Occurrence of Antimicrobial Resistance in Canine and Feline Bacterial Pathogens in Germany under the Impact of the TÄHAV Amendment in 2018
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Resistance of Staphylococcus pseudintermedius
2.2. Antimicrobial Resistance of Staphylococcus felis
2.3. Antimicrobial Resistance of Staphylococcus aureus
2.4. Antimicrobial Resistance of Canine E. coli Isolates from the Urinary Tract (UTI)
2.5. Antimicrobial Resistance of Escherichia coli Isolates from Skin and Soft Tissue (SST)
2.6. Antimicrobial Resistance of Proteus mirabilis
2.7. Antimicrobial Resistance of Klebsiella spp.
2.8. Antimicrobial Resistance of Pasteurella multocida
2.9. Antimicrobial Resistance of β-Hemolytic Streptococcus spp.
3. Discussion
3.1. Staphylococcus spp.
3.2. Enterobacterales
3.3. Pasteurella multocida
3.4. β-Hemolytic Streptococcus spp.
3.5. Limitations
4. Materials and Methods
4.1. Recruitment
4.2. Bacterial Identification and Antimicrobial Susceptibility Testing (AST)
4.3. Coding
4.4. Descriptive Analysis
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bundestierärztekammer. Leitlinien für den sorgfältigen Umgang mit antibakteriell wirksamen Tierarzneimitteln. Dt. TÄBl. 2015, 2. Available online: https://www.bmel.de/SharedDocs/ExterneLinks/DE/_Tiere/Tiergesundheit/Bundestieraerztekammer_LeitlinienAntibiotika.pdf?__blob=publicationFile&v=2 (accessed on 13 June 2023).
- Weese, J.S.; Giguère, S.; Guardabassi, L.; Morley, P.S.; Papich, M.; Ricciuto, D.R.; Sykes, J.E. ACVIM consensus statement on therapeutic antimicrobial use in animals and antimicrobial resistance. J. Vet. Intern. Med. 2015, 29, 487–498. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS); WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Guardabassi, L.; Apley, M.; Olsen, J.E.; Toutain, P.L.; Weese, S. Optimization of Antimicrobial Treatment to Minimize Resistance Selection. Microbiol. Spectr. 2018, 6, 637–673. [Google Scholar] [CrossRef] [PubMed]
- Hopman, N.E.M.; van Dijk, M.A.M.; Broens, E.M.; Wagenaar, J.A.; Heederik, D.J.J.; van Geijlswijk, I.M. Quantifying Antimicrobial Use in Dutch Companion Animals. Front. Vet. Sci. 2019, 6, 158. [Google Scholar] [CrossRef] [PubMed]
- Toutain, P.L.; Bousquet-Mélou, A.; Damborg, P.; Ferran, A.A.; Mevius, D.; Pelligand, L.; Veldman, K.T.; Lees, P. En Route towards European Clinical Breakpoints for Veterinary Antimicrobial Susceptibility Testing: A Position Paper Explaining the VetCAST Approach. Front. Microbiol. 2017, 8, 2344. [Google Scholar] [CrossRef] [Green Version]
- Prescott, J.F. Antimicrobial use in food and companion animals. Anim. Health Res. Rev. 2008, 9, 127–133. [Google Scholar] [CrossRef]
- Guardabassi, L.; Schwarz, S.; Lloyd, D.H. Pet animals as reservoirs of antimicrobial-resistant bacteria. J. Antimicrob. Chemother. 2004, 54, 321–332. [Google Scholar] [CrossRef]
- Hackmann, C.; Gastmeier, P.; Schwarz, S.; Lübke-Becker, A.; Bischoff, P.; Leistner, R. Pet husbandry as a risk factor for colonization or infection with MDR organisms: A systematic meta-analysis. J. Antimicrob. Chemother. 2021, 76, 1392–1405. [Google Scholar] [CrossRef]
- Marco-Fuertes, A.; Marin, C.; Lorenzo-Rebenaque, L.; Vega, S.; Montoro-Dasi, L. Antimicrobial Resistance in Companion Animals: A New Challenge for the One Health Approach in the European Union. Vet. Sci. 2022, 9, 208. [Google Scholar] [CrossRef]
- Walther, B.; Schaufler, K.; Wieler, L.H.; Lübke-Becker, A. Zoonotic and Multidrug-Resistant Bacteria in Companion Animals Challenge Infection Medicine and Biosecurity. In Zoonoses: Infections Affecting Humans and Animals; Sing, A., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–21. [Google Scholar] [CrossRef]
- World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th ed.; World Health Organization: Geneva, Switzerland, 2019; Volume 6. [Google Scholar]
- De Briyne, N.; Atkinson, J.; Pokludová, L.; Borriello, S.P.; Price, S. Factors influencing antibiotic prescribing habits and use of sensitivity testing amongst veterinarians in Europe. Vet. Rec. 2013, 173, 475. [Google Scholar] [CrossRef] [Green Version]
- Moerer, M.; Merle, R.; Bäumer, W. Antibiotikaeinsatz und Resistenzentwicklung bei Hund und Katze unter dem Einfluss der TÄHAV-Novelle 2018—Ein Stimmungsbild Berliner Tierärzte. Berl. Munch. Tierarztl. Wochenschr. 2022, 135, 1–13. [Google Scholar] [CrossRef]
- Tackmann, K. Ergebnisse der Pflicht-Antibiogramme Nutzen. Available online: https://kirstentackmann.de/pm-ergebnisse-der-pflicht-antibiogramme-nutzen/ (accessed on 13 June 2023).
- Statens Serum Institut; National Food Institute. DANMAP 2020; Statens Serum Institut: Lillerød, Denmark, 2021. [Google Scholar]
- Moerer, M.; Merle, R.; Bäumer, W. A Cross-Sectional Study of Veterinarians in Germany on the Impact of the TÄHAV Amendment 2018 on Antimicrobial Use and Development of Antimicrobial Resistance in Dogs and Cats. Antibiotics 2022, 11, 484. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. Available online: http://clsivet.org/GetDoc.aspx?doc=CLSI%20VET01S%20ED5:2020&scope=user (accessed on 25 October 2022).
- WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance. Critically Important Antimicrobials for Human Medicine: 6th Revision. Available online: https://apps.who.int/iris/bitstream/handle/10665/312266/9789241515528-eng.pdf (accessed on 27 October 2021).
- Bundesrat. Drucksache 759/17. Available online: https://www.bundesrat.de/SharedDocs/drucksachen/2017/0701-0800/759-17.pdf?__blob=publicationFile&v=1 (accessed on 11 January 2022).
- Goggs, R.; Menard, J.M.; Altier, C.; Cummings, K.J.; Jacob, M.E.; Lalonde-Paul, D.F.; Papich, M.G.; Norman, K.N.; Fajt, V.R.; Scott, H.M.; et al. Patterns of antimicrobial drug use in veterinary primary care and specialty practice: A 6-year multi-institution study. J. Vet. Intern. Med. 2021, 35, 1496–1508. [Google Scholar] [CrossRef] [PubMed]
- Singleton, D.A.; Pinchbeck, G.L.; Radford, A.D.; Arsevska, E.; Dawson, S.; Jones, P.H.; Noble, P.-J.M.; Williams, N.J.; Sánchez-Vizcaíno, F. Factors Associated with Prescription of Antimicrobial Drugs for Dogs and Cats, United Kingdom, 2014–2016. Emerg. Infect. Dis. 2020, 26, 1778–1791. [Google Scholar] [CrossRef]
- Schnepf, A.; Kramer, S.; Wagels, R.; Volk, H.A.; Kreienbrock, L. Evaluation of Antimicrobial Usage in Dogs and Cats at a Veterinary Teaching Hospital in Germany in 2017 and 2018. Front. Vet. Sci. 2021, 8, 689018. [Google Scholar] [CrossRef]
- Joosten, P.; Ceccarelli, D.; Odent, E.; Sarrazin, S.; Graveland, H.; Van Gompel, L.; Battisti, A.; Caprioli, A.; Franco, A.; Wagenaar, J.A.; et al. Antimicrobial Usage and Resistance in Companion Animals: A Cross-Sectional Study in Three European Countries. Antibiotics 2020, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, S.; Kehrenberg, C.; Walsh, T.R. Use of antimicrobial agents in veterinary medicine and food animal production. Int. J. Antimicrob. Agents 2001, 17, 431–437. [Google Scholar] [CrossRef]
- Jessen, L.R.; Sørensen, T.M.; Lilja, Z.L.; Kristensen, M.; Hald, T.; Damborg, P. Cross-sectional survey on the use and impact of the Danish national antibiotic use guidelines for companion animal practice. Acta Vet. Scand. 2017, 59, 81. [Google Scholar] [CrossRef] [Green Version]
- Mateus, A.L.; Brodbelt, D.C.; Barber, N.; Stärk, K.D. Qualitative study of factors associated with antimicrobial usage in seven small animal veterinary practices in the UK. Prev. Vet. Med. 2014, 117, 68–78. [Google Scholar] [CrossRef]
- Beever, L.; Bond, R.; Graham, P.A.; Jackson, B.; Lloyd, D.H.; Loeffler, A. Increasing antimicrobial resistance in clinical isolates of Staphylococcus intermedius group bacteria and emergence of MRSP in the UK. Vet. Rec. 2015, 176, 172. [Google Scholar] [CrossRef]
- World Health Organization. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 24 August 2022).
- Ludwig, C.; De Jong, A.; Moyaert, H.; El Garch, F.; Janes, R.; Klein, U.; Morrissey, I.; Thiry, J.; Youala, M. Antimicrobial susceptibility monitoring of dermatological bacterial pathogens isolated from diseased dogs and cats across Europe (ComPath results). J. Appl. Microbiol. 2016, 121, 1254–1267. [Google Scholar] [CrossRef]
- Feßler, A.T.; Scholtzek, A.D.; Schug, A.R.; Kohn, B.; Weingart, C.; Schink, A.-K.; Bethe, A.; Lübke-Becker, A.; Schwarz, S. Antimicrobial and Biocide Resistance among Feline and Canine Staphylococcus aureus and Staphylococcus pseudintermedius Isolates from Diagnostic Submissions. Antibiotics 2022, 11, 127. [Google Scholar] [CrossRef]
- Nielsen, S.S.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortazar Schmidt, C.; Herskin, M.; Michel, V.; et al. Assessment of animal diseases caused by bacteria resistant to antimicrobials: Dogs and cats. Efsa J. 2021, 19, e06680. [Google Scholar] [CrossRef]
- Guardabassi, L.; Damborg, P.; Stamm, I.; Kopp, P.A.; Broens, E.M.; Toutain, P.L. Diagnostic microbiology in veterinary dermatology: Present and future. Vet. Dermatol. 2017, 28, 146.e30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weese, J.S. Investigation of antimicrobial use and the impact of antimicrobial use guidelines in a small animal veterinary teaching hospital: 1995–2004. J. Am. Vet. Med. Assoc. 2006, 228, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. Resistenzsituation Bei Klinisch Wichtigen Tierpathogenen Bakterien; Bundesamt für Verbraucherschutz und Lebensmittelsicherheit: Berlin, Germany, 2021. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. Available online: http://em100.edaptivedocs.net/GetDoc.aspx?doc=CLSI%20M100%20ED32:2022&scope=user (accessed on 28 October 2022).
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. Bericht Zur Resistenzmonitoringstudie 2020; Bundesamt für Verbraucherschutz und Lebensmittelsicherheit: Berlin, Germany, 2022. [Google Scholar]
- Garcia-Fierro, R.; Drapeau, A.; Dazas, M.; Saras, E.; Rodrigues, C.; Brisse, S.; Madec, J.-Y.; Haenni, M. Comparative phylogenomics of ESBL-, AmpC-and carbapenemase-producing Klebsiella pneumoniae originating from companion animals and humans. J. Antimicrob. Chemother. 2022, 77, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Decôme, M.; Cuq, B.; Fairbrother, J.H.; Gatel, L.; Conversy, B. Clinical significance of Proteus mirabilis bacteriuria in dogs, risk factors and antimicrobial susceptibility. Can J. Vet. Res. 2020, 84, 252–258. [Google Scholar]
- Damborg, P.; Nielsen, S.S.; Guardabassi, L. Escherichia coli shedding patterns in humans and dogs: Insights into within-household transmission of phylotypes associated with urinary tract infections. Epidemiol. Infect. 2009, 137, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Niina, A.; Shimizu, T.; Mukai, Y.; Kuwajima, K.; Miyamoto, T.; Kataoka, Y. Phenotypic and molecular characterization of antimicrobial resistance in Proteus mirabilis isolates from dogs. J. Med. Microbiol. 2014, 63, 1561–1567. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 6-4. [Google Scholar] [CrossRef] [Green Version]
- Weese, J.S.; Blondeau, J.M.; Boothe, D.; Breitschwerdt, E.B.; Guardabassi, L.; Hillier, A.; Lloyd, D.H.; Papich, M.G.; Rankin, S.C.; Turnidge, J.D.; et al. Antimicrobial use guidelines for treatment of urinary tract disease in dogs and cats: Antimicrobial guidelines working group of the international society for companion animal infectious diseases. Vet. Med. Int. 2011, 2011, 263768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feßler, A.T.; Scholtzek, A.D.; Schug, A.R.; Kohn, B.; Weingart, C.; Hanke, D.; Schink, A.-K.; Bethe, A.; Lübke-Becker, A.; Schwarz, S. Antimicrobial and Biocide Resistance among Canine and Feline Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii Isolates from Diagnostic Submissions. Antibiotics 2022, 11, 152. [Google Scholar] [CrossRef]
- Grobbel, M.; Lübke-Becker, A.; Alesík, E.; Schwarz, S.; Wallmann, J.; Werckenthin, C.; Wieler, L.H. Antimicrobial susceptibility of Klebsiella spp. and Proteus spp. from various organ systems of horses, dogs and cats as determined in the BfT-GermVet monitoring program 2004–2006. Berl. Munch. Tierarztl. Wochenschr. 2007, 120, 402–411. [Google Scholar] [PubMed]
- Lin, H.; Liu, Z.; Zhou, Y.; Lu, W.; Xu, Q. Characterization of Resistance and Virulence of Pasteurella multocida Isolated from Pet Cats in South China. Antibiotics 2022, 11, 1387. [Google Scholar] [CrossRef] [PubMed]
- Freshwater, A. Why Your Housecat’s Trite Little Bite Could Cause You Quite a Fright: A Study of Domestic Felines on the Occurrence and Antibiotic Susceptibility of Pasteurella multocida. Zoonoses Public Health 2008, 55, 507–513. [Google Scholar] [CrossRef]
- Schwarz, S.; Alesík, E.; Grobbel, M.; Lübke-Becker, A.; Werckenthin, C.; Wieler, L.H.; Wallmann, J. Antimicrobial susceptibility of Pasteurella multocida and Bordetella bronchiseptica from dogs and cats as determined in the BfT-GermVet monitoring program 2004–2006. Berl. Munch. Tierarztl. Wochenschr. 2007, 120, 423–430. [Google Scholar]
- Lamm, C.G.; Ferguson, A.C.; Lehenbauer, T.W.; Love, B.C. Streptococcal infection in dogs: A retrospective study of 393 cases. Vet. Pathol. 2010, 47, 387–395. [Google Scholar] [CrossRef]
- Bugden, D. Identification and antibiotic susceptibility of bacterial isolates from dogs with otitis externa in Australia. Aust. Vet. J. 2013, 91, 43–46. [Google Scholar] [CrossRef]
- Pedersen, K.; Pedersen, K.; Jensen, H.; Finster, K.; Jensen, V.F.; Heuer, O.E. Occurrence of antimicrobial resistance in bacteria from diagnostic samples from dogs. J. Antimicrob. Chemother. 2007, 60, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, S.; Alesík, E.; Grobbel, M.; Lübke-Becker, A.; Werckenthin, C.; Wieler, L.H.; Wallmann, J. Antimicrobial susceptibility of streptococci from various indications of swine, horses, dogs and cats as determined in the BfT-GermVet monitoring program 2004–2006. Berl. Munch. Tierarztl. Wochenschr. 2007, 120, 380–390. [Google Scholar]
- Bundesminesterium für Ernährung und Landwirtschaft. Bericht des Bundesministeriums für Ernährung und Landwirtschaft über die Evaluierung des Antibiotikaminimierungskonzepts der 16. AMG-Novelle; Bundesminesterium für Ernährung und Landwirtschaft: Bonn, Germany, 2019. [Google Scholar]
- Timofte, D.; Broens, E.M.; Guardabassi, L.; Pomba, C.; Allerton, F.; Ikonomopoulos, J.; Overesch, G.; Damborg, P. Driving Laboratory Standardization of Bacterial Culture and Antimicrobial Susceptibility Testing in Veterinary Clinical Microbiology in Europe and Beyond. J. Clin. Microbiol. 2021, 59, 10–1128. [Google Scholar] [CrossRef] [PubMed]
2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Frequency | Percent | Frequency | Percent | Frequency | Percent | Frequency | Percent | Frequency | Percent | Frequency | Percent | Frequency | Percent | |
S. pseudintermedius | 366 | 100 | 422 | 100 | 409 | 100 | 533 | 100 | 495 | 100 | 452 | 100 | 479 | 100 |
dog | 355 | 97.0 | 407 | 96.4 | 394 | 96.3 | 510 | 95.7 | 469 | 94.7 | 428 | 94.7 | 453 | 94.6 |
cat | 11 | 3.0 | 15 | 3.6 | 15 | 3.7 | 23 | 4.3 | 26 | 5.3 | 24 | 5.3 | 26 | 5.4 |
S. felis | 47 | 100 | 65 | 100 | 66 | 100 | 122 | 100 | 131 | 100 | 128 | 100 | 109 | 100 |
dog | 1 | 2.1 | 0 | 0 | 1 | 1.5 | 3 | 2.5 | 0 | 0 | 1 | 0.8 | 1 | 0.9 |
cat | 46 | 97.9 | 65 | 100.0 | 65 | 98.5 | 119 | 97.5 | 131 | 100.0 | 127 | 99.2 | 108 | 99.1 |
S. aureus | 59 | 100 | 62 | 100 | 49 | 100 | 75 | 100 | 75 | 100 | 68 | 100 | 76 | 100 |
dog | 42 | 71.2 | 41 | 66.1 | 31 | 63.3 | 36 | 48.0 | 42 | 56.0 | 31 | 45.6 | 33 | 43.4 |
cat | 17 | 28.8 | 21 | 33.9 | 18 | 36.7 | 39 | 52.0 | 33 | 44.0 | 37 | 54.4 | 43 | 56.6 |
E. coli SST 1 | 179 | 100 | 219 | 100 | 187 | 100 | 349 | 100 | 316 | 100 | 307 | 100 | 305 | 100 |
dog | 148 | 82.8 | 187 | 85.4 | 148 | 79.1 | 262 | 75.1 | 239 | 75.6 | 233 | 75.9 | 240 | 78.7 |
cat | 31 | 17.2 | 32 | 14.6 | 39 | 20.9 | 87 | 24.9 | 77 | 24.4 | 74 | 24.1 | 65 | 21.3 |
E. coli UTI 2 canine | 37 | 100 | 44 | 100 | 46 | 100 | 55 | 100 | 59 | 100 | 57 | 100 | 34 | 100 |
P. mirabilis | 51 | 100 | 60 | 100 | 53 | 100 | 90 | 100 | 83 | 100 | 67 | 100 | 73 | 100 |
dog | 48 | 94.1 | 57 | 95.0 | 49 | 92.5 | 82 | 91.1 | 79 | 95.2 | 60 | 89.6 | 67 | 91.8 |
cat | 3 | 5.9 | 3 | 5.0 | 4 | 7.5 | 8 | 8.9 | 4 | 4.8 | 7 | 10.4 | 6 | 8.2 |
Klebsiella spp. | 18 | 100 | 22 | 100 | 19 | 100 | 40 | 100 | 37 | 100 | 41 | 100 | 29 | 100 |
dog | 17 | 94.4 | 22 | 100.0 | 16 | 84.2 | 36 | 90.0 | 33 | 89.2 | 34 | 82.9 | 26 | 89.7 |
cat | 1 | 5.6 | 0 | 0 | 3 | 15.8 | 4 | 10.0 | 4 | 10.8 | 7 | 17.1 | 3 | 10.3 |
P. multocida | 63 | 100 | 73 | 100 | 91 | 100 | 188 | 100 | 189 | 100 | 186 | 100 | 174 | 100 |
dog | 11 | 17.5 | 26 | 35.6 | 28 | 30.8 | 26 | 13.8 | 27 | 14.3 | 23 | 12.4 | 33 | 19.0 |
cat | 52 | 82.5 | 47 | 64.4 | 63 | 69.2 | 162 | 86.2 | 162 | 85.7 | 163 | 87.6 | 141 | 81.0 |
Streptococci β-hemolytic | 137 | 100 | 146 | 100 | 139 | 100 | 232 | 100 | 215 | 100 | 202 | 100 | 156 | 100 |
dog | 125 | 91.2 | 143 | 97.9 | 125 | 89.9 | 204 | 87.9 | 184 | 85.6 | 174 | 86.1 | 131 | 84.0 |
cat | 12 | 8.8 | 3 | 2.1 | 14 | 10.1 | 28 | 12.1 | 31 | 14.4 | 28 | 13.9 | 25 | 16.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moerer, M.; Lübke-Becker, A.; Bethe, A.; Merle, R.; Bäumer, W. Occurrence of Antimicrobial Resistance in Canine and Feline Bacterial Pathogens in Germany under the Impact of the TÄHAV Amendment in 2018. Antibiotics 2023, 12, 1193. https://doi.org/10.3390/antibiotics12071193
Moerer M, Lübke-Becker A, Bethe A, Merle R, Bäumer W. Occurrence of Antimicrobial Resistance in Canine and Feline Bacterial Pathogens in Germany under the Impact of the TÄHAV Amendment in 2018. Antibiotics. 2023; 12(7):1193. https://doi.org/10.3390/antibiotics12071193
Chicago/Turabian StyleMoerer, Marianne, Antina Lübke-Becker, Astrid Bethe, Roswitha Merle, and Wolfgang Bäumer. 2023. "Occurrence of Antimicrobial Resistance in Canine and Feline Bacterial Pathogens in Germany under the Impact of the TÄHAV Amendment in 2018" Antibiotics 12, no. 7: 1193. https://doi.org/10.3390/antibiotics12071193
APA StyleMoerer, M., Lübke-Becker, A., Bethe, A., Merle, R., & Bäumer, W. (2023). Occurrence of Antimicrobial Resistance in Canine and Feline Bacterial Pathogens in Germany under the Impact of the TÄHAV Amendment in 2018. Antibiotics, 12(7), 1193. https://doi.org/10.3390/antibiotics12071193