Clinical Experience with Off-Label Intrathecal Administration of Selected Antibiotics in Adults: An Overview with Pharmacometric Considerations
Abstract
:1. Introduction
2. Results
2.1. Physiological Factors Influencing Intrathecal Pharmacokinetics
2.1.1. Blood–Brain Barrier and the Blood–CSF Barrier
2.1.2. Size of the CSF System
2.1.3. Location of Antibiotic Administration
2.1.4. Drainage Volume
2.2. Other Factors Influencing the Intrathecal Pharmacokinetics
2.2.1. Antibiotic Properties
2.2.2. Simultaneous Systemic Dosing
2.3. Pharmacodynamics of Antibiotics in the Cerebrospinal Fluid
2.4. General Aspects of IT Treatment
2.4.1. Micro-Organisms
2.4.2. Therapeutic Drug Monitoring
2.4.3. Clinical Outcome
2.4.4. Adverse Events and Risks of IT Administration
2.5. Clinical Experience with IT Administration of Selected Antibiotics
2.5.1. Penicillins
2.5.2. Cephalosporins
2.5.3. Carbapenems
2.5.4. Linezolid
2.5.5. Tigecycline
2.5.6. Rifampicin
2.5.7. Quinolones
2.5.8. Chloramphenicol
2.5.9. Daptomycin
3. Discussion, Overall Conclusions and Recommendations
4. Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neuberger, A.; Shofty, B.; Bishop, B.; Naffaa, M.E.; Binawi, T.; Babich, T.; Rappaport, Z.H.; Zaaroor, M.; Sviri, G.; Yahav, D.; et al. Risk factors associated with death or neurological deterioration among patients with Gram-negative postneurosurgical meningitis. Clin. Microbiol. Infect. 2016, 22, 573.e1–573.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, G.; Shi, Y.; Cao, Y.; Qian, L.; Lv, H.; Zhang, L.; Zhang, G. Clinical Feature, Therapy, Antimicrobial Resistance Gene Distribution, and Outcome of Nosocomial Meningitis Induced by Multidrug-Resistant Enterobacteriaceae-A Longitudinal Cohort Study From Two Neurosurgical Centers in Northern China. Front. Cell. Infect. Microbiol. 2022, 12, 839257. [Google Scholar] [CrossRef]
- de Champs, C.; Guelon, D.; Joyon, D.; Sirot, D.; Chanal, M.; Sirot, J. Treatment of a meningitis due to an Enterobacter aerogenes producing a derepressed cephalosporinase and a Klebsiella pneumoniae producing an extended-spectrum beta-lactamase. Infection 1991, 19, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Kerz, T.; von Loewenich, F.D.; Roberts, J.; Neulen, A.; Ringel, F. Cerebrospinal fluid penetration of very high-dose meropenem: A case report. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 47. [Google Scholar] [CrossRef]
- Viladrich, P.F.; Cabellos, C.; Pallares, R.; Tubau, F.; Martinez-Lacasa, J.; Linares, J.; Gudiol, F. High doses of cefotaxime in treatment of adult meningitis due to Streptococcus pneumoniae with decreased susceptibilities to broad-spectrum cephalosporins. Antimicrob. Agents Chemother. 1996, 40, 218–220. [Google Scholar] [CrossRef] [PubMed]
- FDA. Polymyxin B for Injection USP 500,000 Units Rx Only; Reference ID: 3078059; FDA: Silver Spring, MD, USA, 2011.
- European Medicines Agency. European Medicines Agency Completes Review of Polymyxin-Based Medicines. EMA/643444/2014. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2014/10/WC500176334.pdf (accessed on 25 July 2023).
- Nau, R.; Blei, C.; Eiffert, H. Intrathecal Antibacterial and Antifungal Therapies. Clin. Microbiol. Rev. 2020, 33, e00190–e00119. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; He, W.; Yao, D.; Dai, H. Intrathecal or intraventricular antimicrobial therapy for post-neurosurgical intracranial infection due to multidrug-resistant and extensively drug-resistant Gram-negative bacteria: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2019, 54, 556–561. [Google Scholar] [CrossRef]
- Ciummo, F.; Srinivas, P.; Biedny, J. Antimicrobial use in central nervous system infections. Curr. Opin. Infect. Dis. 2021, 34, 255–263. [Google Scholar] [CrossRef]
- Lewin, J.J., 3rd; Cook, A.M.; Gonzales, C.; Merola, D.; Neyens, R.; Peppard, W.J.; Brophy, G.M.; Kurczewski, L.; Giarratano, M.; Makii, J.; et al. Current Practices of Intraventricular Antibiotic Therapy in the Treatment of Meningitis and Ventriculitis: Results from a Multicenter Retrospective Cohort Study. Neurocrit. Care 2019, 30, 609–616. [Google Scholar] [CrossRef]
- Hasbun, R. Healthcare-associated ventriculitis: Current and emerging diagnostic and treatment strategies. Expert Rev. Anti Infect. Ther. 2021, 19, 993–999. [Google Scholar] [CrossRef]
- Karaiskos, I.; Galani, L.; Baziaka, F.; Giamarellou, H. Intraventricular and intrathecal colistin as the last therapeutic resort for the treatment of multidrug-resistant and extensively drug-resistant Acinetobacter baumannii ventriculitis and meningitis: A literature review. Int. J. Antimicrob. Agents 2013, 41, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Nau, R.; Sorgel, F.; Eiffert, H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev. 2010, 23, 858–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mader, M.M.; Czorlich, P.; Konig, C.; Fuhrmann, V.; Kluge, S.; Westphal, M.; Grensemann, J. Intrathecal penetration of meropenem and vancomycin administered by continuous infusion in patients suffering from ventriculitis—A retrospective analysis. Acta Neurochir. 2018, 160, 2099–2105. [Google Scholar] [CrossRef] [PubMed]
- Blassmann, U.; Roehr, A.C.; Frey, O.R.; Vetter-Kerkhoff, C.; Thon, N.; Hope, W.; Briegel, J.; Huge, V. Cerebrospinal fluid penetration of meropenem in neurocritical care patients with proven or suspected ventriculitis: A prospective observational study. Crit. Care 2016, 20, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beach, J.E.; Perrott, J.; Turgeon, R.D.; Ensom, M.H.H. Penetration of Vancomycin into the Cerebrospinal Fluid: A Systematic Review. Clin. Pharmacokinet. 2017, 56, 1479–1490. [Google Scholar] [CrossRef] [PubMed]
- Albanese, J.; Leone, M.; Bruguerolle, B.; Ayem, M.L.; Lacarelle, B.; Martin, C. Cerebrospinal fluid penetration and pharmacokinetics of vancomycin administered by continuous infusion to mechanically ventilated patients in an intensive care unit. Antimicrob. Agents Chemother. 2000, 44, 1356–1358. [Google Scholar] [CrossRef] [Green Version]
- Lutsar, I.; McCracken, G.H., Jr.; Friedland, I.R. Antibiotic pharmacodynamics in cerebrospinal fluid. Clin. Infect. Dis. 1998, 27, 1117–1129. [Google Scholar] [CrossRef] [Green Version]
- Lin Wu, F.L.; Liu, S.S.; Yang, T.Y.; Win, M.F.; Lin, S.W.; Huang, C.F.; Wang, K.C.; Shen, L.J. A Larger Dose of Vancomycin Is Required in Adult Neurosurgical Intensive Care Unit Patients Due to Augmented Clearance. Ther. Drug. Monit. 2015, 37, 609–618. [Google Scholar] [CrossRef]
- Odio, C.; Thomas, M.L.; McCracken, G.H., Jr. Pharmacokinetics and bacteriological efficacy of mezlocillin in experimental Escherichia coli and Listeria monocytogenes meningitis. Antimicrob. Agents Chemother. 1984, 25, 427–432. [Google Scholar] [CrossRef] [Green Version]
- McCracken, G.H., Jr.; Nelson, J.D.; Grimm, L. Pharmacokinetics and bacteriological efficacy of cefoperazone, ceftriaxone, and moxalactam in experimental Streptococcus pneumoniae and Haemophilus influenzae meningitis. Antimicrob. Agents Chemother. 1982, 21, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Courchesne, E.; Chisum, H.J.; Townsend, J.; Cowles, A.; Covington, J.; Egaas, B.; Harwood, M.; Hinds, S.; Press, G.A. Normal brain development and aging: Quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 2000, 216, 672–682. [Google Scholar] [CrossRef]
- Fleischhack, G.; Jaehde, U.; Bode, U. Pharmacokinetics following intraventricular administration of chemotherapy in patients with neoplastic meningitis. Clin. Pharmacokinet. 2005, 44, 1–31. [Google Scholar] [CrossRef]
- Lebret, A.; Hodel, J.; Rahmouni, A.; Decq, P.; Petit, E. Cerebrospinal fluid volume analysis for hydrocephalus diagnosis and clinical research. Comput. Med. Imaging Graph. 2013, 37, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Gerber, J.; Tumani, H.; Kolenda, H.; Nau, R. Lumbar and ventricular CSF protein, leukocytes, and lactate in suspected bacterial CNS infections. Neurology 1998, 51, 1710–1714. [Google Scholar] [CrossRef]
- Shapiro, W.R.; Young, D.F.; Mehta, B.M. Methotrexate: Distribution in cerebrospinal fluid after intravenous, ventricular and lumbar injections. N. Engl. J. Med. 1975, 293, 161–166. [Google Scholar] [CrossRef]
- Kaiser, A.B.; McGee, Z.A. Aminoglycoside therapy of gram-negative bacillary meningitis. N. Engl. J. Med. 1975, 293, 1215–1220. [Google Scholar] [CrossRef]
- Ichie, T.; Urano, K.; Suzuki, D.; Okada, T.; Kobayashi, N.; Hayashi, H.; Sugiura, Y.; Yamamura, K.; Sugiyama, T. Influence of cerebral fluid drainage on the pharmacokinetics of vancomycin in neurosurgical patients. Pharmazie 2015, 70, 404–409. [Google Scholar]
- Li, X.; Wang, X.; Wu, Y.; Sun, S.; Chen, K.; Lu, Y.; Wang, Q.; Zhao, Z. Plasma and cerebrospinal fluid population pharmacokinetic modeling and simulation of meropenem after intravenous and intrathecal administration in postoperative neurosurgical patients. Diagn. Microbiol. Infect. Dis. 2019, 93, 386–392. [Google Scholar] [CrossRef]
- Li, X.; Sun, S.; Wang, Q.; Zhao, Z. Population Pharmacokinetics of Combined Intravenous and Local Intrathecal Administration of Meropenem in Aneurysm Patients with Suspected Intracranial Infections After Craniotomy. Eur. J. Drug. Metab. Pharmacokinet. 2018, 43, 45–53. [Google Scholar] [CrossRef]
- Nilsson, C.; Stahlberg, F.; Thomsen, C.; Henriksen, O.; Herning, M.; Owman, C. Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. Am. J. Physiol. 1992, 262, R20–R24. [Google Scholar] [CrossRef]
- Klein, O.; Demoulin, B.; Jean Auque, R.T.; Audibert, G.; Sainte-Rose, C.; Marchal, J.C.; Marchal, F. Cerebrospinal fluid outflow and intracranial pressure in hydrocephalic patients with external ventricular drainage. Acta Neurol. Scand. 2010, 122, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Wright, P.F.; Kaiser, A.B.; Bowman, C.M.; McKee, K.T., Jr.; Trujillo, H.; McGee, Z.A. The pharmacokinetics and efficacy of an aminoglycoside administered into the cerebral ventricles in neonates: Implications for further evaluation of this route of therapy in meningitis. J. Infect. Dis. 1981, 143, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Ooie, T.; Suzuki, H.; Terasaki, T.; Sugiyama, Y. Kinetics of quinolone antibiotics in rats: Efflux from cerebrospinal fluid to the circulation. Pharm. Res. 1996, 13, 1065–1068. [Google Scholar] [CrossRef] [PubMed]
- Reesor, C.; Chow, A.W.; Kureishi, A.; Jewesson, P.J. Kinetics of intraventricular vancomycin in infections of cerebrospinal fluid shunts. J. Infect. Dis. 1988, 158, 1142–1143. [Google Scholar] [CrossRef]
- Imberti, R.; Cusato, M.; Accetta, G.; Marino, V.; Procaccio, F.; Del Gaudio, A.; Iotti, G.A.; Regazzi, M. Pharmacokinetics of colistin in cerebrospinal fluid after intraventricular administration of colistin methanesulfonate. Antimicrob. Agents Chemother. 2012, 56, 4416–4421. [Google Scholar] [CrossRef] [Green Version]
- Norrby, S.R. Role of cephalosporins in the treatment of bacterial meningitis in adults. Overview with special emphasis on ceftazidime. Am. J. Med. 1985, 79, 56–61. [Google Scholar] [CrossRef]
- Jongmans, C.; Muller, A.E.; Van Den Broek, P.; Cruz De Almeida, B.M.; Van Den Berg, C.; Van Oldenrijk, J.; Bos, P.K.; Koch, B.C.P. An Overview of the Protein Binding of Cephalosporins in Human Body Fluids: A Systematic Review. Front. Pharmacol. 2022, 13, 900551. [Google Scholar] [CrossRef]
- Nau, R.; Prange, H.W.; Muth, P.; Mahr, G.; Menck, S.; Kolenda, H.; Sorgel, F. Passage of cefotaxime and ceftriaxone into cerebrospinal fluid of patients with uninflamed meninges. Antimicrob. Agents Chemother. 1993, 37, 1518–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewoldt, T.M.J.; Bahmany, S.; Abdulla, A.; Muller, A.E.; Endeman, H.; Koch, B.C.P. Plasma protein binding of ceftriaxone in critically ill patients: Can we predict unbound fractions? J. Antimicrob. Chemother. 2023, 78, 1059–1065. [Google Scholar] [CrossRef]
- Farrington, N.; McEntee, L.; Johnson, A.; Unsworth, J.; Darlow, C.; Jimenez-Valverde, A.; Hornik, C.; Greenberg, R.; Schwartz, J.; Das, S.; et al. Pharmacodynamics of Meropenem and Tobramycin for Neonatal Meningoencephalitis: Novel Approaches to Facilitate the Development of New Agents to Address the Challenge of Antimicrobial Resistance. Antimicrob. Agents Chemother. 2022, 66, e0218121. [Google Scholar] [CrossRef]
- Bakken, J.S.; Bruun, J.N.; Gaustad, P.; Tasker, T.C. Penetration of amoxicillin and potassium clavulanate into the cerebrospinal fluid of patients with inflamed meninges. Antimicrob. Agents Chemother. 1986, 30, 481–484. [Google Scholar] [CrossRef] [Green Version]
- Knoop, M.; Schutze, M.; Piek, J.; Drewelow, B.; Mundkowski, R. Antibiotic prophylaxis in cerebrospinal fluid shunting: Reassessment of Cefotiam penetration into human CSF. Zentralbl. Neurochir. 2007, 68, 14–18. [Google Scholar] [CrossRef]
- Nau, R.; Prange, H.W.; Kinzig, M.; Frank, A.; Dressel, A.; Scholz, P.; Kolenda, H.; Sorgel, F. Cerebrospinal fluid ceftazidime kinetics in patients with external ventriculostomies. Antimicrob. Agents Chemother. 1996, 40, 763–766. [Google Scholar] [CrossRef]
- Nau, R.; Lassek, C.; Kinzig-Schippers, M.; Thiel, A.; Prange, H.W.; Sorgel, F. Disposition and elimination of meropenem in cerebrospinal fluid of hydrocephalic patients with external ventriculostomy. Antimicrob. Agents Chemother. 1998, 42, 2012–2016. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, Y.; Dong, H.; Zhu, Y.; Cao, P.; Meng, L.; Wang, Y. Population Pharmacokinetics and Dosing Regimen Optimization of Linezolid in Cerebrospinal Fluid and Plasma of Post-operative Neurosurgical Patients. J. Pharm. Sci. 2023, 112, 884–892. [Google Scholar] [CrossRef]
- Rodvold, K.A.; Gotfried, M.H.; Cwik, M.; Korth-Bradley, J.M.; Dukart, G.; Ellis-Grosse, E.J. Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose. J. Antimicrob. Chemother. 2006, 58, 1221–1229. [Google Scholar] [CrossRef]
- Nau, R.; Prange, H.W.; Menck, S.; Kolenda, H.; Visser, K.; Seydel, J.K. Penetration of rifampicin into the cerebrospinal fluid of adults with uninflamed meninges. J. Antimicrob. Chemother. 1992, 29, 719–724. [Google Scholar] [CrossRef]
- Scotton, P.G.; Pea, F.; Giobbia, M.; Baraldo, M.; Vaglia, A.; Furlanut, M. Cerebrospinal fluid penetration of levofloxacin in patients with spontaneous acute bacterial meningitis. Clin. Infect. Dis. 2001, 33, e109–e111. [Google Scholar] [CrossRef] [Green Version]
- Yogev, R.; Kolling, W.M.; Williams, T. Pharmacokinetic comparison of intravenous and oral chloramphenicol in patients with Haemophilus influenzae meningitis. Pediatrics 1981, 67, 656–660. [Google Scholar] [CrossRef]
- Piva, S.; Di Paolo, A.; Galeotti, L.; Ceccherini, F.; Cordoni, F.; Signorini, L.; Togni, T.; De Nicolo, A.; Rasulo, F.A.; Fagoni, N.; et al. Daptomycin Plasma and CSF Levels in Patients with Healthcare-Associated Meningitis. Neurocrit. Care 2019, 31, 116–124. [Google Scholar] [CrossRef]
- Kullar, R.; Chin, J.N.; Edwards, D.J.; Parker, D.; Coplin, W.M.; Rybak, M.J. Pharmacokinetics of single-dose daptomycin in patients with suspected or confirmed neurological infections. Antimicrob. Agents Chemother. 2011, 55, 3505–3509. [Google Scholar] [CrossRef] [Green Version]
- Tauber, M.G.; Doroshow, C.A.; Hackbarth, C.J.; Rusnak, M.G.; Drake, T.A.; Sande, M.A. Antibacterial activity of beta-lactam antibiotics in experimental meningitis due to Streptococcus pneumoniae. J. Infect. Dis. 1984, 149, 568–574. [Google Scholar] [CrossRef]
- Nau, R.; Sorgel, F.; Prange, H.W. Pharmacokinetic optimisation of the treatment of bacterial central nervous system infections. Clin. Pharmacokinet. 1998, 35, 223–246. [Google Scholar] [CrossRef]
- Nau, R.; Schmidt, T.; Kaye, K.; Froula, J.L.; Tauber, M.G. Quinolone antibiotics in therapy of experimental pneumococcal meningitis in rabbits. Antimicrob. Agents Chemother. 1995, 39, 593–597. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Jafri, H.; Lutsar, I.; McCoig, C.C.; Trujillo, M.; Wubbel, L.; Shelton, S.; McCracken, G.H., Jr. Pharmacodynamics of vancomycin for the treatment of experimental penicillin- and cephalosporin-resistant pneumococcal meningitis. Antimicrob. Agents Chemother. 1999, 43, 876–881. [Google Scholar] [CrossRef] [Green Version]
- Tunkel, A.R.; Hasbun, R.; Bhimraj, A.; Byers, K.; Kaplan, S.L.; Scheld, W.M.; van de Beek, D.; Bleck, T.P.; Garton, H.J.L.; Zunt, J.R. 2017 Infectious Diseases Society of America’s Clinical Practice Guidelines for Healthcare-Associated Ventriculitis and Meningitis. Clin. Infect. Dis. 2017, 64, e34–e65. [Google Scholar] [CrossRef] [Green Version]
- Remes, F.; Tomas, R.; Jindrak, V.; Vanis, V.; Setlik, M. Intraventricular and lumbar intrathecal administration of antibiotics in postneurosurgical patients with meningitis and/or ventriculitis in a serious clinical state. J. Neurosurg. 2013, 119, 1596–1602. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.; Waqas, M.; Siddiqui, U.T.; Shamim, M.S.; Nathani, K.R.; Jooma, R.; Mehmood, F. Intrathecal and intraventricular antibiotics for postoperative Gram-negative meningitis and ventriculitis. Surg. Neurol. Int. 2017, 8, 226. [Google Scholar] [CrossRef]
- Mouton, J.W.; Muller, A.E.; Canton, R.; Giske, C.G.; Kahlmeter, G.; Turnidge, J. MIC-based dose adjustment: Facts and fables. J. Antimicrob. Chemother. 2018, 73, 564–568. [Google Scholar] [CrossRef] [Green Version]
- EUCAST Steering Committee. MIC and Zone Diameter Distributions and ECOFFs. Available online: https://www.eucast.org/mic_distributions_and_ecoffs/ (accessed on 1 June 2023).
- Ng, K.; Mabasa, V.H.; Chow, I.; Ensom, M.H. Systematic review of efficacy, pharmacokinetics, and administration of intraventricular vancomycin in adults. Neurocrit. Care 2014, 20, 158–171. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, H.; Zhu, C.; Chen, F.; Sun, S.; Liang, N.; Zheng, W. Efficacy and safety of intrathecal meropenem and vancomycin in the treatment of postoperative intracranial infection in patients with severe traumatic brain injury. Exp. Ther. Med. 2019, 17, 4605–4609. [Google Scholar] [CrossRef] [Green Version]
- Brossner, G.; Engelhardt, K.; Beer, R.; Pfausler, B.; Georgopoulos, A.; Schmutzhard, E. Accidental intrathecal infusion of cefotiam: Clinical presentation and management. Eur. J. Clin. Pharmacol. 2004, 60, 373–375. [Google Scholar] [CrossRef]
- Mohammed, N.; Savardekar, A.R.; Patra, D.P.; Narayan, V.; Nanda, A. The 21st-century challenge to neurocritical care: The rise of the superbug Acinetobacter baumannii. A meta-analysis of the role of intrathecal or intraventricular antimicrobial therapy in reduction of mortality. Neurosurg. Focus 2017, 43, E8. [Google Scholar] [CrossRef] [Green Version]
- Gower, D.J.; Barrows, A.A., 3rd; Kelly, D.L., Jr.; Pegram, S., Jr. Gram-negative bacillary meningitis in the adult: Review of 39 cases. South. Med. J. 1986, 79, 1499–1502. [Google Scholar] [CrossRef]
- McCracken, G.H., Jr.; Mize, S.G.; Threlkeld, N. Intraventricular gentamicin therapy in gram-negative bacillary meningitis of infancy. Report of the Second Neonatal Meningitis Cooperative Study Group. Lancet 1980, 1, 787–791. [Google Scholar]
- Karvouniaris, M.; Brotis, A.G.; Tsiamalou, P.; Fountas, K.N. The Role of Intraventricular Antibiotics in the Treatment of Nosocomial Ventriculitis/Meningitis from Gram-Negative Pathogens: A Systematic Review and Meta-Analysis. World Neurosurg. 2018, 120, e637–e650. [Google Scholar] [CrossRef]
- Muller, A.E.; Huttner, B.; Huttner, A. Therapeutic Drug Monitoring of Beta-Lactams and Other Antibiotics in the Intensive Care Unit: Which Agents, Which Patients and Which Infections? Drugs 2018, 78, 439–451. [Google Scholar] [CrossRef]
- Brotis, A.G.; Churis, I.; Karvouniaris, M. Local complications of adjunct intrathecal antibiotics for nosocomial meningitis associated with gram-negative pathogens: A meta-analysis. Neurosurg. Rev. 2021, 44, 139–152. [Google Scholar] [CrossRef]
- Chusri, S.; Sakarunchai, I.; Kositpantawong, N.; Panthuwong, S.; Santimaleeworagun, W.; Pattharachayakul, S.; Singkhamanan, K.; Doi, Y. Outcomes of adjunctive therapy with intrathecal or intraventricular administration of colistin for post-neurosurgical meningitis and ventriculitis due to carbapenem-resistant acinetobacter baumannii. Int. J. Antimicrob. Agents 2018, 51, 646–650. [Google Scholar] [CrossRef]
- Deshayes, S.; Coquerel, A.; Verdon, R. Neurological Adverse Effects Attributable to beta-Lactam Antibiotics: A Literature Review. Drug Saf. 2017, 40, 1171–1198. [Google Scholar] [CrossRef]
- Guilhaumou, R.; Benaboud, S.; Bennis, Y.; Dahyot-Fizelier, C.; Dailly, E.; Gandia, P.; Goutelle, S.; Lefeuvre, S.; Mongardon, N.; Roger, C.; et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Societe Francaise de Pharmacologie et Therapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Societe Francaise d’Anesthesie et Reanimation-SFAR). Crit. Care 2019, 23, 104. [Google Scholar] [CrossRef] [Green Version]
- Mayhall, C.G.; Archer, N.H.; Lamb, V.A.; Spadora, A.C.; Baggett, J.W.; Ward, J.D.; Narayan, R.K. Ventriculostomy-related infections. A prospective epidemiologic study. N. Engl. J. Med. 1984, 310, 553–559. [Google Scholar] [CrossRef]
- Anderson, K.F.; Ellis, F.G. Intrathecal chloramphenicol in staphylococcal meningitis resistant to penicillin and streptomycin. Br. Med. J. 1951, 2, 1067–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scapellato, P.G.; Ormazabal, C.; Scapellato, J.L.; Bottaro, E.G. Meningitis due to vancomycin-resistant Enterococcus faecium successfully treated with combined intravenous and intraventricular chloramphenicol. J. Clin. Microbiol. 2005, 43, 3578–3579. [Google Scholar] [CrossRef] [Green Version]
- Berning, S.E.; Cherry, T.A.; Iseman, M.D. Novel treatment of meningitis caused by multidrug-resistant Mycobacterium tuberculosis with intrathecal levofloxacin and amikacin: Case report. Clin. Infect. Dis. 2001, 32, 643–646. [Google Scholar] [CrossRef] [Green Version]
- Upton, A.; Woodhouse, A.; Vaughan, R.; Newton, S.; Ellis-Pegler, R. Evolution of central nervous system multidrug-resistant Mycobacterium tuberculosis and late relapse of cryptic prosthetic hip joint tuberculosis: Complications during treatment of disseminated isoniazid-resistant tuberculosis in an immunocompromised host. J. Clin. Microbiol. 2009, 47, 507–510. [Google Scholar] [CrossRef] [Green Version]
- Lich, B.F.; Conner, A.K.; Burks, J.D.; Glenn, C.A.; Sughrue, M.E. Intrathecal/Intraventricular Linezolid in Multidrug-Resistant Enterococcus faecalis Ventriculitis. J. Neurol. Surg. Rep. 2016, 77, e160–e161. [Google Scholar] [CrossRef] [Green Version]
- Dajez, P.; Vincken, W.; Lambelin, D.; Noterman, J.; Yourassowski, E.; Telerman-Toppet, N. Intraventricular administration of rifampin for tuberculous meningitis. J. Neurol. 1981, 225, 153–156. [Google Scholar] [CrossRef]
- Vincken, W.; Meysman, M.; Verbeelen, D.; Lauwers, S.; D’Haens, J. Intraventricular rifampicin in severe tuberculous meningo-encephalitis. Eur. Respir. J. 1992, 5, 891–893. [Google Scholar] [CrossRef]
- Senbaga, N.; Davies, E.M. Inadvertent intrathecal administration of rifampicin. Br. J. Clin. Pharmacol. 2005, 60, 116. [Google Scholar] [CrossRef]
- Spittle, C.R.; Phillips, B.M. A case of E. coli meningitis treated with systemic and intrathecal ampicillin. Postgrad. Med. J. 1962, 38, 168–171. [Google Scholar] [CrossRef] [Green Version]
- Thilmann, A.F.; Mobius, E.; Podoll, K. Intraventricular antibiotic therapy. Nervenarzt 1992, 63, 108–112. [Google Scholar]
- Abraham, E.P.; Chain, E.; Fletcher, C.M.; Gardner, A.D.; Heatley, N.G.; Jennings, M.A. Further observations on penicillin. Lancet 1941, 238, 177–189. [Google Scholar] [CrossRef]
- Wood, F.C.; Dash, C. Intrathecal penicillin. Br. Med. J. 1978, 2, 1090. [Google Scholar] [CrossRef] [Green Version]
- Jepson, R.P.; Whitty, C.W. Pheumococcal meningitis after head injury, treated with intrathecal penicillin. Lancet 1946, 1, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Erickson, T.C.; Masten, M.G.; Suckle, H.M. Complications of intrathecal use of penicillin. J. Am. Med. Assoc. 1946, 132, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Siegal, S. Transverse myelopathy following recovery from pneumococcic meningitis. J. Am. Med. Assoc. 1945, 129, 547. [Google Scholar] [CrossRef]
- Sweet, L.K. The treatment of pneumococcic meningitis with penicillin. J. Am. Med. Assoc. 1945, 127, 263. [Google Scholar] [CrossRef]
- Cohen, M.M. Fatality following the use of intrathecal penicillin; Case report. J. Neuropathol. Exp. Neurol. 1952, 11, 335–339. [Google Scholar] [CrossRef]
- Clara, N. CSF exchange after the erroneous intrathecal injection of 800 mg ceftriaxone for pneumococcal meningitis. J. Antimicrob. Chemother. 1986, 17, 263–265. [Google Scholar] [CrossRef]
- Fisher, L.S.; Chow, A.W.; Yoshikawa, T.T.; Guze, L.B. Cephalothin and cephaloridine therapy for bacterial meningitis. Ann. Intern. Med. 1975, 82, 689–693. [Google Scholar] [CrossRef]
- Konig, C.; Grensemann, J.; Czorlich, P.; Schlemm, E.; Kluge, S.; Wicha, S.G. A dosing nomograph for cerebrospinal fluid penetration of meropenem applied by continuous infusion in patients with nosocomial ventriculitis. Clin. Microbiol. Infect. 2022, 28, 1022.e9–1022.e16. [Google Scholar] [CrossRef] [PubMed]
- EUCAST Steering Committee. Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 12.0. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 1 June 2023).
- Hosmann, A.; Ritscher, L.; Burgmann, H.; Al Jalali, V.; Wulkersdorfer, B.; Wolfl-Duchek, M.; Sanz Codina, M.; Jager, W.; Poschner, S.; Plochl, W.; et al. Meropenem concentrations in brain tissue of neurointensive care patients exceed CSF levels. J. Antimicrob. Chemother. 2021, 76, 2914–2922. [Google Scholar] [CrossRef] [PubMed]
- Bain, K.T.; Wittbrodt, E.T. Linezolid for the treatment of resistant gram-positive cocci. Ann. Pharmacother. 2001, 35, 566–575. [Google Scholar] [CrossRef]
- Gill, C.J.; Murphy, M.A.; Hamer, D.H. Treatment of Staphylococcus epidermidis ventriculo-peritoneal shunt infection with linezolid. J. Infect. 2002, 45, 129–132. [Google Scholar] [CrossRef]
- FDA. Highlights of Prescribing Information-Tigecycline. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=208744 (accessed on 2 December 2022).
- Ray, L.; Levasseur, K.; Nicolau, D.P.; Scheetz, M.H. Cerebral spinal fluid penetration of tigecycline in a patient with Acinetobacter baumannii cerebritis. Ann. Pharmacother. 2010, 44, 582–586. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Vardakas, K.Z.; Tsiveriotis, K.P.; Triarides, N.A.; Tansarli, G.S. Effectiveness and safety of high-dose tigecycline-containing regimens for the treatment of severe bacterial infections. Int. J. Antimicrob. Agents 2014, 44, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; Luo, X.; Li, X.; Li, Q.; Huo, J.; Yang, L.; Zhu, L.; Feng, W.; Zhou, J.; Shi, G.; et al. Development and validation of an LC-MS/MS method for the determination of tigecycline in human plasma and cerebrospinal fluid and its application to a pharmacokinetic study. Biomed. Chromatogr. 2016, 30, 1992–2002. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.Q.; Zhan, R.C.; Jia, W.; Zhang, B.Q.; Wang, J.J. A case report of intraventricular tigecycline therapy for intracranial infection with extremely drug resistant Acinetobacter baumannii. Medicine 2017, 96, e7703. [Google Scholar] [CrossRef]
- Lauretti, L.; D’Alessandris, Q.G.; Fantoni, M.; D’Inzeo, T.; Fernandez, E.; Pallini, R.; Scoppettuolo, G. First reported case of intraventricular tigecycline for meningitis from extremely drug-resistant Acinetobacter baumannii. J. Neurosurg. 2017, 127, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Pu, Z.; Zhao, M. Case Report of Successful Treatment of Extensively Drug-Resistant Acinetobacter baumannii Ventriculitis with Intravenous plus Intraventricular Tigecycline. Antimicrob. Agents Chemother. 2018, 62, 10–1128. [Google Scholar] [CrossRef] [Green Version]
- Tsolaki, V.; Karvouniaris, M.; Manoulakas, E.; Kotlia, P.; Karadontas, V.; Fotakopoulos, G.; Zakynthinos, E.; Makris, D. Intraventricular CNS treatment with Colistin-Tigecycline combination: A case series. J. Crit. Care 2018, 47, 338–341. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, K.; Zhao, J.; Wang, Q.; Zhou, J. Intraventricular administration of tigecycline for the treatment of multidrug-resistant bacterial meningitis after craniotomy: A case report. J. Chemother. 2018, 30, 49–52. [Google Scholar] [CrossRef]
- Deng, Z.W.; Wang, J.; Qiu, C.F.; Yang, Y.; Shi, Z.H.; Zhou, J.L. A case report of intraventricular and intrathecal tigecycline infusions for an extensively drug-resistant intracranial Acinetobacter baumannii infection. Medicine 2019, 98, e15139. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.; Alsaleh, H.; Baradwan, A.; Alfawares, R.; Alobaid, A.; Rasheed, A.; Soliman, I. Intraventricular Tigecycline as a Last Resort Therapy in a Patient with Difficult-to-Treat Healthcare-Associated Acinetobacter baumannii Ventriculitis: A Case Report. SN Compr. Clin. Med. 2020, 2, 1683–1687. [Google Scholar] [CrossRef]
- Li, L.M.; Zheng, W.J.; Shi, S.W. Spinal arachnoiditis followed by intrathecal tigecycline therapy for central nervous system infection by extremely drug-resistant Acinetobacter baumannii. J. Int. Med. Res. 2020, 48, 300060520920405. [Google Scholar] [CrossRef] [PubMed]
- Soto-Hernandez, J.L.; Soto-Ramirez, A.; Perez-Neri, I.; Angeles-Morales, V.; Cardenas, G.; Barradas, V.A. Multidrug-resistant Klebsiella oxytoca ventriculitis, successfully treated with intraventricular tigecycline: A case report. Clin. Neurol. Neurosurg. 2020, 188, 105592. [Google Scholar] [CrossRef]
- Zhong, L.; Shi, X.Z.; Su, L.; Liu, Z.F. Sequential intraventricular injection of tigecycline and polymyxin B in the treatment of intracranial Acinetobacter baumannii infection after trauma: A case report and review of the literature. Mil. Med. Res. 2020, 7, 23. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Wu, G.; Wang, H.; Xu, X. Intravenous plus intraventricular tigecycline-amikacin therapy for the treatment of carbapenem-resistant Klebsiella pneumoniae ventriculitis: A case report. Medicine 2022, 101, e29635. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Yu, X.; Wang, J.; Cheng, L.; Hu, S.; Han, G. Intrathecal injection of tigecycline in treatment of multidrug-resistant Acinetobacter baumannii meningitis: A case report. Eur. J. Hosp. Pharm. 2017, 24, 182–184. [Google Scholar] [CrossRef]
- Nicasio, A.M.; Crandon, J.L.; Nicolau, D.P. In vivo pharmacodynamic profile of tigecycline against phenotypically diverse Escherichia coli and Klebsiella pneumoniae isolates. Antimicrob. Agents Chemother. 2009, 53, 2756–2761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Kang, H.S.; Sohn, C.H.; Oh, B.M. Cauda equina syndrome misdiagnosed as aggravated hydrocephalus: Neurological complication of intrathecal colistin in post-surgical meningitis. Acta Neurochir. 2011, 153, 425–427. [Google Scholar] [CrossRef] [PubMed]
- Christ, W. Central nervous system toxicity of quinolones: Human and animal findings. J. Antimicrob. Chemother. 1990, 26 (Suppl. B), 219–225. [Google Scholar] [CrossRef] [PubMed]
- Hori, S.; Kizu, J.; Kawamura, M. Effects of anti-inflammatory drugs on convulsant activity of quinolones: A comparative study of drug interaction between quinolones and anti-inflammatory drugs. J. Infect. Chemother. 2003, 9, 314–320. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Organization Model List of Essential Medicines, 22nd List (WHO/MHP/HPS/EML/2021.02); World Health Organization: Geneva, Switzerland, 2021.
- Lee, B.J.; Vu, B.N.; Seddon, A.N.; Hodgson, H.A.; Wang, S.K. Treatment Considerations for CNS Infections Caused by Vancomycin-Resistant Enterococcus faecium: A Focused Review of Linezolid and Daptomycin. Ann. Pharmacother. 2020, 54, 1243–1251. [Google Scholar] [CrossRef]
- Denetclaw, T.H.; Suehiro, I.; Wang, P.K.; Tolliver, G.L. Successful treatment of ventriculostomy-associated meningitis caused by multidrug resistant coagulase-negative Staphylococcus epidermidis using low-volume intrathecal daptomycin and loading strategy. Ann. Pharmacother. 2014, 48, 1376–1379. [Google Scholar] [CrossRef]
- Dhariwal, A.; Leff, R.; Allen, M.; Cherian, B. Intrathecal daptomycin use in a challenging case of Enterococcus faecium ventriculitis. Access Microbiol. 2022, 4, 000230. [Google Scholar] [CrossRef]
- Dietz, N.; Barra, M.; Zhang, M.; Zacharaiah, M.; Coumans, J.V. Acute myeloid leukemia with central nervous system extension and subdural seeding of vancomycin-resistant Enterococcus faecium after bilateral subdural hematomas treated with subdural daptomycin administration. Surg. Neurol. Int. 2019, 10, 171. [Google Scholar] [CrossRef]
- Elvy, J.; Porter, D.; Brown, E. Treatment of external ventricular drain-associated ventriculitis caused by Enterococcus faecalis with intraventricular daptomycin. J. Antimicrob. Chemother. 2008, 61, 461–462. [Google Scholar] [CrossRef] [Green Version]
- Erritouni, M.; Ktaich, N.; Rahal, J.J.; Figueroa, D.; Nieto, J.; Urban, C.; Mariano, N.; Eisinger, F.; Abayev, J.; Nicolau, D.; et al. Use of daptomycin for the treatment of methicillin-resistant coagulase-negative staphylococcal ventriculitis. Case Rep. Med. 2012, 2012, 593578. [Google Scholar] [CrossRef]
- Kahler, R.; Holloway, K. Successful Use of Intrathecal Daptomycin to Treat Meningitis Due to Vancomycin-Resistant Enterococcus faecium. Infect. Dis. Clin. Pract. 2012, 20, 416–418. [Google Scholar] [CrossRef]
- Mueller, S.W.; Kiser, T.H.; Anderson, T.A.; Neumann, R.T. Intraventricular daptomycin and intravenous linezolid for the treatment of external ventricular-drain-associated ventriculitis due to vancomycin-resistant Enterococcus faecium. Ann. Pharmacother. 2012, 46, e35. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.S.; Muzevich, K.; Edmond, M.B.; Bearman, G.; Stevens, M.P. Central nervous system infections due to vancomycin-resistant enterococci: Case series and review of the literature. Int. J. Infect. Dis. 2014, 25, 26–31. [Google Scholar] [CrossRef] [Green Version]
Antibiotic | AUCCSF/AUCserum Ratio in Uninflamed to Mildly Inflamed Meninges | AUCCSF/AUCserum Ratio in Inflamed Meninges | References |
---|---|---|---|
Benzylpenicillin | - | - | - |
Amoxicillin | 0.058 | [43] | |
Cephaloridine | - | - | - |
Cefotiam | 0 | - | [44] |
Ceftriaxone | 0.007 | - | [40] |
Ceftazidime | 0.054 | - | [45] |
Meropenem | 0.47; 0.21; 0.25 | 0.39 | [14,46] |
Linezolid | 0.53 | - | [47] |
Tigecycline | 0.11 | - | [48] |
Rifampicin | 0.22 | - | [49] |
Levofloxacin | 0.71 | - | [50] |
Chloramphenicol | 0.6–0.7 | 0.6–0.7 | [14,51] |
Daptomycin | - | 0.008; 0.45 | [52,53] |
Year (Ref.) | Antibiotic | Age/Sex | Diagnosis | Pathogen (ECOFF) | IT Dose | Number IT Doses | Accompanying IV Dose of Same AB | Concentration in CSF | Outcome (M/C) | Side Effects |
---|---|---|---|---|---|---|---|---|---|---|
1951 [76] | Chloramphenicol | 44 y/M | Meningitis | S. aureus (16 mg/L) | Increasing from 100 to 750 µg q24h IT | 19 | 2 g q6h oral | 400 µg D: 10 mg/L; 500 µg D: 20 mg/L; 600 µg D: 30 mg/L and 750 µg: 40 mg/L | C | None |
1951 [76] | Chloramphenicol | 47 y/M | Meningitis | S. aureus (16 mg/L) | 600–750 µg q24h IT | 6 | 2 g q6h oral | 40 mg/L | C | None |
2005 [77] | Chloramphenicol | 46 y/M | Meningitis | E. faecium (32 mg/L) | 25 mg/day | 35 | 3 g q24h IV | n.a. | C | None |
2001 [78] | Levofloxacin | 25 y/M | Meningitis | M. tuberculosis (n.a.) | 1–1.5 mg q48h | 90 | 500 mg IV | 1 mg D: 0.38 mg/L (+2 h) and 0.57 mg/L (+6 h). 1.5 mg D: 1.64 mg/L (+6 h) | M, C | Insomnia, myalgia, arthralgia during first 1–2 months |
2009 [79] | Levofloxacin | 39 y/M | Meningitis | M. tuberculosis (n.a.) | 1.5–2 mg First ~1.5 mo: 3×/wk ~4.5 mo 2×/wk ~3 mo: 1×/wk | ~66 | 750 mg oral | 1.5 mg D: 9.16/11.36 mg/L (+2 h); 2.06/ND (+6 h); 0.19/1.41 mg/L (+24 h). ND/ND (+48 h) | M, C | none |
2016 [80] | Linezolid | 31 y/F | Ventriculitis | E. faecalis (4 mg/L 1) | 10 mg q24h | 15 | 600 mg q12h oral | n.a. | M, C | none |
1981 [81] | rifampicin | 23 y/? | Meningitis | M. tuberculosis (n.a.) | 5 mg q24h for 7 days; then 3 mg q48h | ~34 | n.a. | n.a. | Clinically improved | none |
1992 [82] | Rifampicin | 59 y/M | Meningo-encephalitis | M. tuberculosis (n.a.) | 5 mg q24h | 50 | 600 mg q24h IV | n.a. | C | none |
2005 [83] | rifampicin | 41 y/? | Postoperative infection after spinal decompression | n.a. | 600 mg infused over 4 h IT (accidental) | 1 | no | n.a. | n.a. | none |
1962 [84] | Ampicillin | 17 y/M | Meningitis | E. coli (8 mg/L) | 20 mg q12h 40 mg q12h | 10 32 | 500 mg q6h oral | Ranging between 1.8 and 18.8 mg/L (8 of 12 measurements ≤8 mg/L) | M, C | none |
1992 [85] | ceftazidime | 70 y/M | Meningitis | P. aeruginosa (8 mg/L) | 10 mg 2×/wk 15 mg 2×/wk | 104 n.a. | no | n.a. | Patient died of infection 2 y after start of IT therapy | None for 10 mg doses Psychological changes for the 15 mg doses |
1992 [85] | ceftazidime | 26 y/M | Ventriculitis | unknown | 20 mg 2×/wk 20 mg 1×/wk | 8 8 | no | n.a. | C | none |
Year (Ref.) | Age/Sex | Diagnosis | Pathogen (ECOFF) | IT Dose | Number of IT Doses | Accompanying IV Dose of Same AB | Concentration in CSF | Outcome (M/C) | Side Effects |
---|---|---|---|---|---|---|---|---|---|
2016 [103] | 67 y/M | Meningitis | K. pneumoniae (2 mg/L) | 1 mg q12 or q48h; 2 mg dose (final one) | 4 1 | 49 mg q12h; 48 mg q12h | 1 mg D: AUC0–12h: 230 h·mg/L; 2 mg D: AUC0–12h 1132 h·mg/L | n.a. | none |
2017 [104] | 50 y/M | Intracranial infection | A. baumannii (0.5 mg/L) | 3 mg q24h (1 h closed system after administration); M failure dose increased to 4 mg q12g | 6 days 3 mg q24h, 6 days high dose | 50 mg q12h | n.a. | M: 3 days after start high dose. C | none |
2017 [105] | 22 y/M | Meningitis | A. baumannii (0.5 mg/L) | 2 mg q24h (drain closed 2 h); 2 mg q12h; Relapse of meningitis: 4 mg/day restarted | 45 days Relapse: 1 month | 100 mg q12h | n.a. | M: after month of treatment of relapse. 12-month follow-up pt cured | Ventriculitis and holocord myelitis (also colistin IT) |
2017 [115] | 45 y/M | Meningitis | A. baumannii (0.5 mg/L) | 10 mg q12h IL (drain closed 2 h) | 12 | no | n.a. | M, C | none |
2018 [106] | 70 y/F | Ventriculitis | A. baumannii (0.5 mg/L) | 2 mg q12h | 20 | 50 mg q12h | n.a. | M, C | none |
2018 [107] | 55 y/F | Ventriculitis + meningitis | A. baumannii (0.5 mg/L) | 4 mg q24h (drain closed 4 h) | 15 | 100 mg bid | n.a. | C | none |
2018 [107] | 50 y/M | Postoperative intracerebral infection | A. baumannii (0.5 mg/L) | 4 mg q24h (drain closed 4 h) | 15 | no | n.a. | Discharged to rehab centre | None |
2018 [107] | 48 y/M | Ventriculitis + meningitis | K. pneumoniae (2 mg/L) | 4 mg q24h (drain closed 4 h) | 9 | 100 mg bid | n.a. | Discharged (ICU to ward) | none |
2018 [108] | 67 y/M | Ventriculitis + meningitis | K. pneumoniae (2 mg/L) | 1 mg q12h; 5 mg q12h; 10 mg q12h | 1 mg bid: 23 days; 5 mg bid: 19 d; 10 mg bid: 39 days | 1 mg IT dose: 50 mg bid 5 mg IT dose: 45 mg bid; 10 mg IT dose: 40 mg bid | n.a. | Discharged to rehab centre | none |
2019 [109] | 17 y/M | Postoperative intracerebral infection | A. baumannii (0.5 mg/L) | 4 mg q12h (drain closed 2 h) IVT; After 4 days: 4 mg q24h IT | Total: 34 | 47.5 mg q12h | n.a. | M, C | none |
2020 [110] | 56 y/M | Ventriculitis | A. baumannii (0.5 mg/L) | 2 mg q12h (clamped 4 h); After 21 days increased to 4 mg q12h | 14 in total | 100 mg q12h | n.a. | 3 days after increased dose: M. Discharged to ward | 8 h after first IVT dose, myoclonic seizures for 4 min. |
2020 [111] | 28 y/M | Intracerebral infection | A. baumannii (0.5 mg/L) | 5 mg q24h IL | 9 | 100 mg q12h | n.a. | Spinal arachnoiditis was resolved at 12-month follow-up; Infection was cured | Spinal arachnoiditis after 9 IL doses |
2020 [112] | 38 y/M | Ventriculitis | K. oxytoca (1 mg/L) | 5 mg/24 h (clamped 2 h) | 11 | no | D + 2 h: 178.9/310.1 mg/L D + 6 h: 35.1/41.3 mg/L D + 24 h: ND | M | none |
2020 [113] | 33 y/M | Intracranial infection | A. baumannii (0.5 mg/L) | 5 mg q12h | 14 | 100 mg q12h | n.a. | Unknown | Reduced liver function after 7 days. |
2022 [114] | 57 y/M | Ventriculitis | K. pneumoniae (2 mg/L) | 3 mg q12h (clamped 2 h) | 46 | 100 mg q12h | n.a. | M, C | none |
Year (Ref.) | Age/Sex | Diagnosis | Pathogen (ECOFF) | IT Dose | Number IT Doses | Accompanying IV Dose of Same AB | Concentration in CSF | Outcome (M/C) | Side Effects |
---|---|---|---|---|---|---|---|---|---|
2008 [125] | 62 y/M | Ventriculitis | E. faecalis (4 mg/L) | 10 mg every third day Second episode: 5 mg every third day | First episode: 5 Second episode: 10 | 1 g 1 dd | 23 mg/L (through, after 10 mg dose) 483 mg/L (peak; after 10 mg dose) 9.9 mg/L (through; 5 mg dose) 139 mg/L (peak, 5 mg dose) | Treatment for 2 weeks: M, C. But, relapse after 28 days. Treatment for 4 weeks: M, C and no relapse. | Transient pyrexia after each installation of daptomycin |
2012 [126] | 52 y/F | Ventriculitis | Coagulase negative staphylococcus (1 mg/L) | 10 mg for first 2 days and then 10 mg every other day | 4 | 10 mg/kg 1 dd | 6.3 mg/L (peak) 1.39 mg/L (through) | M, C | none |
2012 [127] | 59 y/F | Meningitis | E. faecium (8 mg/L) | 5 mg every 72 h IT | 7 | yes | n.a. | M | none |
2012 [128] | 64 y/M | Ventriculitis | E. faecium (8 mg/L) | 5 mg 1 dd IT | 7 | no | Different concentration from right and left EVD. Right: peak 112.2 mg/L and through 1.34 mg/L. Left: peak 37.4 mg/L and 0.37 mg/L. Accumulation after 3 days | M | none |
2014 [122] | 23 y/M | Ventriculostomy-associated meningitis | S. epidermidis (1 mg/L) | 5 mg once daily for 3 days and then 5 mg every 72 h | 9 | 750 mg 1 dd | n.a. | M, C | Infusion over 4 min in 5 mL NS not tolerated. Infusion over 4 min in 3 mL NS was tolerated. |
2014 [129] | 19 y/F | Ventriculitis | Enterococcus spp. (4–8 mg/L) | 5 mg every 48 h | 47 | 8 mg/kg 1 dd | n.a. | M | none |
2019 [124] | 45 y/M | Subdural infection | E. faecium (8 mg/L) | 2 doses of 5 mg at both subdural sites, and after 72 h, a dose of 2.5 mg, subdural | 3 | 12 mg/kg | n.a. | M | none |
2022 [123] | 30–40 y/M | Ventriculitis | E. faecium (8 mg/L) | 10 mg 1 dd for 3 days | 3 | no | n.a. | M, C | none |
Antibiotic | MW (g/mol) | Approx. Serum PB (%) | Lipophilic/Hydrophylic | Number of Cases | Sources | IT Doses |
---|---|---|---|---|---|---|
Benzylpenicillin | 334.4 | 60 | Hydrophylic | many | Cases | Usually 6 mg q24h |
Ampicillin | 349.4 | 15–20 | Hydrophylic | 1 | Case | 20–40 mg q12h |
Cephaloridine | 415.5 | 10 | Hydrophylic | 56 | 5–100 mg q24h | |
Ceftazidime | 546.6 | 0–20 | Hydrophylic | 2 | Cases | 10–20 mg 2×/wk or 20 mg 1×/wk |
Ceftriaxone | 554.6 | 80–95 | Hydrophylic | 1 | Case | Intended 8 mg |
Cefotiam | 525.6 | 40 | Hydrophylic | 1 | Case | n.a. |
Meropenem | 383.5 | 2 | Hydrophylic | 14 (popPK) 43 (retrosp.) | PopPK model; Retrospective study | 10 mg q12h 20 mg q12h |
Linezolid | 337.3 | 30 | Mod. lipophylic | 1 | Case | 10 mg q24h |
Tigecycline | 585.7 | 70–90 | Mod. lipophylic | 15 | Cases | Recent cases mostly used 3–5 mg q12h |
Rifampicin | 822.9 | 70–90 | Lipophylic | 3 | Cases | 5 mg q24h |
Levofloxacin | 361.4 | 20–40 | Lipophylic | 2 | Cases | 1.5–2 mg 1–3×/wk |
Chloramphenicol | 323.1 | 50 | Lipophylic | 3 | Cases | 100–750 µg q24h or 25 mg q24h |
Daptomycin | 1621 | 90–95 | Hydophylic core lipophilic tail | 8 | Cases | 5–10 mg q24–72h |
Amikacin * | 585.6 | <10 | Hydrophylic | n.a. | n.a. | 30 mg q24h (R:5–100 mg q24–48h) |
Tobramycin * | 467.5 | 0 | Hydrophylic | n.a. | n.a. | 5–10 mg q24h (R:5–50 mg q24h) |
Gentamicin * | 477.6 | 0 | Hydrophylic | n.a. | n.a. | 4–10 mg q24h (R:1–20 mg q24h) |
Colisitin * | ~1155 | 60–80 | Mixture ** | n.a. | n.a. | 10 mg q24h (R:1.6–40 mg q24h) |
Polymyxin B * | ~1203 | 60–95 | Mixture ** | n.a. | n.a. | 5 mg q24h |
Vancomycin * | 1449 | 0–100 | Hydrophylic | n.a. | n.a. | 10–20 mg q24h (R:5–50 mg q24h) |
Teicoplanin * | 1880 | 95 | Mod. Lipophylic | n.a. | n.a. | 5–20 mg q24h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muller, A.E.; van Vliet, P.; Koch, B.C.P. Clinical Experience with Off-Label Intrathecal Administration of Selected Antibiotics in Adults: An Overview with Pharmacometric Considerations. Antibiotics 2023, 12, 1291. https://doi.org/10.3390/antibiotics12081291
Muller AE, van Vliet P, Koch BCP. Clinical Experience with Off-Label Intrathecal Administration of Selected Antibiotics in Adults: An Overview with Pharmacometric Considerations. Antibiotics. 2023; 12(8):1291. https://doi.org/10.3390/antibiotics12081291
Chicago/Turabian StyleMuller, Anouk E., Peter van Vliet, and Birgit C. P. Koch. 2023. "Clinical Experience with Off-Label Intrathecal Administration of Selected Antibiotics in Adults: An Overview with Pharmacometric Considerations" Antibiotics 12, no. 8: 1291. https://doi.org/10.3390/antibiotics12081291
APA StyleMuller, A. E., van Vliet, P., & Koch, B. C. P. (2023). Clinical Experience with Off-Label Intrathecal Administration of Selected Antibiotics in Adults: An Overview with Pharmacometric Considerations. Antibiotics, 12(8), 1291. https://doi.org/10.3390/antibiotics12081291