Antibiotic-Induced Immunosuppression—A Focus on Cellular Immunity
Abstract
:1. Introduction
2. Cellular Dysfunction
2.1. Mitochondrial Dysfunction
2.2. Chemotaxis and Migration
2.3. Toll-Like Receptor Expression
2.4. Cytokine Release
2.5. Phagocytosis
2.6. Antigen Presentation
2.7. Lymphocyte Proliferation
2.8. Lymphocyte Apoptosis
3. Clinical Consequences
4. Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Furukawa, Y.; Luo, Y.; Funada, S.; Onishi, A.; Ostinelli, E.; Hamza, T.; Furukawa, T.A.; Kataoka, Y. Optimal duration of antibiotic treatment for community-acquired pneumonia in adults: A systematic review and duration-effect meta-analysis. BMJ Open 2023, 13, e061023. [Google Scholar] [CrossRef] [PubMed]
- Conway Morris, A.; Datta, D.; Shankar-Hari, M.; Stephen, J.; Weir, C.J.; Rennie, J.; Antonelli, J.; Bateman, A.; Warner, N.; Judge, K.; et al. Cell-surface signatures of immune dysfunction risk-stratify critically ill patients: INFECT study. Intensive Care Med. 2018, 44, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Hauser, W.E., Jr.; Remington, J.S. Effect of antibiotics on the immune response. Am. J. Med. 1982, 72, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Anuforom, O.; Wallace, G.R.; Piddock, L.V. The immune response and antibacterial therapy. Med. Microbiol. Immunol. 2015, 204, 151–159. [Google Scholar] [CrossRef]
- Miller, M.; Melis, M.J.; Miller, J.R.C.; Kleyman, A.; Shankar-Hari, M.; Singer, M. Antibiotics, Sedatives, and Catecholamines Further Compromise Sepsis-Induced Immune Suppression in Peripheral Blood Mononuclear Cells. Crit. Care Med. 2024, 52, 596–606. [Google Scholar] [CrossRef]
- Arulkumaran, N.; Routledge, M.; Schlebusch, S.; Lipman, J.; Conway Morris, A. Antimicrobial-associated harm in critical care: A narrative review. Intensive Care Med. 2020, 46, 225–235. [Google Scholar] [CrossRef]
- Snow, T.A.C.; Longobardo, A.; Brealey, D.; Down, J.; Satta, G.; Singer, M.; Arulkumaran, N. Beneficial ex vivo immunomodulatory and clinical effects of clarithromycin in COVID-19. J. Infect. Chemother. 2022, 28, 948–954. [Google Scholar] [CrossRef]
- Tosi, M.; Coloretti, I.; Meschiari, M.; De Biasi, S.; Girardis, M.; Busani, S. The Interplay between Antibiotics and the Host Immune Response in Sepsis: From Basic Mechanisms to Clinical Considerations: A Comprehensive Narrative Review. Antibiotics 2024, 13, 406. [Google Scholar] [CrossRef]
- Cheng, S.C.; Scicluna, B.P.; Arts, R.J.; Gresnigt, M.S.; Lachmandas, E.; Giamarellos-Bourboulis, E.J.; Kox, M.; Manjeri, G.R.; Wagenaars, J.A.; Cremer, O.L.; et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol. 2016, 17, 406–413. [Google Scholar] [CrossRef]
- Park, D.W.; Zmijewski, J.W. Mitochondrial Dysfunction and Immune Cell Metabolism in Sepsis. Infect. Chemother. 2017, 49, 10–21. [Google Scholar] [CrossRef]
- Garaude, J.; Acin-Perez, R.; Martinez-Cano, S.; Enamorado, M.; Ugolini, M.; Nistal-Villan, E.; Hervas-Stubbs, S.; Pelegrin, P.; Sander, L.E.; Enriquez, J.A.; et al. Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat. Immunol. 2016, 17, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Liang, S.; Sanchez-Lopez, E.; He, F.; Shalapour, S.; Lin, X.J.; Wong, J.; Ding, S.; Seki, E.; Schnabl, B.; et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 2018, 560, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Tulkens, P.M. Intracellular distribution and activity of antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 1991, 10, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Bhargava, P.; McCloskey, D.; Mao, N.; Palsson, B.O.; Collins, J.J. Antibiotic-Induced Changes to the Host Metabolic Environment Inhibit Drug Efficacy and Alter Immune Function. Cell Host Microbe 2017, 22, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Bailly, S.; Mahe, Y.; Ferrua, B.; Fay, M.; Tursz, T.; Wakasugi, H.; Gougerot-Pocidalo, M.A. Quinolone-induced differential modification of IL-1 alpha and IL-1 beta production by LPS-stimulated human monocytes. Cell. Immunol. 1990, 128, 277–288. [Google Scholar] [CrossRef]
- Bailly, S.; Fay, M.; Ferrua, B.; Gougerot-Pocidalo, M.A. Ciprofloxacin treatment in vivo increases the ex vivo capacity of lipopolysaccharide-stimulated human monocytes to produce IL-1, IL-6 and tumour necrosis factor-alpha. Clin. Exp. Immunol. 1991, 85, 331–334. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, Y.; Guan, M.X. Mitochondrial DNA mutations associated with aminoglycoside induced ototoxicity. J. Otol. 2017, 12, 1–8. [Google Scholar] [CrossRef]
- Fourmy, D.; Recht, M.I.; Blanchard, S.C.; Puglisi, J.D. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 1996, 274, 1367–1371. [Google Scholar] [CrossRef]
- Weinberg, J.M.; Harding, P.G.; Humes, H.D. Mechanisms of gentamicin-induced dysfunction of renal cortical mitochondria. II. Effects on mitochondrial monovalent cation transport. Arch. Biochem. Biophys. 1980, 205, 232–239. [Google Scholar] [CrossRef]
- Hong, S.; Harris, K.A.; Fanning, K.D.; Sarachan, K.L.; Frohlich, K.M.; Agris, P.F. Evidence That Antibiotics Bind to Human Mitochondrial Ribosomal RNA Has Implications for Aminoglycoside Toxicity. J. Biol. Chem. 2015, 290, 19273–19286. [Google Scholar] [CrossRef]
- O’Reilly, M.; Young, L.; Kirkwood, N.K.; Richardson, G.P.; Kros, C.J.; Moore, A.L. Gentamicin Affects the Bioenergetics of Isolated Mitochondria and Collapses the Mitochondrial Membrane Potential in Cochlear Sensory Hair Cells. Front. Cell. Neurosci. 2019, 13, 416. [Google Scholar] [CrossRef] [PubMed]
- Simmons, C.F., Jr.; Bogusky, R.T.; Humes, H.D. Inhibitory effects of gentamicin on renal mitochondrial oxidative phosphorylation. J. Pharmacol. Exp. Ther. 1980, 214, 709–715. [Google Scholar] [PubMed]
- Ueda, N.; Guidet, B.; Shah, S.V. Gentamicin-induced mobilization of iron from renal cortical mitochondria. Am. J. Physiol. 1993, 265 Pt 2, F435–F439. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, J.M.; Simmons, F., Jr.; Humes, H.D. Alterations of mitochondrial respiration induced by aminoglycoside antibiotics. Res. Commun. Chem. Pathol. Pharmacol. 1980, 27, 521–531. [Google Scholar] [PubMed]
- Yang, C.L.; Du, X.H.; Han, Y.X. Renal cortical mitochondria are the source of oxygen free radicals enhanced by gentamicin. Ren. Fail. 1995, 17, 21–26. [Google Scholar] [CrossRef]
- McKee, E.E.; Ferguson, M.; Bentley, A.T.; Marks, T.A. Inhibition of mammalian mitochondrial protein synthesis by oxazolidinones. Antimicrob. Agents Chemother. 2006, 50, 2042–2049. [Google Scholar] [CrossRef]
- Leach, K.L.; Swaney, S.M.; Colca, J.R.; McDonald, W.G.; Blinn, J.R.; Thomasco, L.M.; Gadwood, R.C.; Shinabarger, D.; Xiong, L.; Mankin, A.S. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol. Cell 2007, 26, 393–402. [Google Scholar] [CrossRef]
- Milosevic, T.V.; Payen, V.L.; Sonveaux, P.; Muccioli, G.G.; Tulkens, P.M.; Van Bambeke, F. Mitochondrial Alterations (Inhibition of Mitochondrial Protein Expression, Oxidative Metabolism, and Ultrastructure) Induced by Linezolid and Tedizolid at Clinically Relevant Concentrations in Cultured Human HL-60 Promyelocytes and THP-1 Monocytes. Antimicrob. Agents Chemother. 2018, 62, 10–1128. [Google Scholar] [CrossRef]
- Morales, A.I.; Detaille, D.; Prieto, M.; Puente, A.; Briones, E.; Arevalo, M.; Leverve, X.; Lopez-Novoa, J.M.; El-Mir, M.Y. Metformin prevents experimental gentamicin-induced nephropathy by a mitochondria-dependent pathway. Kidney Int. 2010, 77, 861–869. [Google Scholar] [CrossRef]
- Desa, D.E.; Nichols, M.G.; Smith, H.J. Aminoglycosides rapidly inhibit NAD(P)H metabolism increasing reactive oxygen species and cochlear cell demise. J. Biomed. Opt. 2018, 24, 051403. [Google Scholar] [CrossRef]
- Nunez, R.M.; Rodriguez, A.B.; Barriga, C.; De la Fuente, M. In vitro and in vivo effects of Imipenem on phagocytic activity of murine peritoneal macrophages. APMIS 1989, 97, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Barriga, C.; Pedrera, I.; Rodriguez, A.B. Comparative study of the effect of teicoplanin and vancomycin upon the phagocytic process of peritoneal macrophages. Rev. Esp. Fisiol. 1996, 52, 215–222. [Google Scholar] [PubMed]
- Miyata, T.; Shinohara, M. Effect of antibiotics on rat leukocyte function. J. Osaka Dent. Univ. 1998, 32, 9–15. [Google Scholar] [PubMed]
- Jacqueline, C.; Broquet, A.; Roquilly, A.; Davieau, M.; Caillon, J.; Altare, F.; Potel, G.; Asehnoune, K. Linezolid dampens neutrophil-mediated inflammation in methicillin-resistant Staphylococcus aureus-induced pneumonia and protects the lung of associated damages. J. Infect. Dis. 2014, 210, 814–823. [Google Scholar] [CrossRef]
- Stamatiou, R.; Vasilaki, A.; Tzini, D.; Deskata, K.; Zacharouli, K.; Ioannou, M.; Sgantzos, M.; Zakynthinos, E.; Makris, D. Colistin Effects on Emphysematous Lung in an LPS-Sepsis Model. Antibiotics 2023, 12, 1731. [Google Scholar] [CrossRef]
- Anderson, R. Erythromycin and roxithromycin potentiate human neutrophil locomotion in vitro by inhibition of leukoattractant-activated superoxide generation and autooxidation. J. Infect. Dis. 1989, 159, 966–973. [Google Scholar] [CrossRef]
- Sugita, K.; Nishimura, T. Effect of antimicrobial agents on chemotaxis of polymorphonuclear leukocytes. J. Chemother. 1995, 7, 118–125. [Google Scholar] [CrossRef]
- Belsheim, J.A.; Gnarpe, G.H. Antibiotics and granulocytes. Direct and indirect effects on granulocyte chemotaxis. Acta Pathol. Microbiol. Scand. C 1981, 89, 217–221. [Google Scholar]
- Fietta, A.; Sacchi, F.; Bersani, C.; Grassi, F.; Mangiarotti, P.; Grassi, G.G. Effect of beta-lactam antibiotics on migration and bactericidal activity of human phagocytes. Antimicrob. Agents Chemother. 1983, 23, 930–931. [Google Scholar] [CrossRef]
- Matera, G.; Berlinghieri, M.C.; Foca, A. Meropenem: Effects on human leukocyte functions and interleukin release. Int. J. Antimicrob. Agents 1995, 5, 129–133. [Google Scholar] [CrossRef]
- Naess, A.; Stenhaug Kilhus, K.; Nystad, T.W.; Sornes, S. Linezolid and human polymorphonuclear leukocyte function. Chemotherapy 2006, 52, 122–124. [Google Scholar] [CrossRef] [PubMed]
- Ballesta, S.; Pascual, A.; Garcia, I.; Perea, E.J. Effect of linezolid on the phagocytic functions of human polymorphonuclear leukocytes. Chemotherapy 2003, 49, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Labro, M.T.; Babin-Chevaye, C.; Hakim, J. Effects of cefotaxime and cefodizime on human granulocyte functions in vitro. J. Antimicrob. Chemother. 1986, 18, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Fietta, A.; Merlini, C.; Gialdroni Grassi, G. In vitro activity of two new oral cephalosporins, cefixime and cefdinir (CI 983), on human peripheral mononuclear and polymorphonuclear leukocyte functions. Chemotherapy 1994, 40, 317–323. [Google Scholar] [CrossRef]
- Rodriguez, A.B.; Barriga, C.; De la Fuente, M. In vitro effect of cefoxitin on phagocytic function and antibody-dependent cellular cytotoxicity in human neutrophils. Comp. Immunol. Microbiol. Infect. Dis. 1993, 16, 37–50. [Google Scholar] [CrossRef]
- Rodriguez, A.B.; Barriga, C.; de la Fuente, M. Stimulation of phagocytic processes and antibody-dependent cellular cytotoxicity of human neutrophils by cefmetazole. Microbiol. Immunol. 1991, 35, 545–556. [Google Scholar] [CrossRef]
- Burgaleta, C.; Moreno, T. Effect of beta-lactams and aminoglycosides on human polymorphonuclear leucocytes. J. Antimicrob. Chemother. 1987, 20, 529–535. [Google Scholar] [CrossRef]
- Capodicasa, E.; Scaringi, L.; Rosati, E.; De Bellis, F.; Sbaraglia, G.; Marconi, P.; Del Favero, A. In-vitro effects of teicoplanin, teicoplanin derivative MDL 62211 and vancomycin on human polymorphonuclear cell function. J Antimicrob Chemother 1991, 27, 619–626. [Google Scholar] [CrossRef]
- Fietta, A.; Bersani, C.; De Rose, V.; Grassi, F.M.; Gialdroni Grassi, G. The effect of teicoplanin on leukocytic activity and intraleukocytic micro-organisms. J. Hosp. Infect. 1986, 7 (Suppl. A), 57–63. [Google Scholar] [CrossRef]
- Moran, F.J.; Puente, L.F.; Perez-Giraldo, C.; Blanco, M.T.; Hurtado, C.; Gomez-Garcia, A.C. Activity of vancomycin and teicoplanin against human polymorphonuclear leucocytes: A comparative study. J. Antimicrob. Chemother. 1991, 28, 415–418. [Google Scholar] [CrossRef]
- Schultz, M.J.; Speelman, P.; Hack, C.E.; Buurman, W.A.; van Deventer, S.J.; van Der Poll, T. Intravenous infusion of erythromycin inhibits CXC chemokine production, but augments neutrophil degranulation in whole blood stimulated with Streptococcus pneumoniae. J. Antimicrob. Chemother. 2000, 46, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Gialdroni Grassi, G.; Fietta, A.; Sacchi, F.; Derose, V. Influence of ceftriaxone on natural defense systems. Am. J. Med. 1984, 77, 37–41. [Google Scholar] [PubMed]
- Oda, H.; Kadota, J.; Kohno, S.; Hara, K. Erythromycin inhibits neutrophil chemotaxis in bronchoalveoli of diffuse panbronchiolitis. Chest 1994, 106, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Oda, H.; Kadota, J.; Kohno, S.; Hara, K. Leukotriene B4 in bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis. Chest 1995, 108, 116–122. [Google Scholar] [CrossRef]
- Kadota, J.; Sakito, O.; Kohno, S.; Sawa, H.; Mukae, H.; Oda, H.; Kawakami, K.; Fukushima, K.; Hiratani, K.; Hara, K. A mechanism of erythromycin treatment in patients with diffuse panbronchiolitis. Am. Rev. Respir. Dis. 1993, 147, 153–159. [Google Scholar] [CrossRef]
- Sakito, O.; Kadota, J.; Kohno, S.; Abe, K.; Shirai, R.; Hara, K. Interleukin 1 beta, tumor necrosis factor alpha, and interleukin 8 in bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis: A potential mechanism of macrolide therapy. Respiration 1996, 63, 42–48. [Google Scholar] [CrossRef]
- Banerjee, D.; Honeybourne, D.; Khair, O.A. The effect of oral clarithromycin on bronchial airway inflammation in moderate-to-severe stable COPD: A randomized controlled trial. Treat. Respir. Med. 2004, 3, 59–65. [Google Scholar] [CrossRef]
- Piacentini, G.L.; Peroni, D.G.; Bodini, A.; Pigozzi, R.; Costella, S.; Loiacono, A.; Boner, A.L. Azithromycin reduces bronchial hyperresponsiveness and neutrophilic airway inflammation in asthmatic children: A preliminary report. Allergy Asthma Proc. 2007, 28, 194–198. [Google Scholar] [CrossRef]
- Suzuki, H.; Shimomura, A.; Ikeda, K.; Oshima, T.; Takasaka, T. Effects of long-term low-dose macrolide administration on neutrophil recruitment and IL-8 in the nasal discharge of chronic sinusitis patients. Tohoku J. Exp. Med. 1997, 182, 115–124. [Google Scholar] [CrossRef]
- Cervin, A.; Wallwork, B.; Mackay-Sim, A.; Coman, W.B.; Greiff, L. Effects of long-term clarithromycin treatment on lavage-fluid markers of inflammation in chronic rhinosinusitis. Clin. Physiol. Funct. Imaging 2009, 29, 136–142. [Google Scholar] [CrossRef]
- Wallwork, B.; Coman, W.; Mackay-Sim, A.; Greiff, L.; Cervin, A. A double-blind, randomized, placebo-controlled trial of macrolide in the treatment of chronic rhinosinusitis. Laryngoscope 2006, 116, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Fujieda, S.; Mori, S.; Yamamoto, H.; Saito, H. Macrolide treatment decreased the size of nasal polyps and IL-8 levels in nasal lavage. Am. J. Rhinol. 2000, 14, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Kohyama, T.; Takizawa, H.; Kawasaki, S.; Akiyama, N.; Sato, M.; Ito, K. Fourteen-member macrolides inhibit interleukin-8 release by human eosinophils from atopic donors. Antimicrob. Agents Chemother. 1999, 43, 907–911. [Google Scholar] [CrossRef] [PubMed]
- Scaglione, F.; Ferrara, F.; Dugnani, S.; Demartini, G.; Triscari, F.; Fraschini, F. Immunostimulation by clarithromycin in healthy volunteers and chronic bronchitis patients. J. Chemother. 1993, 5, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Le, J.; Kulatheepan, Y.; Jeyaseelan, S. Role of toll-like receptors and nod-like receptors in acute lung infection. Front. Immunol. 2023, 14, 1249098. [Google Scholar] [CrossRef] [PubMed]
- Eswarappa, S.M.; Basu, N.; Joy, O.; Chakravortty, D. Folimycin (concanamycin A) inhibits LPS-induced nitric oxide production and reduces surface localization of TLR4 in murine macrophages. Innate Immun. 2008, 14, 13–24. [Google Scholar] [CrossRef]
- Bode, C.; Muenster, S.; Diedrich, B.; Jahnert, S.; Weisheit, C.; Steinhagen, F.; Boehm, O.; Hoeft, A.; Meyer, R.; Baumgarten, G. Linezolid, vancomycin and daptomycin modulate cytokine production, Toll-like receptors and phagocytosis in a human in vitro model of sepsis. J. Antibiot. 2015, 68, 485–490. [Google Scholar] [CrossRef]
- Bode, C.; Diedrich, B.; Muenster, S.; Hentschel, V.; Weisheit, C.; Rommelsheim, K.; Hoeft, A.; Meyer, R.; Boehm, O.; Knuefermann, P.; et al. Antibiotics regulate the immune response in both presence and absence of lipopolysaccharide through modulation of Toll-like receptors, cytokine production and phagocytosis in vitro. Int. Immunopharmacol. 2014, 18, 27–34. [Google Scholar] [CrossRef]
- Ohshima, A.; Tokura, Y.; Wakita, H.; Furukawa, F.; Takigawa, M. Roxithromycin down-modulates antigen-presenting and interleukin-1 beta-producing abilities of murine Langerhans cells. J. Dermatol. Sci. 1998, 17, 214–222. [Google Scholar] [CrossRef]
- Ortega, E.; Escobar, M.A.; Gaforio, J.J.; Algarra, I.; Alvarez De Cienfuegos, G. Modification of phagocytosis and cytokine production in peritoneal and splenic murine cells by erythromycin A, azithromycin and josamycin. J. Antimicrob. Chemother. 2004, 53, 367–370. [Google Scholar] [CrossRef]
- Liu, S.; Tan, M.; Cai, J.; Li, C.; Yang, M.; Sun, X.; He, B. Ribosome-targeting antibiotic control NLRP3-mediated inflammation by inhibiting mitochondrial DNA synthesis. Free Radic. Biol. Med. 2024, 210, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Strzepa, A.; Majewska-Szczepanik, M.; Kowalczyk, P.; Wozniak, D.; Motyl, S.; Szczepanik, M. Oral treatment with enrofloxacin early in life promotes Th2-mediated immune response in mice. Pharmacol. Rep. 2016, 68, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Ogino, H.; Fujii, M.; Ono, M.; Maezawa, K.; Hori, S.; Kizu, J. In vivo and in vitro effects of fluoroquinolones on lipopolysaccharide-induced pro-inflammatory cytokine production. J. Infect. Chemother. 2009, 15, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Ianaro, A.; Ialenti, A.; Maffia, P.; Sautebin, L.; Rombola, L.; Carnuccio, R.; Iuvone, T.; D’Acquisto, F.; Di Rosa, M. Anti-inflammatory activity of macrolide antibiotics. J. Pharmacol. Exp. Ther. 2000, 292, 156–163. [Google Scholar] [PubMed]
- Konno, S.; Adachi, M.; Asano, K.; Kawazoe, T.; Okamoto, K.; Takahashi, T. Influences of roxithromycin on cell-mediated immune responses. Life Sci. 1992, 51, PL107–PL112. [Google Scholar] [CrossRef]
- Konno, S.; Adachi, M.; Asano, K.; Okamoto, K.; Takahashi, T. Anti-allergic activity of roxithromycin: Inhibition of interleukin-5 production from mouse T lymphocytes. Life Sci. 1993, 52, PL25–PL30. [Google Scholar] [CrossRef]
- Breslow-Deckman, J.M.; Mattingly, C.M.; Birket, S.E.; Hoskins, S.N.; Ho, T.N.; Garvy, B.A.; Feola, D.J. Linezolid decreases susceptibility to secondary bacterial pneumonia postinfluenza infection in mice through its effects on IFN-gamma. J. Immunol. 2013, 191, 1792–1799. [Google Scholar] [CrossRef]
- Kaku, N.; Morinaga, Y.; Takeda, K.; Kosai, K.; Uno, N.; Hasegawa, H.; Miyazaki, T.; Izumikawa, K.; Mukae, H.; Yanagihara, K. Antimicrobial and immunomodulatory effects of tedizolid against methicillin-resistant Staphylococcus aureus in a murine model of hematogenous pulmonary infection. Int. J. Med. Microbiol. 2016, 306, 421–428. [Google Scholar] [CrossRef]
- Yanagihara, K.; Kihara, R.; Araki, N.; Morinaga, Y.; Seki, M.; Izumikawa, K.; Kakeya, H.; Yamamoto, Y.; Yamada, Y.; Kohno, S.; et al. Efficacy of linezolid against Panton-Valentine leukocidin (PVL)-positive meticillin-resistant Staphylococcus aureus (MRSA) in a mouse model of haematogenous pulmonary infection. Int. J. Antimicrob. Agents 2009, 34, 477–481. [Google Scholar] [CrossRef]
- Verma, A.K.; Bauer, C.; Yajjala, V.K.; Bansal, S.; Sun, K. Linezolid Attenuates Lethal Lung Damage during Postinfluenza Methicillin-Resistant Staphylococcus aureus Pneumonia. Infect. Immun. 2019, 87, 10–1128. [Google Scholar] [CrossRef]
- Mike, J.K.; White, Y.; Hutchings, R.S.; Vento, C.; Ha, J.; Manzoor, H.; Lee, D.; Losser, C.; Arellano, K.; Vanhatalo, O.; et al. Perinatal Azithromycin Provides Limited Neuroprotection in an Ovine Model of Neonatal Hypoxic-Ischemic Encephalopathy. Stroke 2023, 54, 2864–2874. [Google Scholar] [CrossRef] [PubMed]
- Luna, C.M.; Bruno, D.A.; Garcia-Morato, J.; Mann, K.C.; Risso Patron, J.; Sagardia, J.; Absi, R.; Garcia Bottino, M.; Marchetti, D.; Famiglietti, A.; et al. Effect of linezolid compared with glycopeptides in methicillin-resistant Staphylococcus aureus severe pneumonia in piglets. Chest 2009, 135, 1564–1571. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Gao, W.; Tao, H.; Yang, J.; Huang, T. The regulation effects of danofloxacin on pig immune stress induced by LPS. Res. Vet. Sci. 2017, 110, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Ives, T.J.; Schwab, U.E.; Ward, E.S.; Hall, I.H. In-vitro anti-inflammatory and immunomodulatory effects of grepafloxacin in zymogen A- or Staphylococcus aureus-stimulated human THP-1 monocytes. J. Infect. Chemother. 2003, 9, 134–143. [Google Scholar] [CrossRef]
- Franks, Z.; Campbell, R.A.; Vieira de Abreu, A.; Holloway, J.T.; Marvin, J.E.; Kraemer, B.F.; Zimmerman, G.A.; Weyrich, A.S.; Rondina, M.T. Methicillin-resistant Staphylococcus aureus-induced thrombo-inflammatory response is reduced with timely antibiotic administration. Thromb. Haemost. 2013, 109, 684–695. [Google Scholar] [CrossRef]
- Garcia-Roca, P.; Mancilla-Ramirez, J.; Santos-Segura, A.; Fernandez-Aviles, M.; Calderon-Jaimes, E. Linezolid diminishes inflammatory cytokine production from human peripheral blood mononuclear cells. Arch. Med. Res. 2006, 37, 31–35. [Google Scholar] [CrossRef]
- Stevens, D.L.; Bryant, A.E.; Hackett, S.P. Antibiotic effects on bacterial viability, toxin production, and host response. Clin. Infect. Dis. 1995, 20 (Suppl. 2), S154–S157. [Google Scholar] [CrossRef]
- Foca, A.; Matera, G.; Berlinghieri, M.C. Inhibition of endotoxin-induced interleukin 8 release by teicoplanin in human whole blood. Eur. J. Clin. Microbiol. Infect. Dis. 1993, 12, 940–944. [Google Scholar] [CrossRef]
- Schultz, M.J.; Speelman, P.; Zaat, S.; van Deventer, S.J.; van der Poll, T. Erythromycin inhibits tumor necrosis factor alpha and interleukin 6 production induced by heat-killed Streptococcus pneumoniae in whole blood. Antimicrob. Agents Chemother. 1998, 42, 1605–1609. [Google Scholar] [CrossRef]
- Vickers, I.E.; Smikle, M.F. The immunomodulatory effect of antibiotics on the secretion of tumour necrosis factor alpha by peripheral blood mononuclear cells in response to Stenotrophomonas maltophilia stimulation. West. Indian. Med. J. 2006, 55, 138–141. [Google Scholar] [CrossRef]
- Pichereau, S.; Moran, J.J.; Hayney, M.S.; Shukla, S.K.; Sakoulas, G.; Rose, W.E. Concentration-dependent effects of antimicrobials on Staphylococcus aureus toxin-mediated cytokine production from peripheral blood mononuclear cells. J. Antimicrob. Chemother. 2012, 67, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Reato, G.; Cuffini, A.M.; Tullio, V.; Palarchio, A.I.; Bonino, A.; Foa, R.; Carlone, N.A. Co-amoxiclav affects cytokine production by human polymorphonuclear cells. J. Antimicrob. Chemother. 1999, 43, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Lankelma, J.M.; Cranendonk, D.R.; Belzer, C.; de Vos, A.F.; de Vos, W.M.; van der Poll, T.; Wiersinga, W.J. Antibiotic-induced gut microbiota disruption during human endotoxemia: A randomised controlled study. Gut 2017, 66, 1623–1630. [Google Scholar] [CrossRef] [PubMed]
- Bailly, S.; Fay, M.; Roche, Y.; Gougerot-Pocidalo, M.A. Effects of quinolones on tumor necrosis factor production by human monocytes. Int. J. Immunopharmacol. 1990, 12, 31–36. [Google Scholar] [CrossRef]
- Roche, Y.; Gougerot-Pocidalo, M.A.; Fay, M.; Etienne, D.; Forest, N.; Pocidalo, J.J. Comparative effects of quinolones on human mononuclear leucocyte functions. J. Antimicrob. Chemother. 1987, 19, 781–790. [Google Scholar] [CrossRef]
- Riesbeck, K.; Forsgren, A. Selective enhancement of synthesis of interleukin-2 in lymphocytes in the presence of ciprofloxacin. Eur. J. Clin. Microbiol. Infect. Dis. 1990, 9, 409–413. [Google Scholar] [CrossRef]
- Khan, A.A.; Slifer, T.R.; Remington, J.S. Effect of trovafloxacin on production of cytokines by human monocytes. Antimicrob. Agents Chemother. 1998, 42, 1713–1717. [Google Scholar] [CrossRef]
- Mori, S.; Takahashi, H.K.; Liu, K.; Wake, H.; Zhang, J.; Liu, R.; Yoshino, T.; Nishibori, M. Ciprofloxacin inhibits advanced glycation end products-induced adhesion molecule expression on human monocytes. Br. J. Pharmacol. 2010, 161, 229–240. [Google Scholar] [CrossRef]
- Ono, Y.; Ohmoto, Y.; Ono, K.; Sakata, Y.; Murata, K. Effect of grepafloxacin on cytokine production in vitro. J. Antimicrob. Chemother. 2000, 46, 91–94. [Google Scholar] [CrossRef]
- Kaminski, M.M.; Sauer, S.W.; Klemke, C.D.; Suss, D.; Okun, J.G.; Krammer, P.H.; Gulow, K. Mitochondrial reactive oxygen species control T cell activation by regulating IL-2 and IL-4 expression: Mechanism of ciprofloxacin-mediated immunosuppression. J. Immunol. 2010, 184, 4827–4841. [Google Scholar] [CrossRef]
- Yoshimura, T.; Kurita, C.; Usami, E.; Nakao, T.; Watanabe, S.; Kobayashi, J.; Yamazaki, F.; Nagai, H. Immunomodulatory action of levofloxacin on cytokine production by human peripheral blood mononuclear cells. Chemotherapy 1996, 42, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Roche, Y.; Fay, M.; Gougerot-Pocidalo, M.A. Enhancement of interleukin 2 production by quinolone-treated human mononuclear leukocytes. Int. J. Immunopharmacol. 1988, 10, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Cameron, E.J.; Chaudhuri, R.; Mair, F.; McSharry, C.; Greenlaw, N.; Weir, C.J.; Jolly, L.; Donnelly, I.; Gallacher, K.; Morrison, D.; et al. Randomised controlled trial of azithromycin in smokers with asthma. Eur. Respir. J. 2013, 42, 1412–1415. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Aten, M.; Okada, P.J.; Bowlware, K.L.; Chavez-Bueno, S.; Mejias, A.; Rios, A.M.; Katz, K.; Olsen, K.; Ng, S.; Jafri, H.S.; et al. Effect of clarithromycin on cytokines and chemokines in children with an acute exacerbation of recurrent wheezing: A double-blind, randomized, placebo-controlled trial. Ann. Allergy Asthma Immunol. 2006, 97, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.L.; Powell, H.; Boyle, M.J.; Scott, R.J.; Gibson, P.G. Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am. J. Respir. Crit. Care Med. 2008, 177, 148–155. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, Y.C.; Rhee, Y.K.; Lee, H.B. The effect of long-term treatment with erythromycin on Th1 and Th2 cytokines in diffuse panbronchiolitis. Biochem. Biophys. Res. Commun. 2004, 324, 114–117. [Google Scholar] [CrossRef]
- Lima, C.M.; Schroeder, J.T.; Galvao, C.E.; Castro, F.M.; Kalil, J.; Adkinson, N.F., Jr. Functional changes of dendritic cells in hypersensivity reactions to amoxicillin. Braz. J. Med. Biol. Res. 2010, 43, 964–968. [Google Scholar] [CrossRef]
- Juanola, O.; Gomez-Hurtado, I.; Zapater, P.; Moratalla, A.; Caparros, E.; Pinero, P.; Gonzalez-Navajas, J.M.; Gimenez, P.; Such, J.; Frances, R. Selective intestinal decontamination with norfloxacin enhances a regulatory T cell-mediated inflammatory control mechanism in cirrhosis. Liver Int. 2016, 36, 1811–1820. [Google Scholar] [CrossRef]
- Spyridaki, A.; Raftogiannis, M.; Antonopoulou, A.; Tsaganos, T.; Routsi, C.; Baziaka, F.; Karagianni, V.; Mouktaroudi, M.; Koutoukas, P.; Pelekanou, A.; et al. Effect of clarithromycin in inflammatory markers of patients with ventilator-associated pneumonia and sepsis caused by Gram-negative bacteria: Results from a randomized clinical study. Antimicrob. Agents Chemother. 2012, 56, 3819–3825. [Google Scholar] [CrossRef]
- Giamarellos-Bourboulis, E.J.; Siampanos, A.; Bolanou, A.; Doulou, S.; Kakavoulis, N.; Tsiakos, K.; Katopodis, S.; Schinas, G.; Skorda, L.; Alexiou, Z.; et al. Clarithromycin for early anti-inflammatory responses in community-acquired pneumonia in Greece (ACCESS): A randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 2024, 12, 294–304. [Google Scholar] [CrossRef]
- Lim, J.J.; Grinstein, S.; Roth, Z. Diversity and Versatility of Phagocytosis: Roles in Innate Immunity, Tissue Remodeling, and Homeostasis. Front. Cell Infect. Microbiol. 2017, 7, 191. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, A.F. Effects of vancomycin, teicoplanin, daptomycin and coumermycin on normal immune capabilities. J. Chemother. 1991, 3, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Mato, R.; Corrales, I.; Prieto, J. Influence of lomefloxacin on phagocytosis and killing activity of macrophages and neutrophils. J. Antimicrob. Chemother. 1992, 30, 558–559. [Google Scholar] [CrossRef] [PubMed]
- Muenster, S.; Bode, C.; Diedrich, B.; Jahnert, S.; Weisheit, C.; Steinhagen, F.; Frede, S.; Hoeft, A.; Meyer, R.; Boehm, O.; et al. Antifungal antibiotics modulate the pro-inflammatory cytokine production and phagocytic activity of human monocytes in an in vitro sepsis model. Life Sci. 2015, 141, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Wenisch, C.; Parschalk, B.; Zedtwitz-Liebenstein, K.; Weihs, A.; el Menyawi, I.; Graninger, W. Effect of single oral dose of azithromycin, clarithromycin, and roxithromycin on polymorphonuclear leukocyte function assessed ex vivo by flow cytometry. Antimicrob. Agents Chemother. 1996, 40, 2039–2042. [Google Scholar] [CrossRef]
- Scheffer, J.; Knoller, J.; Cullmann, W.; Konig, W. Effects of cefaclor, cefetamet and Ro 40-6890 on inflammatory responses of human granulocytes. J. Antimicrob. Chemother. 1992, 30, 57–66. [Google Scholar] [CrossRef]
- Pasqui, A.L.; Di Renzo, M.; Bruni, F.; Fanetti, G.; Campoccia, G.; Auteri, A. Imipenem and immune response: In vitro and in vivo studies. Drugs Exp. Clin. Res. 1995, 21, 17–22. [Google Scholar]
- Yamaryo, T.; Oishi, K.; Yoshimine, H.; Tsuchihashi, Y.; Matsushima, K.; Nagatake, T. Fourteen-member macrolides promote the phosphatidylserine receptor-dependent phagocytosis of apoptotic neutrophils by alveolar macrophages. Antimicrob. Agents Chemother. 2003, 47, 48–53. [Google Scholar] [CrossRef]
- Braga, P.C.; Maci, S.; Dal Sasso, M.; Fonti, E.; Ghessi, A. Effects of rokitamycin on phagocytosis and release of oxidant radicals of human polymorphonuclear leukocytes. Chemotherapy 1997, 43, 190–197. [Google Scholar] [CrossRef]
- Lianou, P.E.; Votta, E.G.; Papavassiliou, J.T.; Bassaris, H.P. In vivo potentiation of polymorphonuclear leukocyte function by ciprofloxacin. J. Chemother. 1993, 5, 223–227. [Google Scholar] [CrossRef]
- Herrera-Insua, I.; Jacques-Palaz, K.; Murray, B.E.; Rakita, R.M. The effect of antibiotic exposure on adherence to neutrophils of Enterococcus faecium resistant to phagocytosis. J. Antimicrob. Chemother. 1997, 39 (Suppl. A), 109–113. [Google Scholar] [CrossRef] [PubMed]
- Forsgren, A.; Bergkvist, P.I. Effect of ciprofloxacin on phagocytosis. Eur. J. Clin. Microbiol. 1985, 4, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Gruger, T.; Morler, C.; Schnitzler, N.; Brandenburg, K.; Nidermajer, S.; Horre, R.; Zundorf, J. Influence of fluoroquinolones on phagocytosis and killing of Candida albicans by human polymorphonuclear neutrophils. Med. Mycol. 2008, 46, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Hodge, S.; Hodge, G.; Brozyna, S.; Jersmann, H.; Holmes, M.; Reynolds, P.N. Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. Eur. Respir. J. 2006, 28, 486–495. [Google Scholar] [CrossRef]
- Noma, T.; Hayashi, M.; Yoshizawa, I.; Aoki, K.; Shikishima, Y.; Kawano, Y. A comparative investigation of the restorative effects of roxithromycin on neutrophil activities. Int. J. Immunopharmacol. 1998, 20, 615–624. [Google Scholar] [CrossRef]
- Gaudino, S.J.; Kumar, P. Cross-Talk Between Antigen Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Front. Immunol. 2019, 10, 360. [Google Scholar] [CrossRef]
- Monneret, G.; Lepape, A.; Voirin, N.; Bohe, J.; Venet, F.; Debard, A.L.; Thizy, H.; Bienvenu, J.; Gueyffier, F.; Vanhems, P. Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Med. 2006, 32, 1175–1183. [Google Scholar] [CrossRef]
- Boomer, J.S.; To, K.; Chang, K.C.; Takasu, O.; Osborne, D.F.; Walton, A.H.; Bricker, T.L.; Jarman, S.D., II; Kreisel, D.; Krupnick, A.S.; et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 2011, 306, 2594–2605. [Google Scholar] [CrossRef]
- Suzuki, M.; Asano, K.; Yu, M.; Hisamitsu, T.; Suzaki, H. Inhibitory action of a macrolide antibiotic, roxithromycin, on co-stimulatory molecule expressions in vitro and in vivo. Mediators Inflamm. 2002, 11, 235–244. [Google Scholar] [CrossRef]
- Asano, K.; Suzuki, M.; Shimane, T.; Suzaki, H. Suppression of co-stimulatory molecule expressions on splenic B lymphocytes by a macrolide antibiotic, roxithromycin in vitro. Int. Immunopharmacol. 2001, 1, 1385–1392. [Google Scholar] [CrossRef]
- Kawazu, K.; Kurokawa, M.; Asano, K.; Mita, A.; Adachi, M. Suppressive activity of a macrolide antibiotic, roxithromycin on co-stimulatory molecule expression on mouse splenocytes in vivo. Mediators Inflamm. 2000, 9, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Roche, Y.; Fay, M.; Gougerot-Pocidalo, M.A. Effects of quinolones on interleukin 1 production in vitro by human monocytes. Immunopharmacology 1987, 13, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Pena, R.; Lopez, S.; Mayorga, C.; Antunez, C.; Fernandez, T.D.; Torres, M.J.; Blanca, M. Potential involvement of dendritic cells in delayed-type hypersensitivity reactions to beta-lactams. J. Allergy Clin. Immunol. 2006, 118, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Iino, Y.; Sasaki, Y.; Kojima, C.; Miyazawa, T. Effect of macrolides on the expression of HLA-DR and costimulatory molecules on antigen-presenting cells in nasal polyps. Ann. Otol. Rhinol. Laryngol. 2001, 110 Pt 1, 457–463. [Google Scholar] [CrossRef]
- Karakike, E.; Scicluna, B.P.; Roumpoutsou, M.; Mitrou, I.; Karampela, N.; Karageorgos, A.; Psaroulis, K.; Massa, E.; Pitsoulis, A.; Chaloulis, P.; et al. Effect of intravenous clarithromycin in patients with sepsis, respiratory and multiple organ dysfunction syndrome: A randomized clinical trial. Crit. Care 2022, 26, 183. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 2013, 13, 862–874. [Google Scholar] [CrossRef]
- Yu, M.; Li, R.; Zhang, J. Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer. Biochem. Biophys. Res. Commun. 2016, 471, 639–645. [Google Scholar] [CrossRef]
- Song, M.; Wu, H.; Wu, S.; Ge, T.; Wang, G.; Zhou, Y.; Sheng, S.; Jiang, J. Antibiotic drug levofloxacin inhibits proliferation and induces apoptosis of lung cancer cells through inducing mitochondrial dysfunction and oxidative damage. Biomed. Pharmacother. 2016, 84, 1137–1143. [Google Scholar] [CrossRef]
- Schmid, D.A.; Depta, J.P.; Pichler, W.J. T cell-mediated hypersensitivity to quinolones: Mechanisms and cross-reactivity. Clin. Exp. Allergy 2006, 36, 59–69. [Google Scholar] [CrossRef]
- Banck, G.; Forsgren, A. Antibiotics and suppression of lymphocyte function in vitro. Antimicrob. Agents Chemother. 1979, 16, 554–560. [Google Scholar] [CrossRef]
- Kushiya, K.; Nakagawa, S.; Taneike, I.; Iwakura, N.; Imanishi, K.; Uchiyama, T.; Tsukada, H.; Gejyo, F.; Yamamoto, T. Inhibitory effect of antimicrobial agents and anisodamine on the staphylococcal superantigenic toxin-induced overproduction of proinflammatory cytokines by human peripheral blood mononuclear cells. J. Infect. Chemother. 2005, 11, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Karrow, N.A.; McCay, J.A.; Brown, R.D.; Musgrove, D.L.; Germolec, D.R.; White, K.L., Jr. Evaluation of the immunomodulatory effects of the macrolide antibiotic, clarithromycin, in female B6C3F1 mice: A 28-day oral gavage study. Drug Chem. Toxicol. 2001, 24, 19–37. [Google Scholar] [CrossRef] [PubMed]
- Pulverer, G. Effects of cefodizime and cefotaxime on cellular and humoral immune responses. Infection 1992, 20 (Suppl. 1), S41–S44. [Google Scholar] [CrossRef] [PubMed]
- Neftel, K.A.; Muller, M.R.; Widmer, U.; Hugin, A.W. Beta-lactam antibiotics inhibit human in vitro granulopoiesis and proliferation of some other cell types. Cell Biol. Toxicol. 1986, 2, 513–521. [Google Scholar] [CrossRef]
- Xu, G.; Shi, Y. Apoptosis signaling pathways and lymphocyte homeostasis. Cell Res. 2007, 17, 759–771. [Google Scholar] [CrossRef]
- Garrabou, G.; Soriano, A.; Pinos, T.; Casanova-Molla, J.; Pacheu-Grau, D.; Moren, C.; Garcia-Arumi, E.; Morales, M.; Ruiz-Pesini, E.; Catalan-Garcia, M.; et al. Influence of Mitochondrial Genetics on the Mitochondrial Toxicity of Linezolid in Blood Cells and Skin Nerve Fibers. Antimicrob. Agents Chemother. 2017, 61, 10–1128. [Google Scholar] [CrossRef]
- De Vriese, A.S.; Coster, R.V.; Smet, J.; Seneca, S.; Lovering, A.; Van Haute, L.L.; Vanopdenbosch, L.J.; Martin, J.J.; Groote, C.C.; Vandecasteele, S.; et al. Linezolid-induced inhibition of mitochondrial protein synthesis. Clin. Infect. Dis. 2006, 42, 1111–1117. [Google Scholar] [CrossRef]
- Plekhova, N.G.; Kondrashova, N.M.; Somova, L.M.; Drobot, E.I.; Lyapun, I.N. Effects of immunomodulators on functional activity of innate immunity cells infected with Streptococcus pneumoniae. Bull. Exp. Biol. Med. 2015, 158, 461–464. [Google Scholar] [CrossRef]
- Smith, D.M.; Kazi, A.; Smith, L.; Long, T.E.; Heldreth, B.; Turos, E.; Dou, Q.P. A novel beta-lactam antibiotic activates tumor cell apoptotic program by inducing DNA damage. Mol. Pharmacol. 2002, 61, 1348–1358. [Google Scholar] [CrossRef]
- Chen, D.; Falsetti, S.C.; Frezza, M.; Milacic, V.; Kazi, A.; Cui, Q.C.; Long, T.E.; Turos, E.; Dou, Q.P. Anti-tumor activity of N-thiolated beta-lactam antibiotics. Cancer Lett. 2008, 268, 63–69. [Google Scholar] [CrossRef]
- Koziel, R.; Zablocki, K.; Duszynski, J. Calcium signals are affected by ciprofloxacin as a consequence of reduction of mitochondrial DNA content in Jurkat cells. Antimicrob. Agents Chemother. 2006, 50, 1664–1671. [Google Scholar] [CrossRef] [PubMed]
- Herold, C.; Ocker, M.; Ganslmayer, M.; Gerauer, H.; Hahn, E.G.; Schuppan, D. Ciprofloxacin induces apoptosis and inhibits proliferation of human colorectal carcinoma cells. Br. J. Cancer 2002, 86, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Aranha, O.; Zhu, L.; Alhasan, S.; Wood, D.P., Jr.; Kuo, T.H.; Sarkar, F.H. Role of mitochondria in ciprofloxacin induced apoptosis in bladder cancer cells. J. Urol. 2002, 167, 1288–1294. [Google Scholar] [CrossRef] [PubMed]
- Denamur, S.; Boland, L.; Beyaert, M.; Verstraeten, S.L.; Fillet, M.; Tulkens, P.M.; Bontemps, F.; Mingeot-Leclercq, M.P. Subcellular mechanisms involved in apoptosis induced by aminoglycoside antibiotics: Insights on p53, proteasome and endoplasmic reticulum. Toxicol. Appl. Pharmacol. 2016, 309, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Servais, H.; Van Der Smissen, P.; Thirion, G.; Van der Essen, G.; Van Bambeke, F.; Tulkens, P.M.; Mingeot-Leclercq, M.P. Gentamicin-induced apoptosis in LLC-PK1 cells: Involvement of lysosomes and mitochondria. Toxicol. Appl. Pharmacol. 2005, 206, 321–333. [Google Scholar] [CrossRef]
- Cusack, R.; Little, E.; Martin-Loeches, I. Practical Lessons on Antimicrobial Therapy for Critically Ill Patients. Antibiotics 2024, 13, 162. [Google Scholar] [CrossRef]
- Suspected Sepsis: Recognition, Diagnosis and Early Management (NG51); National Institute for Health and Care Excellence (NICE): Manchester, UK, 2024.
- Pandolfo, A.M.; Horne, R.; Jani, Y.; Reader, T.W.; Bidad, N.; Brealey, D.; Enne, V.I.; Livermore, D.M.; Gant, V.; Brett, S.J.; et al. Understanding decisions about antibiotic prescribing in ICU: An application of the Necessity Concerns Framework. BMJ Qual. Saf. 2022, 31, 199–210. [Google Scholar] [CrossRef]
- Higgins, H.; Freeman, R.; Doble, A.; Hood, G.; Islam, J.; Gerver, S.; Henderson, K.L.; Demirjian, A.; Hopkins, S.; Ashiru-Oredope, D. Appropriateness of acute-care antibiotic prescriptions for community-acquired infections and surgical antibiotic prophylaxis in England: Analysis of 2016 national point prevalence survey data. J. Hosp. Infect. 2023, 142, 115–129. [Google Scholar] [CrossRef]
- Royer, S.; DeMerle, K.M.; Dickson, R.P.; Prescott, H.C. Shorter Versus Longer Courses of Antibiotics for Infection in Hospitalized Patients: A Systematic Review and Meta-Analysis. J. Hosp. Med. 2018, 13, 336–342. [Google Scholar] [CrossRef]
- Palin, V.; Welfare, W.; Ashcroft, D.M.; van Staa, T.P. Shorter and Longer Courses of Antibiotics for Common Infections and the Association with Reductions of Infection-Related Complications Including Hospital Admissions. Clin. Infect. Dis. 2021, 73, 1805–1812. [Google Scholar] [CrossRef]
- Chanderraj, R.; Admon, A.J.; He, Y.; Nuppnau, M.; Albin, O.R.; Prescott, H.C.; Dickson, R.P.; Sjoding, M.W. Mortality of Patients With Sepsis Administered Piperacillin-Tazobactam vs Cefepime. JAMA Intern. Med. 2024, 184, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Lonsdale, D.O.; Kipper, K.; Baker, E.H.; Barker, C.I.S.; Oldfield, I.; Philips, B.J.; Johnston, A.; Rhodes, A.; Sharland, M.; Standing, J.F. beta-Lactam antimicrobial pharmacokinetics and target attainment in critically ill patients aged 1 day to 90 years: The ABDose study. J. Antimicrob. Chemother. 2020, 75, 3625–3634. [Google Scholar] [CrossRef] [PubMed]
- Drager, S.; Ewoldt, T.M.J.; Abdulla, A.; Rietdijk, W.J.R.; Verkaik, N.J.; van Vliet, P.; Purmer, I.M.; Osthoff, M.; Koch, B.C.P.; Endeman, H.; et al. Target attainment of beta-lactam antibiotics and ciprofloxacin in critically ill patients and its association with 28-day mortality. J. Crit. Care 2024, 154904. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snow, T.A.C.; Singer, M.; Arulkumaran, N. Antibiotic-Induced Immunosuppression—A Focus on Cellular Immunity. Antibiotics 2024, 13, 1034. https://doi.org/10.3390/antibiotics13111034
Snow TAC, Singer M, Arulkumaran N. Antibiotic-Induced Immunosuppression—A Focus on Cellular Immunity. Antibiotics. 2024; 13(11):1034. https://doi.org/10.3390/antibiotics13111034
Chicago/Turabian StyleSnow, Timothy Arthur Chandos, Mervyn Singer, and Nishkantha Arulkumaran. 2024. "Antibiotic-Induced Immunosuppression—A Focus on Cellular Immunity" Antibiotics 13, no. 11: 1034. https://doi.org/10.3390/antibiotics13111034
APA StyleSnow, T. A. C., Singer, M., & Arulkumaran, N. (2024). Antibiotic-Induced Immunosuppression—A Focus on Cellular Immunity. Antibiotics, 13(11), 1034. https://doi.org/10.3390/antibiotics13111034