, S.; Funston, S.; Dunlop, P.; McGaw, M.; Marchant, R.; Banat, I.M. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol. Lett. 2016, 38, 1015–1019. [Google Scholar] [CrossRef] [Green Version]
- Soudeiha, M.A.H.; Dahdouh, E.A.; Azar, E.; Sarkis, D.K.; Daoud, Z. In vitro evaluation of the colistin-carbapenem combination in clinical isolates of A. baumannii using the checkerboard, E-test, and time-kill curve Techniques. Front. Cell. Infect. Microbiol. 2017, 7, 209. [Google Scholar] [CrossRef] [PubMed]
- Haney, E.F.; Trimble, M.J.; Cheng, J.T.; Vallé, Q.; Hancock, R.E.W. Critical Assessment of Methods to Quantify Biofilm Growth and Evaluate Antibiofilm Activity of Host Defence Peptides. Biomolecules 2018, 8, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Somma, A.; Recupido, F.; Cirillo, A.; Romano, A.; Romanelli, A.; Caserta, S.; Guido, S.; Duilio, A. Antibiofilm properties of Temporin-L on Pseudomonas fluorescens in static and in-flow conditions. Int. J. Mol. Sci. 2020, 21, 8526. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Wang, W.; Fan, M.; Tong, Z.; Kuang, R.; Jiang, W.; Ni, L. Antimicrobial and anti-biofilm effect of Bac8c on major bacteria associated with dental caries and Streptococcus mutans biofilms. Peptides 2014, 52, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Thamlikitkul, V.; Tiengrim, S. In vitro activity of colistin plus sulbactam against extensive-drug-resistant Acinetobacter baumannii by checkerboard method. J. Med. Assoc. Thail. 2014, 97 (Suppl. S3), S1–S6. [Google Scholar]
- Zhang, J.H.; Chung, T.D.; Oldenburg, K.R. A Simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 1999, 4, 67–73. [Google Scholar] [CrossRef]
- Mathur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes 2018, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Mi, G.; Shi, D.; Wang, M.; Webster, T.J. Reducing bacterial infections and biofilm formation using nanoparticles and nanostructured antibacterial surfaces. Adv. Healthc. Mater. 2018, 7, e1800103. [Google Scholar] [CrossRef]
- Lescat, M.; Poirel, L.; Tinguely, C.; Nordmann, P. A Resazurin Reduction-Based Assay for Rapid Detection of Polymyxin Resistance in Acinetobacter baumannii and Pseudomonas aeruginosa. J. Clin. Microbiol. 2019, 57, e01563-18. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, M.; Olafisoye, O.; Cortes, C.; Urban, C.; Landman, D.; Quale, J. Activity of eravacycline against Enterobacteriaceae and Acinetobacter baumannii, including multidrug-resistant isolates, from New York City. Antimicrob. Agents Chemother. 2015, 59, 1802–1805. [Google Scholar] [CrossRef] [Green Version]
- Livermore, D.M.; Mushtaq, S.; Warner, M.; Woodford, N. In vitro activity of eravacycline against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. Antimicrob. Agents Chemother. 2016, 60, 3840–3844. [Google Scholar] [CrossRef] [Green Version]
- Alosaimy, S.; Morrisette, T.; Lagnf, A.M.; Rojas, L.M.; King, M.A.; Pullinger, B.M.; Hobbs, A.L.V.; Perkins, N.B., 3rd; Veve, M.P.; Bouchard, J.; et al. Clinical outcomes of eravacycline in patients treated predominately for carbapenem-resistant Acinetobacter baumannii. Microbiol. Spectr. 2022, 10, e0047922. [Google Scholar] [CrossRef]
- Rodjun, V.; Houngsaitong, J.; Montakantikul, P.; Paiboonvong, T.; Khuntayaporn, P.; Yanyongchaikit, P.; Sriyant, P. In vitro activities of colistin and sitafloxacin combinations against multidrug-, carbapenem-, and colistin-resistant Acinetobacter baumannii using the broth microdilution checkerboard and time-kill methods. Antibiotics 2020, 9, 516. [Google Scholar] [CrossRef]
- Wang, L.; Liu, D.; Lv, Y.; Cui, L.; Li, Y.; Li, T.; Song, H.; Hao, Y.; Shen, J.; Wang, Y.; et al. Novel plasmid-mediated tet(x5) gene conferring resistance to tigecycline, eravacycline, and omadacycline in a clinical Acinetobacter baumannii isolate. Antimicrob. Agents Chemother. 2019, 64, e01326-19. [Google Scholar] [CrossRef]
- Fyfe, C.; LeBlanc, G.; Close, B.; Nordmann, P.; Dumas, J.; Grossman, T.H. Eravacycline is active against bacterial isolates expressing the polymyxin resistance gene mcr-1. Antimicrob. Agents Chemother. 2016, 60, 6989–6990. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Hua, X.; Xu, Q.; Yang, Y.; Zhang, L.; He, J.; Mu, X.; Hu, L.; Leptihn, S.; Yu, Y. Mechanism of eravacycline resistance in Acinetobacter baumannii mediated by a deletion mutation in the sensor kinase adeS, leading to elevated expression of the efflux pump AdeABC. Infect. Genet. Evol. 2020, 80, 104185. [Google Scholar] [CrossRef]
- Mamouei, Z.; Alqarihi, A.; Singh, S.; Xu, S.; Mansour, M.K.; Ibrahim, A.S.; Uppuluri, P. Alexidine dihydrochloride has broad-spectrum activities against diverse fungal pathogens. mSphere 2018, 3, e00539-18. [Google Scholar] [CrossRef] [Green Version]
- Bonesvoll, P.; Gjermo, P. A comparision between chlorhexidine and some quaternary ammonium compounds with regard to retention, salivary concentration and plaque-inhibiting effect in the human mouth after mouth rinses. Arch. Oral. Biol. 1978, 23, 289–294. [Google Scholar] [CrossRef]
- Lobene, R.R.; Soparkar, P.M. The effect of an alexidine mouthwash on human plaque and gingivitis. J. Am. Dent. Assoc. 1973, 87, 848–851. [Google Scholar] [CrossRef]
- Barnes, G.P.; Carter, H.G.; Gross, A.; Bhaskar, S.N.; Schildt, N.N.; Bush, A.G. Dental plaque reduction with an antibacterial mouth rinse. Part I. Oral Surg. Oral Med. Oral Pathol. 1972, 34, 553–558. [Google Scholar] [CrossRef]
- Alizadeh, H.; Neelam, S.; Cavanagh, H.D. Amoebicidal activities of alexidine against 3 pathogenic strains of acanthamoeba. Eye Contact Lens 2009, 35, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Nabeela, S.; Date, A.; Ibrahim, A.S.; Uppuluri, P. Antifungal activity of alexidine dihydrochloride in a novel diabetic mouse model of dermatophytosis. Front. Cell. Infect. Microbiol. 2022, 12, 958497. [Google Scholar] [CrossRef] [PubMed]
- Shea, J.M.; Henry, J.L.; Del Poeta, M. Lipid metabolism in Cryptococcus neoformans. FEMS Yeast Res. 2006, 6, 469–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yip, K.W.; Ito, E.; Mao, X.; Au, P.Y.; Hedley, D.W.; Mocanu, J.D.; Bastianutto, C.; Schimmer, A.; Liu, F.F. Potential use of alexidine dihydrochloride as an apoptosis-promoting anticancer agent. Mol. Cancer Ther. 2006, 5, 2234–2240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zorko, M.; Jerala, R. Alexidine and chlorhexidine bind to lipopolysaccharide and lipoteichoic acid and prevent cell activation by antibiotics. J. Antimicrob. Chemother. 2008, 62, 730–737. [Google Scholar] [CrossRef] [Green Version]
- Thangavelu, A.; Kaspar, S.S.; Kathirvelu, R.P.; Srinivasan, B.; Srinivasan, S.; Sundram, R. Chlorhexidine: An elixir for periodontics. J. Pharm. Bioallied Sci. 2020, 12, S57–S59. [Google Scholar] [CrossRef]
- Houston, R.; Sekine, Y.; Larsen, M.B.; Murakami, K.; Mullett, S.J.; Wendell, S.G.; Narendra, D.P.; Chen, B.B.; Sekine, S. Discovery of bactericides as an acute mitochondrial membrane damage inducer. Mol. Biol. Cell 2021, 32, ar32. [Google Scholar] [CrossRef]
- Alder, J.; Eisenstein, B. The advantage of bactericidal drugs in the treatment of infection. Curr. Infect. Dis. Rep. 2004, 6, 251–253. [Google Scholar] [CrossRef]
- Kaplan, J.B. Antibiotic-induced biofilm formation. Int. J. Artif. Organs 2011, 34, 737–751. [Google Scholar] [CrossRef]
- Penesyan, A.; Paulsen, I.T.; Gillings, M.R.; Kjelleberg, S.; Manefield, M.J. Secondary effects of antibiotics on microbial biofilms. Front. Microbiol. 2020, 11, 2109. [Google Scholar] [CrossRef]
- Gao, Q.; Meng, X.; Gu, H.; Chen, X.; Yang, H.; Qiao, Y.; Guo, X. Two Phenotype-Differentiated Acinetobacter baumannii mutants that survived in a meropenem selection display large differences in their transcription profiles. Front. Microbiol. 2019, 10, 2308. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Kim, K.; Lee, J.C.; Shin, M. LeuO, a LysR-type transcriptional regulator, is involved in biofilm formation and virulence of Acinetobacter baumannii. Front. Cell. Infect. Microbiol. 2021, 11, 738706. [Google Scholar] [CrossRef]
- Wang, W.; Chanda, W.; Zhong, M. The relationship between biofilm and outer membrane vesicles: A novel therapy overview. FEMS Microbiol. Lett. 2015, 362, fnv117. [Google Scholar] [CrossRef]
S. No. | Gene | Role | Primer Sequence | Amplicon Size |
---|---|---|---|---|
1 | ompA | Invasion, serum resistance, and biofilm formation | F-CGCAGCTCTTGGTATCGAGT R-CGGCTTGATTTTGCTGTCGT | 177 |
2 | csuE | Formation of pilus structure and initial adherence for biofilm formation | F-TGAGCTAAAATTCGGCAGTC R-TCTTTGAGAGTCCTGGGTTT | 121 |
3 | pgaC | N-glycosyltransferase, synthesis of PNAG | F-TATGTGGCCGGTAATGCTCG R-TATCACGCCATACCACTGCG | 151 |
4 | bfmR | Response regulator of two-component system bfmRS associated with biofilm formation | F-ATTCGTGCTTTGTTACGCCG R-GCGATAAAATACGGCCAGCG | 190 |
5 | abaI | Synthesis of quorum-sensing molecule, AHL | F-CCCGCAGCACGTAATAAACG R-AGCAGTCAGGCTGTGTCATC | 134 |
6 | 16S rRNA | Endogenous control | F-ACTTTAAGCGAGGAGGAGGC R-GATTAACGCTCGCACCCTCT | 123 |
7 | rpoB | Endogenous control | F-TCCTTGAACACGATGACGCA R-GCAACGTTCGCTTCCATACC | 118 |
S. No. | Antibiotic with ADH | Strain | FICI | Effect |
---|---|---|---|---|
1 | Tigecycline | 19606 | 0.75 | Additive |
BC-5 | 1.25 | Indifferent | ||
3-137 | 1.25 | Indifferent | ||
HK-45 | 1 | Indifferent | ||
2 | Rifampicin | 19606 | 1.125 | Indifferent |
BC-5 | 0.625 | Additive | ||
3-137 | 0.5625 | Additive | ||
HK45 | 0.3125 | Synergistic | ||
3 | Trimethoprim | 19606 | 0.75 | Additive |
BC-5 | 0.75 | Additive | ||
3-137 | 1.125 | Indifferent | ||
HK45 | 1.03125 | Indifferent | ||
4 | Colistin | 19606 | 1 | Indifferent |
BC-5 | 0.625 | Additive | ||
3-137 | 1.03125 | Indifferent | ||
HK-45 | 0.625 | Additive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Upmanyu, K.; Rizwanul Haq, Q.M.; Singh, R. Antibacterial and Antibiofilm Properties of the Alexidine Dihydrochloride (MMV396785) against Acinetobacter baumannii. Antibiotics 2023, 12, 1155. https://doi.org/10.3390/antibiotics12071155
Upmanyu K, Rizwanul Haq QM, Singh R. Antibacterial and Antibiofilm Properties of the Alexidine Dihydrochloride (MMV396785) against Acinetobacter baumannii. Antibiotics. 2023; 12(7):1155. https://doi.org/10.3390/antibiotics12071155
Chicago/Turabian StyleUpmanyu, Kirti, Qazi Mohd. Rizwanul Haq, and Ruchi Singh. 2023. "Antibacterial and Antibiofilm Properties of the Alexidine Dihydrochloride (MMV396785) against Acinetobacter baumannii" Antibiotics 12, no. 7: 1155. https://doi.org/10.3390/antibiotics12071155
APA StyleUpmanyu, K., Rizwanul Haq, Q. M., & Singh, R. (2023). Antibacterial and Antibiofilm Properties of the Alexidine Dihydrochloride (MMV396785) against Acinetobacter baumannii. Antibiotics, 12(7), 1155. https://doi.org/10.3390/antibiotics12071155