An Update on Recent Clinical Trial Data in Bloodstream Infection
Abstract
:1. Introduction
2. Laboratory Investigations for Bloodstream Infection
3. Treatment of Gram-Positive Bacteria
4. Treatment of Gram-Negative Bacteria
5. Candidemia Trials
6. Comparing Duration and Route of Administration of Antimicrobials for Bloodstream Infection
7. New Clinical Trial Design and Knowledge Gaps Requiring Prioritization for Future Bloodstream Infection Trials
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ziegler, M.J.; Pellegrini, D.C.; Safdar, N. Attributable mortality of central line associated bloodstream infection: Systematic review and meta-analysis. Infection 2015, 43, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Reunes, S.; Rombaut, V.; Vogelaers, D.; Brusselaers, N.; Lizy, C.; Cankurtaran, M.; Labeau, S.; Petrovic, M.; Blot, S. Risk factors and mortality for nosocomial bloodstream infections in elderly patients. Eur. J. Intern. Med. 2011, 22, e39–e44. [Google Scholar] [CrossRef] [PubMed]
- Kontula, K.S.K.; Skogberg, K.; Ollgren, J.; Järvinen, A.; Lyytikäinen, O. Population-Based Study of Bloodstream Infection Incidence and Mortality Rates, Finland, 2004-2018. Emerg. Infect. Dis. 2021, 27, 2560–2569. [Google Scholar] [CrossRef] [PubMed]
- Waterlow, N.R.; Cooper, B.S.; Robotham, J.V.; Knight, G.M. Antimicrobial resistance prevalence in bloodstream infection in 29 European countries by age and sex: An observational study. PLoS Med. 2024, 21, e1004301. [Google Scholar] [CrossRef]
- Global burden associated with 85 pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Infect. Dis. 2024, 24, 868–895. [CrossRef]
- Butler, M.S.; Henderson, I.R.; Capon, R.J.; Blaskovich, M.A.T. Antibiotics in the clinical pipeline as of December 2022. J. Antibiot. 2023, 76, 431–473. [Google Scholar] [CrossRef] [PubMed]
- Peri, A.M.; Stewart, A.; Hume, A.; Irwin, A.; Harris, P.N.A. New Microbiological Techniques for the Diagnosis of Bacterial Infections and Sepsis in ICU Including Point of Care. Curr. Infect. Dis. Rep. 2021, 23, 12. [Google Scholar] [CrossRef]
- Spellberg, B.; Rice, L.B. Duration of Antibiotic Therapy: Shorter Is Better. Ann. Intern. Med. 2019, 171, 210–211. [Google Scholar] [CrossRef]
- Stewart, A.G.; Harris, P.N.A.; Chatfield, M.; Evans, S.R.; van Duin, D.; Paterson, D.L. Modern Clinician-initiated Clinical Trials to Determine Optimal Therapy for Multidrug-resistant Gram-negative Infections. Clin. Infect. Dis. 2020, 71, 433–439. [Google Scholar] [CrossRef]
- Tong, S.Y.C.; Mora, J.; Bowen, A.C.; Cheng, M.P.; Daneman, N.; Goodman, A.L.; Heriot, G.S.; Lee, T.C.; Lewis, R.J.; Lye, D.C.; et al. The Staphylococcus aureus Network Adaptive Platform Trial Protocol: New Tools for an Old Foe. Clin. Infect. Dis. 2022, 75, 2027–2034. [Google Scholar] [CrossRef]
- Ransom, E.M.; Alipour, Z.; Wallace, M.A.; Burnham, C.A. Evaluation of Optimal Blood Culture Incubation Time To Maximize Clinically Relevant Results from a Contemporary Blood Culture Instrument and Media System. J. Clin. Microbiol. 2021, 59, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Peri, A.M.; Harris, P.N.A.; Paterson, D.L. Culture-independent detection systems for bloodstream infection. Clin. Microbiol. Infect. 2022, 28, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Christensen, A.B.; Footer, B.; Pusch, T.; Heath, K.; Iqbal, M.; Wang, L.; Tallman, G.; Cover, C.; Marfori, J.; Kendall, B.; et al. Impact of a Laboratory-Developed Phenotypic Rapid Susceptibility Test Directly From Positive Blood Cultures on Time to Narrowest Effective Therapy in Patients With Gram-Negative Bacteremia: A Prospective Randomized Trial. Open Forum Infect. Dis. 2022, 9, ofac347. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, I.; Kang, C.K.; Jun, K.I.; Yoo, S.H.; Chun, J.Y.; Jung, J.; Kim, Y.J.; Kim, D.Y.; Jo, H.B.; et al. Enhanced antimicrobial stewardship based on rapid phenotypic antimicrobial susceptibility testing for bacteraemia in patients with haematological malignancies: A randomized controlled trial. Clin. Microbiol. Infect. 2021, 27, 69–75. [Google Scholar] [CrossRef]
- Banerjee, R.; Komarow, L.; Virk, A.; Rajapakse, N.; Schuetz, A.N.; Dylla, B.; Earley, M.; Lok, J.; Kohner, P.; Ihde, S.; et al. Randomized Trial Evaluating Clinical Impact of RAPid IDentification and Susceptibility Testing for Gram-negative Bacteremia: RAPIDS-GN. Clin. Infect. Dis. 2021, 73, e39–e46. [Google Scholar] [CrossRef]
- Beuving, J.; Wolffs, P.F.; Hansen, W.L.; Stobberingh, E.E.; Bruggeman, C.A.; Kessels, A.; Verbon, A. Impact of same-day antibiotic susceptibility testing on time to appropriate antibiotic treatment of patients with bacteraemia: A randomised controlled trial. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 831–838. [Google Scholar] [CrossRef]
- Banerjee, R.; Teng, C.B.; Cunningham, S.A.; Ihde, S.M.; Steckelberg, J.M.; Moriarty, J.P.; Shah, N.D.; Mandrekar, J.N.; Patel, R. Randomized Trial of Rapid Multiplex Polymerase Chain Reaction-Based Blood Culture Identification and Susceptibility Testing. Clin. Infect. Dis. 2015, 61, 1071–1080. [Google Scholar] [CrossRef]
- Evans, S.R.; Patel, R.; Hamasaki, T.; Howard-Anderson, J.; Kinamon, T.; King, H.A.; Collyar, D.; Cross, H.R.; Chambers, H.F.; Fowler, V.G.; et al. The Future Ain’t What It Used to Be…Out With the Old…In With the Better: Antibacterial Resistance Leadership Group Innovations. Clin. Infect. Dis. 2023, 77, S321–S330. [Google Scholar] [CrossRef]
- Cervera, C.; Almela, M.; Martínez-Martínez, J.A.; Moreno, A.; Miró, J.M. Risk factors and management of Gram-positive bacteraemia. Int. J. Antimicrob. Agents 2009, 34 (Suppl. 4), S26–S30. [Google Scholar] [CrossRef]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef]
- Kourtis, A.P.; Hatfield, K.; Baggs, J.; Mu, Y.; See, I.; Epson, E.; Nadle, J.; Kainer, M.A.; Dumyati, G.; Petit, S.; et al. Vital Signs: Epidemiology and Recent Trends in Methicillin-Resistant and in Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections—United States. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Coombs, G.W.; Daley, D.A.; Yee, N.W.T.; Shoby, P.; Mowlaboccus, S. Australian Group on Antimicrobial Resistance (AGAR) Australian Staphylococcus aureus Sepsis Outcome Programme (ASSOP) Annual Report 2020. Commun. Dis. Intell. 2022, 46. [Google Scholar] [CrossRef] [PubMed]
- Holland, T.L.; Chambers, H.F.; Boucher, H.W.; Corey, G.R.; Coleman, R.; Castaneda-Ruiz, B.; Fowler, V.G. Considerations for Clinical Trials of Staphylococcus aureus Bloodstream Infection in Adults. Clin. Infect. Dis. 2019, 68, 865–872. [Google Scholar] [CrossRef]
- Cheng, M.P.; Lawandi, A.; Butler-Laporte, G.; De l’Étoile-Morel, S.; Paquette, K.; Lee, T.C. Adjunctive Daptomycin in the Treatment of Methicillin-susceptible Staphylococcus aureus Bacteremia: A Randomized, Controlled Trial. Clin. Infect. Dis. 2021, 72, e196–e203. [Google Scholar] [CrossRef]
- Pacios-Martínez, E.; García-Monzón, C. Daptomycin Plus Fosfomycin Versus Daptomycin Alone for Methicillin-resistant Staphylococcus aureus Severe Infection: Post Hoc Analysis Is Warranted. Clin. Infect. Dis. 2021, 72, e922. [Google Scholar] [CrossRef]
- Holland, T.L.; Cosgrove, S.E.; Doernberg, S.B.; Jenkins, T.C.; Turner, N.A.; Boucher, H.W.; Pavlov, O.; Titov, I.; Kosulnykov, S.; Atanasov, B.; et al. Ceftobiprole for Treatment of Complicated Staphylococcus aureus Bacteremia. N. Engl. J. Med. 2023, 389, 1390–1401. [Google Scholar] [CrossRef] [PubMed]
- Thwaites, G.E.; Scarborough, M.; Szubert, A.; Nsutebu, E.; Tilley, R.; Greig, J.; Wyllie, S.A.; Wilson, P.; Auckland, C.; Cairns, J.; et al. Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): A multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2018, 391, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Geriak, M.; Haddad, F.; Rizvi, K.; Rose, W.; Kullar, R.; LaPlante, K.; Yu, M.; Vasina, L.; Ouellette, K.; Zervos, M.; et al. Clinical Data on Daptomycin plus Ceftaroline versus Standard of Care Monotherapy in the Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia. Antimicrob. Agents Chemother. 2019, 63, 10–1128. [Google Scholar] [CrossRef]
- Grillo, S.; Pujol, M.; Miró, J.M.; López-Contreras, J.; Euba, G.; Gasch, O.; Boix-Palop, L.; Garcia-País, M.J.; Pérez-Rodríguez, M.T.; Gomez-Zorrilla, S.; et al. Cloxacillin plus fosfomycin versus cloxacillin alone for methicillin-susceptible Staphylococcus aureus bacteremia: A randomized trial. Nat. Med. 2023, 29, 2518–2525. [Google Scholar] [CrossRef]
- Brown, N.M.; Goodman, A.L.; Horner, C.; Jenkins, A.; Brown, E.M. Treatment of methicillin-resistant Staphylococcus aureus (MRSA): Updated guidelines from the UK. JAC Antimicrob. Resist. 2021, 3, dlaa114. [Google Scholar] [CrossRef]
- Gillet, Y.; Dumitrescu, O.; Tristan, A.; Dauwalder, O.; Javouhey, E.; Floret, D.; Vandenesch, F.; Etienne, J.; Lina, G. Pragmatic management of Panton-Valentine leukocidin-associated staphylococcal diseases. Int. J. Antimicrob. Agents 2011, 38, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.Y.C.; Lye, D.C.; Yahav, D.; Sud, A.; Robinson, J.O.; Nelson, J.; Archuleta, S.; Roberts, M.A.; Cass, A.; Paterson, D.L.; et al. Effect of Vancomycin or Daptomycin With vs Without an Antistaphylococcal β-Lactam on Mortality, Bacteremia, Relapse, or Treatment Failure in Patients With MRSA Bacteremia: A Randomized Clinical Trial. Jama 2020, 323, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.; Rice, L.B. State-of-the-Art Review: Persistent Enterococcal Bacteremia. Clin. Infect. Dis. 2024, 78, e1–e11. [Google Scholar] [CrossRef]
- Maldonado, N.; Rosso-Fernández, C.M.; Portillo-Calderón, I.; Borreguero Borreguero, I.; Tristán-Clavijo, E.; Palacios-Baena, Z.R.; Salamanca, E.; Fernández-Cuenca, F.; De-Cueto, M.; Stolz-Larrieu, E.; et al. Randomised, open-label, non-inferiority clinical trial on the efficacy and safety of a 7-day vs 14-day course of antibiotic treatment for uncomplicated enterococcal bacteraemia: The INTENSE trial protocol. BMJ Open 2023, 13, e075699. [Google Scholar] [CrossRef]
- Harris, P.N.A.; Tambyah, P.A.; Lye, D.C.; Mo, Y.; Lee, T.H.; Yilmaz, M.; Alenazi, T.H.; Arabi, Y.; Falcone, M.; Bassetti, M.; et al. Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. JAMA 2018, 320, 984–994. [Google Scholar] [CrossRef]
- Poirel, L.; Gniadkowski, M.; Nordmann, P. Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum beta-lactamase CTX-M-15 and of its structurally related beta-lactamase CTX-M-3. J. Antimicrob. Chemother. 2002, 50, 1031–1034. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Macalintal, C.; Rasmussen, B.A.; Lee, V.J.; Yang, Y. Kinetic interactions of tazobactam with beta-lactamases from all major structural classes. Antimicrob. Agents Chemother. 1993, 37, 851–858. [Google Scholar] [CrossRef]
- Drawz, S.M.; Bonomo, R.A. Three decades of beta-lactamase inhibitors. Clin. Microbiol. Rev. 2010, 23, 160–201. [Google Scholar] [CrossRef]
- Prevel, R.; Berdaï, D.; Boyer, A. Antibiotics for Ceftriaxone-Resistant Gram-Negative Bacterial Bloodstream Infections. Jama 2019, 321, 613. [Google Scholar] [CrossRef]
- Richter, D.C.; Frey, O.; Rohr, A.; Roberts, J.A.; Koberer, A.; Fuchs, T.; Papadimas, N.; Heinzel-Gutenbrunner, M.; Brenner, T.; Lichtenstern, C.; et al. Therapeutic drug monitoring-guided continuous infusion of piperacillin/tazobactam significantly improves pharmacokinetic target attainment in critically ill patients: A retrospective analysis of four years of clinical experience. Infection 2019, 47, 1001–1011. [Google Scholar] [CrossRef]
- Falagas, M.E.; Tansarli, G.S.; Ikawa, K.; Vardakas, K.Z. Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: A systematic review and meta-analysis. Clin. Infect. Dis. 2013, 56, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, N.J.; Liu, J.; O’Donnell, J.N.; Dulhunty, J.M.; Abdul-Aziz, M.H.; Berko, P.Y.; Nadler, B.; Lipman, J.; Roberts, J.A. Prolonged Infusion Piperacillin-Tazobactam Decreases Mortality and Improves Outcomes in Severely Ill Patients: Results of a Systematic Review and Meta-Analysis. Crit. Care Med. 2018, 46, 236–243. [Google Scholar] [CrossRef]
- Henderson, A.; Humphries, R. Building a Better Test for Piperacillin-Tazobactam Susceptibility Testing: Would that It Were So Simple (It’s Complicated). J. Clin. Microbiol. 2020, 58, 10–1128. [Google Scholar] [CrossRef]
- Henderson, A.; Paterson, D.L.; Chatfield, M.D.; Tambyah, P.A.; Lye, D.C.; De, P.P.; Lin, R.T.P.; Chew, K.L.; Yin, M.; Lee, T.H.; et al. Association between minimum inhibitory concentration, beta-lactamase genes and mortality for patients treated with piperacillin/tazobactam or meropenem from the MERINO study. Clin. Infect. Dis. 2020, 73, e3842–e3850. [Google Scholar] [CrossRef] [PubMed]
- Henderson, A. Association with 30-day mortality and MIC in patients treated with piperacillin/tazobactam for Escherichia coli and Klebsiella pneumoniae bloodstream infections that are non-susceptible to ceftriaxone from patients enrolled in the MERINO trial. In Proceedings of the 29th European Congress of Clinical Microbiology & Infectious Diseases, Amsterdam, The Netherlands, 16–19 April 2019. [Google Scholar]
- Stewart, A.G.; Paterson, D.L.; Young, B.; Lye, D.C.; Davis, J.S.; Schneider, K.; Yilmaz, M.; Dinleyici, R.; Runnegar, N.; Henderson, A.; et al. Meropenem Versus Piperacillin-Tazobactam for Definitive Treatment of Bloodstream Infections Caused by AmpC β-Lactamase-Producing Enterobacter spp, Citrobacter freundii, Morganella morganii, Providencia spp, or Serratia marcescens: A Pilot Multicenter Randomized Controlled Trial (MERINO-2). Open Forum Infect. Dis. 2021, 8, ofab387. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Heil, E.L.; Tamma, P.D. Cefiderocol: The Trojan horse has arrived but will Troy fall? Lancet Infect. Dis. 2021, 21, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Choby, J.E.; Ozturk, T.; Satola, S.W.; Jacob, J.T.; Weiss, D.S. Widespread cefiderocol heteroresistance in carbapenem-resistant Gram-negative pathogens. Lancet Infect. Dis. 2021, 21, 597–598. [Google Scholar] [CrossRef]
- Longshaw, C.; Santerre Henriksen, A.; Dressel, D.; Malysa, M.; Silvestri, C.; Takemura, M.; Yamano, Y.; Baba, T.; Slover, C.M. Heteroresistance to cefiderocol in carbapenem-resistant Acinetobacter baumannii in the CREDIBLE-CR study was not linked to clinical outcomes: A post hoc analysis. Microbiol. Spectr. 2023, 11, e0237123. [Google Scholar] [CrossRef]
- Kaye, K.S.; Marchaim, D.; Thamlikitkul, V.; Carmeli, Y.; Chiu, C.H.; Daikos, G.; Dhar, S.; Durante-Mangoni, E.; Gikas, A.; Kotanidou, A.; et al. Colistin Monotherapy versus Combination Therapy for Carbapenem-Resistant Organisms. NEJM Evid. 2023, 2, EVIDoa2200131. [Google Scholar] [CrossRef]
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: An open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Zusman, O.; Avni, T.; Leibovici, L.; Adler, A.; Friberg, L.; Stergiopoulou, T.; Carmeli, Y.; Paul, M. Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems. Antimicrob. Agents Chemother. 2013, 57, 5104–5111. [Google Scholar] [CrossRef]
- Motsch, J.; Murta de Oliveira, C.; Stus, V.; Koksal, I.; Lyulko, O.; Boucher, H.W.; Kaye, K.S.; File, T.M.; Brown, M.L.; Khan, I.; et al. RESTORE-IMI 1: A Multicenter, Randomized, Double-blind Trial Comparing Efficacy and Safety of Imipenem/Relebactam vs Colistin Plus Imipenem in Patients With Imipenem-nonsusceptible Bacterial Infections. Clin. Infect. Dis. 2020, 70, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Titov, I.; Wunderink, R.G.; Roquilly, A.; Rodríguez Gonzalez, D.; David-Wang, A.; Boucher, H.W.; Kaye, K.S.; Losada, M.C.; Du, J.; Tipping, R.; et al. A Randomized, Double-blind, Multicenter Trial Comparing Efficacy and Safety of Imipenem/Cilastatin/Relebactam Versus Piperacillin/Tazobactam in Adults With Hospital-acquired or Ventilator-associated Bacterial Pneumonia (RESTORE-IMI 2 Study). Clin. Infect. Dis. 2021, 73, e4539–e4548. [Google Scholar] [CrossRef]
- Kollef, M.H.; Novacek, M.; Kivistik, U.; Rea-Neto, A.; Shime, N.; Martin-Loeches, I.; Timsit, J.F.; Wunderink, R.G.; Bruno, C.J.; Huntington, J.A.; et al. Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): A randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2019, 19, 1299–1311. [Google Scholar] [CrossRef]
- Torres, A.; Zhong, N.; Pachl, J.; Timsit, J.F.; Kollef, M.; Chen, Z.; Song, J.; Taylor, D.; Laud, P.J.; Stone, G.G.; et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): A randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect. Dis. 2018, 18, 285–295. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Giamarellos-Bourboulis, E.J.; Rahav, G.; Mathers, A.J.; Bassetti, M.; Vazquez, J.; Cornely, O.A.; Solomkin, J.; Bhowmick, T.; Bishara, J.; et al. Effect and Safety of Meropenem-Vaborbactam versus Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections: The TANGO II Randomized Clinical Trial. Infect. Dis. Ther. 2018, 7, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Carmeli, Y.; Cisneros, J.M.; Paul, M.; Daikos, G.L.; Wang, M.; Torre-Cisneros, J.; Singer, G.; Titov, I.; Gumenchuk, I.; Zhao, Y.; et al. Aztreonam-avibactam versus meropenem for the treatment of serious infections caused by Gram-negative bacteria (REVISIT): A descriptive, multinational, open-label, phase 3, randomised trial. Lancet Infect. Dis. 2024. [Google Scholar] [CrossRef]
- Reboli, A.C.; Rotstein, C.; Pappas, P.G.; Chapman, S.W.; Kett, D.H.; Kumar, D.; Betts, R.; Wible, M.; Goldstein, B.P.; Schranz, J.; et al. Anidulafungin versus fluconazole for invasive candidiasis. N. Engl. J. Med. 2007, 356, 2472–2482. [Google Scholar] [CrossRef]
- Thompson, G.R.; Soriano, A.; Skoutelis, A.; Vazquez, J.A.; Honore, P.M.; Horcajada, J.P.; Spapen, H.; Bassetti, M.; Ostrosky-Zeichner, L.; Das, A.F.; et al. Rezafungin Versus Caspofungin in a Phase 2, Randomized, Double-blind Study for the Treatment of Candidemia and Invasive Candidiasis: The STRIVE Trial. Clin. Infect. Dis. 2021, 73, e3647–e3655. [Google Scholar] [CrossRef]
- Thompson, G.R., 3rd; Soriano, A.; Cornely, O.A.; Kullberg, B.J.; Kollef, M.; Vazquez, J.; Honore, P.M.; Bassetti, M.; Pullman, J.; Chayakulkeeree, M.; et al. Rezafungin versus caspofungin for treatment of candidaemia and invasive candidiasis (ReSTORE): A multicentre, double-blind, double-dummy, randomised phase 3 trial. Lancet 2023, 401, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.R., 3rd; Soriano, A.; Honore, P.M.; Bassetti, M.; Cornely, O.A.; Kollef, M.; Kullberg, B.J.; Pullman, J.; Hites, M.; Fortún, J.; et al. Efficacy and safety of rezafungin and caspofungin in candidaemia and invasive candidiasis: Pooled data from two prospective randomised controlled trials. Lancet Infect. Dis. 2024, 24, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Kullberg, B.J.; Viscoli, C.; Pappas, P.G.; Vazquez, J.; Ostrosky-Zeichner, L.; Rotstein, C.; Sobel, J.D.; Herbrecht, R.; Rahav, G.; Jaruratanasirikul, S.; et al. Isavuconazole Versus Caspofungin in the Treatment of Candidemia and Other Invasive Candida Infections: The ACTIVE Trial. Clin. Infect. Dis. 2019, 68, 1981–1989. [Google Scholar] [CrossRef] [PubMed]
- Andes, D.R.; Safdar, N.; Baddley, J.W.; Playford, G.; Reboli, A.C.; Rex, J.H.; Sobel, J.D.; Pappas, P.G.; Kullberg, B.J. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: A patient-level quantitative review of randomized trials. Clin. Infect. Dis. 2012, 54, 1110–1122. [Google Scholar] [CrossRef]
- Spec, A.; Pullman, J.; Thompson, G.R.; Powderly, W.G.; Tobin, E.H.; Vazquez, J.; Wring, S.A.; Angulo, D.; Helou, S.; Pappas, P.G. MSG-10: A Phase 2 study of oral ibrexafungerp (SCY-078) following initial echinocandin therapy in non-neutropenic patients with invasive candidiasis. J. Antimicrob. Chemother. 2019, 74, 3056–3062. [Google Scholar] [CrossRef]
- Shaw, K.J.; Ibrahim, A.S. Fosmanogepix: A Review of the First-in-Class Broad Spectrum Agent for the Treatment of Invasive Fungal Infections. J. Fungi 2020, 6, 239. [Google Scholar] [CrossRef]
- Yahav, D.; Franceschini, E.; Koppel, F.; Turjeman, A.; Babich, T.; Bitterman, R.; Neuberger, A.; Ghanem-Zoubi, N.; Santoro, A.; Eliakim-Raz, N.; et al. Seven Versus 14 Days of Antibiotic Therapy for Uncomplicated Gram-negative Bacteremia: A Noninferiority Randomized Controlled Trial. Clin. Infect. Dis. 2019, 69, 1091–1098. [Google Scholar] [CrossRef]
- Molina, J.; Montero-Mateos, E.; Praena-Segovia, J.; León-Jiménez, E.; Natera, C.; López-Cortés, L.E.; Valiente, L.; Rosso-Fernández, C.M.; Herrero, M.; Aller-García, A.I.; et al. Seven-versus 14-day course of antibiotics for the treatment of bloodstream infections by Enterobacterales: A randomized, controlled trial. Clin. Microbiol. Infect. 2022, 28, 550–557. [Google Scholar] [CrossRef]
- Evans, S.R.; Rubin, D.; Follmann, D.; Pennello, G.; Huskins, W.C.; Powers, J.H.; Schoenfeld, D.; Chuang-Stein, C.; Cosgrove, S.E.; Fowler, V.G., Jr.; et al. Desirability of Outcome Ranking (DOOR) and Response Adjusted for Duration of Antibiotic Risk (RADAR). Clin. Infect. Dis. 2015, 61, 800–806. [Google Scholar] [CrossRef]
- von Dach, E.; Albrich, W.C.; Brunel, A.S.; Prendki, V.; Cuvelier, C.; Flury, D.; Gayet-Ageron, A.; Huttner, B.; Kohler, P.; Lemmenmeier, E.; et al. Effect of C-Reactive Protein-Guided Antibiotic Treatment Duration, 7-Day Treatment, or 14-Day Treatment on 30-Day Clinical Failure Rate in Patients With Uncomplicated Gram-Negative Bacteremia: A Randomized Clinical Trial. Jama 2020, 323, 2160–2169. [Google Scholar] [CrossRef]
- Leo, S.; Lazarevic, V.; von Dach, E.; Kaiser, L.; Prendki, V.; Schrenzel, J.; Huttner, B.D.; Huttner, A. Effects of antibiotic duration on the intestinal microbiota and resistome: The PIRATE RESISTANCE project, a cohort study nested within a randomized trial. EBioMedicine 2021, 71, 103566. [Google Scholar] [CrossRef]
- Daneman, N.; Rishu, A.H.; Pinto, R.L.; Arabi, Y.M.; Cook, D.J.; Hall, R.; McGuinness, S.; Muscedere, J.; Parke, R.; Reynolds, S.; et al. Bacteremia Antibiotic Length Actually Needed for Clinical Effectiveness (BALANCE) randomised clinical trial: Study protocol. BMJ Open 2020, 10, e038300. [Google Scholar] [CrossRef] [PubMed]
- Rogers, B.A.; Fowler, R.; Harris, P.N.A.; Davis, J.S.; Pinto, R.L.; Bhatia Dwivedi, D.; Rishu, A.; Shehabi, Y.; Daneman, N. Non-inferiority trial of a shorter (7 days) compared with a longer (14 days) duration of antimicrobial therapy for the treatment of bacteraemic urinary sepsis, measured by microbiological success after the completion of therapy: A substudy protocol for the Bacteraemia Antibiotic Length Actually Needed for Clinical Effectiveness (BALANCE) multicentre randomised controlled trial. BMJ Open 2023, 13, e069708. [Google Scholar] [CrossRef]
- Tingsgård, S.; Israelsen, S.B.; Thorlacius-Ussing, L.; Frahm Kirk, K.; Lindegaard, B.; Johansen, I.S.; Knudsen, A.; Lunding, S.; Ravn, P.; Østergaard Andersen, C.; et al. Short course antibiotic treatment of Gram-negative bacteraemia (GNB5): A study protocol for a randomised controlled trial. BMJ Open 2023, 13, e068606. [Google Scholar] [CrossRef] [PubMed]
- Isler, B.; Aslan, A.T.; Benli, B.S.; Paterson, D.L.; Daneman, N.; Fowler, R.; Akova, M. Duration of antibiotic treatment and timing of oral switching for bloodstream infections: A survey on the practices of infectious diseases and intensive care physicians. Int. J. Antimicrob. Agents 2023, 61, 106802. [Google Scholar] [CrossRef] [PubMed]
- Omrani, A.S.; Abujarir, S.H.; Ben Abid, F.; Shaar, S.H.; Yilmaz, M.; Shaukat, A.; Alsamawi, M.S.; Elgara, M.S.; Alghazzawi, M.I.; Shunnar, K.M.; et al. Switch to oral antibiotics in Gram-negative bacteraemia: A randomized, open-label, clinical trial. Clin. Microbiol. Infect. 2024, 30, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Adaptive platform trials: Definition, design, conduct and reporting considerations. Nat. Rev. Drug Discov. 2019, 18, 797–807. [CrossRef]
- Bentley, C.; Cressman, S.; van der Hoek, K.; Arts, K.; Dancey, J.; Peacock, S. Conducting clinical trials-costs, impacts, and the value of clinical trials networks: A scoping review. Clin. Trials 2019, 16, 183–193. [Google Scholar] [CrossRef]
- Brown, A.R.; Gajewski, B.J.; Aaronson, L.S.; Mudaranthakam, D.P.; Hunt, S.L.; Berry, S.M.; Quintana, M.; Pasnoor, M.; Dimachkie, M.M.; Jawdat, O.; et al. A Bayesian comparative effectiveness trial in action: Developing a platform for multisite study adaptive randomization. Trials 2016, 17, 428. [Google Scholar] [CrossRef]
- Angus, D.C.; Berry, S.; Lewis, R.J.; Al-Beidh, F.; Arabi, Y.; van Bentum-Puijk, W.; Bhimani, Z.; Bonten, M.; Broglio, K.; Brunkhorst, F.; et al. The REMAP-CAP (Randomized Embedded Multifactorial Adaptive Platform for Community-acquired Pneumonia) Study. Rationale and Design. Ann. Am. Thorac. Soc. 2020, 17, 879–891. [Google Scholar] [CrossRef]
- Harris, P.N.A.; McNamara, J.F.; Lye, D.C.; Davis, J.S.; Bernard, L.; Cheng, A.C.; Doi, Y.; Fowler, V.G., Jr.; Kaye, K.S.; Leibovici, L.; et al. Proposed primary endpoints for use in clinical trials that compare treatment options for bloodstream infection in adults: A consensus definition. Clin. Microbiol. Infect. 2017, 23, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Hardy, M.; Harris, P.N.A.; Paterson, D.L.; Chatfield, M.D.; Mo, Y. Win Ratio Analyses of Piperacillin-Tazobactam Versus Meropenem for Ceftriaxone-Nonsusceptible Escherichia coli or Klebsiella pneumoniae Bloodstream Infections: Post Hoc Insights From the MERINO Trial. Clin. Infect. Dis. 2024, 78, 1482–1489. [Google Scholar] [CrossRef] [PubMed]
- McCabe, C.; Claxton, K.; Culyer, A.J. The NICE cost-effectiveness threshold: What it is and what that means. Pharmacoeconomics 2008, 26, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Qian, E.T.; Casey, J.D.; Wright, A.; Wang, L.; Shotwell, M.S.; Siemann, J.K.; Dear, M.L.; Stollings, J.L.; Lloyd, B.D.; Marvi, T.K.; et al. Cefepime vs Piperacillin-Tazobactam in Adults Hospitalized With Acute Infection: The ACORN Randomized Clinical Trial. Jama 2023, 330, 1557–1567. [Google Scholar] [CrossRef] [PubMed]
- Symons, T.J.; Straiton, N.; Gagnon, R.; Littleford, R.; Campbell, A.J.; Bowen, A.C.; Stewart, A.G.; Tong, S.Y.C.; Davis, J.S. Consumer perspectives on simplified, layered consent for a low risk, but complex pragmatic trial. Trials 2022, 23, 1055. [Google Scholar] [CrossRef]
- Leibovici, L.; Paul, M.; Doernberg, S.B. Which randomized controlled trial do we need? Clin. Microbiol. Infect. 2022, 28, 1525. [Google Scholar] [CrossRef]
Trial Reference | Trial | N | Sponsor | Population | Countries Recruiting From | Intervention | Outcome | Year Commenced Recruiting | Planned Completion Date |
---|---|---|---|---|---|---|---|---|---|
NCT06174649 | FAST | 900 | Duke University | Hospitalized subjects with blood cultures growing Gram-negative bacilli | Greece India Israel Spain | SOC AST versus AST using REVEAL™ | Composite 3-category DOOR outcome (unsuccessful discharge, lack of clinical response, and undesirable events) plus 30-day mortality | December 2023 | May 2025 |
NCT05137119 | SNAP | 8000 | University of Melbourne | Staphylococcus aureus complex grown from ≥1 blood culture | Australia Canada Israel Netherlands New Zealand Singapore South Africa United Kingdom | Platform trial design with silos (PSSA, MSSA, MRSA) and domains (backbone antibiotic, adjunctive antibiotic, early oral switch) | All-cause mortality at 90 days after platform entry | February 2022 | December 2028 |
NCT05394298 | INTENSE | 284 | Fundación Pública Andaluza para la gestión de la Investigación en Sevilla | Hospitalized adult patients with monomicrobial E. faecalis or E. faecium bacteremia. | Spain | Non-inferiority of a 7-day antibiotic regimen vs. 14 days in the treatment of bacteremia | Clinical success defined as (a) survival at TOC; (b) absence of enterococcal bacteremia relapse or infective endocarditis diagnosis at TOC; (c) no need to prolong therapy beyond the pre-established duration, or restart drugs against enterococci for any reason within 30 days. | July 2022 | July 2024 |
NCT03869437 | GAMECHANGER | 513 | University of Queensland | Hospital acquired or healthcare associated Gram-negative bloodstream infection | Australia Malaysia Singapore Taiwan Thailand Turkey | Cefiderocol versus best available therapy | All-cause mortality at 14 days | October 2019 | November 2023 |
NCT05421858 | - | 450 | Basilea Pharmaceutica | Adults with candidemia and/or invasive candidiasis based on a blood or non-blood specimen obtained within ≤96 h (4 days) before randomizatio | - | Oral fosmanogepix versus IV caspofungin followed by oral fluconazole | All-cause mortality at 30 days | August 2024 | January 2028 |
NCT05210439 | SHORTEN2 | 306 | Fundación Pública Andaluza para la gestión de la Investigación en Sevilla | Adults with BSI-PA who have received 6 days of active antibiotic treatment | Spain | 7 versus 14 days of treatment | Probability of achieving better DOOR/RADAR score for patients in the experimental group than in the control group | April 2022 | June 2025 |
NCT05199324 | INVEST | 720 | Tan Tock Seng Hospital | Adults with clinically stable/non-critically ill inpatients with uncomplicated Gram-negative bacteraemia | Singapore Australia Malaysia South Korea Turkey Israel Italy Greece Spain Lebanon | Early step-down to oral antibiotics (within 72 h from index blood culture collection) versus continuing standard of care IV therapy (for at least another 24 h post-randomisation) | All-cause mortality at day 30 post-randomisation | April 2022 | March 2025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stewart, A.G.; Simos, P.; Sivabalan, P.; Escolà-Vergé, L.; Garnham, K.; Isler, B., on behalf of the ESGBIES Study Group. An Update on Recent Clinical Trial Data in Bloodstream Infection. Antibiotics 2024, 13, 1035. https://doi.org/10.3390/antibiotics13111035
Stewart AG, Simos P, Sivabalan P, Escolà-Vergé L, Garnham K, Isler B on behalf of the ESGBIES Study Group. An Update on Recent Clinical Trial Data in Bloodstream Infection. Antibiotics. 2024; 13(11):1035. https://doi.org/10.3390/antibiotics13111035
Chicago/Turabian StyleStewart, Adam G., Peter Simos, Pirathaban Sivabalan, Laura Escolà-Vergé, Katherine Garnham, and Burcu Isler on behalf of the ESGBIES Study Group. 2024. "An Update on Recent Clinical Trial Data in Bloodstream Infection" Antibiotics 13, no. 11: 1035. https://doi.org/10.3390/antibiotics13111035
APA StyleStewart, A. G., Simos, P., Sivabalan, P., Escolà-Vergé, L., Garnham, K., & Isler, B., on behalf of the ESGBIES Study Group. (2024). An Update on Recent Clinical Trial Data in Bloodstream Infection. Antibiotics, 13(11), 1035. https://doi.org/10.3390/antibiotics13111035