A Convenient One-Pot Synthesis of Novel Benzimidazole–Thiazinone Derivatives and Their Antimicrobial Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
2.2.1. In Vitro Antifungal Screening of Synthesized Compounds
2.2.2. In Vitro Antibacterial Screening of Synthesized Compounds
Screening of the Synthesized Compounds
- (A)
- By disc
- (B)
- By percent inhibition
Determination of Minimum Inhibitory Concentration (MIC)
Disk Diffusion Assay
Combination Study
3. Materials and Methods
3.1. Experimental Protocol
Synthesis Protocol for the Preparation of Substituted Benzimidazole–Thiazinone Derivatives (CS1–CS10)
3.2. Biological Evaluation
3.2.1. In Vitro Antifungal Screening of Synthesized Derivatives
Materials and Methods
Antifungal Susceptibility Assays
- (A)
- Agar Disc diffusion assay
- (B)
- Minimum Inhibitory Concentration
3.2.2. In Vitro Antibacterial Screening of Synthesized Compounds
Methodology
In Vitro Antibacterial Screening of Synthesized Compounds
- (A)
- By disk diffusion
- (B)
- By percent inhibition
Estimation of Minimum Inhibitory Concentration (MIC)
Disk Diffusion Assay
Fractional Inhibitory Concentration Index (FICI)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Global Report for Infectious Diseases of Poverty; World Health Organization: Geneva, Switzerland, 2012; pp. 1–168.
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial Resistance: A Global Multifaceted Phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef]
- CDC. Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019; Volume 10. [Google Scholar] [CrossRef]
- CDC. COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2022; Volume 399, pp. 629–655. [Google Scholar]
- Qadir, T.; Amin, A.; Sharma, P.K.; Jeelani, I.; Abe, H. A Review on Medicinally Important Heterocyclic Compounds. Open Med. Chem. J. 2022, 16, e187410452202280. [Google Scholar] [CrossRef]
- Kabir, E.; Uzzaman, M. A Review on Biological and Medicinal Impact of Heterocyclic Compounds. Results Chem. 2022, 4, 100606. [Google Scholar] [CrossRef]
- Lagardère, P.; Fersing, C.; Masurier, N.; Lisowski, V. Thienopyrimidine: A Promising Scaffold to Access Anti-Infective Agents. Pharmaceuticals 2022, 15, 35. [Google Scholar] [CrossRef] [PubMed]
- Petrou, A.; Fesatidou, M.; Geronikaki, A. Thiazole Ring—A Biologically Active Scaffold. Molecules 2021, 26, 3166. [Google Scholar] [CrossRef] [PubMed]
- Asirvatham, S.; Thakor, E.; Jain, H. Morpholine and Thiomorpholine: A Privileged Scaffold Possessing Diverse Bioactivity Profile. J. Chem. Rev. 2021, 3, 247–272. [Google Scholar] [CrossRef]
- Sharma, P.K.; Amin, A.; Kumar, M. A Review: Medicinally Important Nitrogen Sulphur Containing Heterocycles. Open Med. Chem. J. 2020, 14, 49–64. [Google Scholar] [CrossRef]
- Choudhary, S.; Silakari, O. Chapter 7—Thiazine: A Versatile Heterocyclic Scaffold for Multifactorial Diseases. In Key Heterocycle Cores for Designing Multitargeting Molecules; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; ISBN 9780081020838. [Google Scholar]
- Badshah, S.L.; Naeem, A. Bioactive Thiazine and Benzothiazine Derivatives: Green Synthesis Methods and Their Medicinal Importance. Molecules 2016, 21, 1054. [Google Scholar] [CrossRef]
- Gaba, M.; Mohan, C. Development of Drugs Based on Imidazole and Benzimidazole Bioactive Heterocycles: Recent Advances and Future Directions. Med. Chem. Res. 2016, 25, 173–210. [Google Scholar] [CrossRef]
- Brishty, S.R.; Hossain, M.J.; Khandaker, M.U.; Faruque, M.R.I.; Osman, H.; Rahman, S.M.A. A Comprehensive Account on Recent Progress in Pharmacological Activities of Benzimidazole Derivatives. Front. Pharmacol. 2021, 12, 762807. [Google Scholar] [CrossRef]
- Ebenezer, O.; Oyetunde-Joshua, F.; Omotoso, O.D.; Shapi, M. Benzimidazole and Its Derivatives: Recent Advances (2020–2022). Results Chem. 2023, 5, 100925. [Google Scholar] [CrossRef]
- Lanigan, R.M.; Starkov, P.; Sheppard, T.D. Direct Synthesis of Amides from Carboxylic Acids and Amines Using B(OCH2CF3)3. J. Org. Chem. 2013, 78, 4512–4523. [Google Scholar] [CrossRef] [PubMed]
- Han, S.Y.; Kim, Y.A. Recent Development of Peptide Coupling Reagents in Organic Synthesis. Tetrahedron 2004, 60, 2447–2467. [Google Scholar] [CrossRef]
- Al-Warhi, T.I.; Al-Hazimi, H.M.A.; El-Faham, A. Recent Development in Peptide Coupling Reagents. J. Saudi Chem. Soc. 2012, 16, 97–116. [Google Scholar] [CrossRef]
- Pérez, B.C.; Teixeira, C.; Albuquerque, I.S.; Gut, J.; Rosenthal, P.J.; Gomes, J.R.B.; Prudeîncio, M.; Gomes, P. N-Cinnamoylated Chloroquine Analogues as Dual-Stage Antimalarial Leads. J. Med. Chem. 2013, 56, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Sturabotti, E.; Vetica, F.; Toscano, G.; Calcaterra, A.; Martinelli, A.; Migneco, L.M.; Leonelli, F. N-Acetyl-l-Phenylalanine Racemization During TBTU Amidation: An In-Depth Study for the Synthesis of Anti-Inflammatory 2-(N-Acetyl)-l-Phenylalanylamido-2-Deoxy-d-Glucose (NAPA). Molecules 2023, 28, 581. [Google Scholar] [CrossRef] [PubMed]
- Ramos Rodríguez, O.A.; Magaña Vergara, N.E.; Mojica Sánchez, J.P.; Sumaya Martínez, M.T.; Gómez Sandoval, Z.; Cruz, A.; Ramos Organillo, Á. Synthesis, Crystal Structure, Antioxidant Activity and Dft Study of 2-Aryl-2,3-Dihydro-4H-[1,3]Thiazino[3,2-a]Benzimidazol-4-One. J. Mol. Struct. 2020, 1199, 127036. [Google Scholar] [CrossRef]
- Dunetz, J.R.; Magano, J.; Weisenburger, G.A. Large-Scale Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals. Org. Process Res. Dev. 2016, 20, 140–177. [Google Scholar] [CrossRef]
- Sabatini, S.; Kaatz, G.W.; Rossolini, G.M.; Brandini, D.; Fravolini, A. From Phenothiazine to 3-Phenyl-1,4-benzothiazine Derivatives as Inhibitors of the Staphylococcus aureus NorA Multidrug Efflux Pump. J. Med. Chem. 2008, 51, 4321–4330. [Google Scholar] [CrossRef]
- Gayathri, B.; Hipparagi, S.M.; Ramjith, U.S.; Mathews Jacob, C. Microwave-Assisted Synthesis of Fluoro, Chloro 2-Substituted Benzimidazole Thiazine Derivatives for Antibacterial and Analgesic Activities. Int. J. Res. Pharm. Sci. 2012, 2, 146–158. [Google Scholar]
- Owolabi, B.J.; Iraoya, D.I.; Adepoju, T.S. Synthesis, Characterization and Biological Activities of 2,5-Dimethyl-4-Methoxy[5,6-b]Benzo[2,3-a]Pyrolo-4-Keto Thiazine-1,1-Dioxide. Sci. Res. J. (SCIRJ) 2019, 7. [Google Scholar] [CrossRef]
- Fringuelli, R.; Schiaffella, F.; Bistoni, F.; Pitzurra, L.; Vecchiarelli, A. Azole Derivatives of 1,4-Benzothiazine as Antifungal Agents. Bioorg. Med. Chem. 1998, 6, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Karaburun, A.Ç.; Kaya Çavuşoğlu, B.; Acar Çevik, U.; Osmaniye, D.; Sağlık, B.N.; Levent, S.; Özkay, Y.; Koparal, A.S.; Kaplancıklı, Z.A. Synthesis and Antifungal Potential of Some Novel Benzimidazole-1,3,4-Oxadiazole Compounds. Molecules 2019, 24, 191. [Google Scholar] [CrossRef] [PubMed]
- Musa, M.S.; Miah, M.S.; Munni, Y.A.; Patwary, M.A.M.; Kazi, M.; Matin, M.M. Synthesis and Elucidation of Strained Galactopyronose Esters As Selective Cyclooxygenase-2 Inhibitor: A Comprehensive Computational Approach. RSC Adv. 2024, 14, 30469–30481. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, S.; Prajapati, S.K.; Majumdar, S.; Raza, K.; Gabr, M.T.; Kumar, S.; Pal, K.; Rashid, H.; Kumar, S.; Krishnamurthy, S.; et al. Discovery of New Phenyl Sulfonyl-Pyrimidine Carboxylate Derivatives As the Potential Multi-Target Drugs with Effective Anti-Alzheimer’s Action: Design, Synthesis, Crystal Structure and In-Vitro Biological Evaluation. Eur. J. Med. Chem. 2021, 215, 113224. [Google Scholar] [CrossRef]
- Rex, J.H.; Alexander, B.D.; Andes, D.; Arthington-Skaggs, B.; Brown, S.D.; Chaturvedi, V.; Ghannoum, M.A.; Espinel-Ingroff, A.; Knapp, C.C.; Ostrosky-Zeichner, L.; et al. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, Approved Standard, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008; Volume 28, ISBN 1-56238-666-2. [Google Scholar]
- Sharma, Y.; Khan, L.A.; Manzoor, N. Anti-Candida Activity of Geraniol Involves Disruption of Cell Membrane Integrity and Function. J. Mycol. Med. 2016, 26, 244–254. [Google Scholar] [CrossRef]
- Ahmedi, S.; Pant, P.; Raj, N.; Manzoor, N. Limonene Inhibits Virulence Associated Traits in Candida Albicans: In-Vitro and In-Silico Studies. Phytomedicine Plus 2022, 2, 100285. [Google Scholar] [CrossRef]
- Jorgensen, J.H.; Turnidge, J. Susceptibility Test Methods: Dilution and Disk Diffusion Methods. In Manual of Clinical Microbiology; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Ali, A.; Hasan, P.; Irfan, M.; Uddin, A.; Khan, A.; Saraswat, J.; Maguire, R.; Kavanagh, K.; Patel, R.; Joshi, M.C.; et al. Development of Oxadiazole-Sulfonamide-Based Compounds as Potential Antibacterial Agents. ACS Omega 2021, 6, 27798–27813. [Google Scholar] [CrossRef] [PubMed]
- Karp, B.E.; Tate, H.; Plumblee, J.R.; Dessai, U.; Whichard, J.M.; Thacker, E.L.; Hale, K.R.; Wilson, W.; Friedman, C.R.; Griffin, P.M.; et al. National Antimicrobial Resistance Monitoring System: Two Decades of Advancing Public Health Through Integrated Surveillance of Antimicrobial Resistance. Foodborne Pathog. Dis. 2017, 14, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Asiri, A.M.; Basisi, H.M.; Asad, M.; Zayed, M.E.M.; Sharma, K.; Wani, M.Y. Synthesis and Evaluation of Quinoline-3-Carbonitrile Derivatives as Potential Antibacterial Agents. Bioorg. Chem. 2019, 88, 102968. [Google Scholar] [CrossRef] [PubMed]
- Abass, S.; Zahiruddin, S.; Ali, A.; Irfan, M.; Jan, B.; Haq, Q.M.R.; Husain, S.A.; Ahmad, S. Development of Synergy-Based Combination of Methanolic Extract of Andrographis Paniculata and Berberis Aristata Against E. coli and S. aureus. Curr. Microbiol. 2022, 79, 223. [Google Scholar] [CrossRef] [PubMed]
- Rand, K.H.; Houck, H.J.; Brown, P.; Bennett, D. Reproducibility of the Microdilution Checkerboard Method for Antibiotic Synergy. Antimicrob. Agents Chemother. 1993, 37, 613–615. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Cao, Y.-Y.; Xu, Z.; Zhao, J.-X.; Gao, P.-H.; Qin, X.-F.; Jiang, Y.-Y. Potent in Vitro Synergism of Fluconazole and Berberine Chloride Against Clinical Isolates of Candida Albicans Resistant to Fluconazole. Antimicrob. Agents Chemother. 2006, 50, 1096–1099. [Google Scholar] [CrossRef] [PubMed]
S. No. | Code | Diameter of Zone of Inhibition | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C. albicans ATCC 90028 | C. glabrata ATCC 90030 | C. tropicalis ATCC 750 | ||||||||
MIC/2 | MIC | 2MIC | MIC/2 | MIC | 2MIC | MIC/2 | MIC | 2MIC | ||
1. | CS1 | 12 | 13 | 14 | 11 | 12.5 | 13 | 9 | 10.5 | 12 |
2. | CS4 | 11 | 12 | 13.5 | 11 | 13.5 | 14.5 | 10 | 11.5 | 13 |
3. | CS8 | 12 | 13.5 | 15.5 | 11 | 13 | 15 | 10 | 12 | 14 |
4. | CS10 | 11.3 | 13.5 | 15 | 10 | 12 | 14.5 | 12 | 13 | 14 |
5. | FLC | 21 | 22 | 21 |
S. No. | Code | MIC (µg/mL) | ||
---|---|---|---|---|
C. albicans ATCC 90028 | C. glabrata ATCC 90030 | C. tropicalis ATCC 750 | ||
1. | CS1 | 820 | 850 | 850 |
2. | CS2 | >1000 | >1000 | >1000 |
3. | CS3 | >1000 | >1000 | >1000 |
4. | CS4 | 870 | 895 | 925 |
5. | CS5 | >1000 | >1000 | >1000 |
6. | CS6 | >1000 | >1000 | >1000 |
7. | CS7 | >1000 | >1000 | >1000 |
8. | CS8 | 830 | 865 | 890 |
9. | CS9 | >1000 | >1000 | >1000 |
10. | CS10 | 775 | 820 | 850 |
11. | FLC | 10 | 12 | 10 |
S. No. | Code | E. coli | P. aeruginosa |
---|---|---|---|
1. | CS2 | 1024 | 512 |
2. | CS3 | 512 | 512 |
3. | CS4 | 512 | 256 |
4. | CS7 | 1024 | 256 |
5. | CIP | 0.5 | 0.5 |
Compounds | Isolates | Zone of Inhibition (ZOI) in mm | ||
---|---|---|---|---|
½ MIC | MIC | 2MIC | ||
CS4 | E. coli | 06 | 07 | 08 |
P. aeruginosa | 07 | 09 | 10 | |
CS7 | E. coli | - | - | 06 |
P. aeruginosa | - | 06 | 07 | |
CIP | E. coli | 18 | 38 | 42 |
P. aeruginosa | 15 | 31 | 38 |
Bacterial Strains | MIC Alone (μg/mL) | MIC in Combination (μg/mL) | FICI | Mode of Interaction | ||
---|---|---|---|---|---|---|
CS4 | CIP | CS4 | CIP | |||
E. coli | 512 | 0.5 | 64 | 0.06 | 0.25 | Synergistic |
P. aeruginosa | 256 | 0.5 | 32 | 0.03 | 0.185 | Synergistic |
Code | MW | RB | HBA | HBD | TPSA | Log P | Log S | Log Kp | BBB | Lipinski Violations |
---|---|---|---|---|---|---|---|---|---|---|
CS1 | 346.06 | 0 | 4.5 | 0 | 69.42 | 3.65 | −5.49 | −5.35 | 0.16 | 0 |
CS2 | 423.97 | 0 | 4.5 | 0 | 69.42 | 4.27 | −6.21 | −5.34 | 0.33 | 0 |
CS3 | 380.02 | 0 | 4.5 | 0 | 69.42 | 4.22 | −6.15 | −5.11 | 0.32 | 0 |
CS4 | 376.06 | 0 | 5.25 | 0 | 78.65 | 3.73 | −5.65 | −5.55 | 0.073 | 0 |
CS5 | 376.06 | 0 | 5.25 | 0 | 78.65 | 3.73 | −5.65 | −5.55 | 0.082 | 0 |
CS6 | 376.06 | 0 | 5.25 | 0 | 78.65 | 3.73 | −5.65 | −5.55 | 0.081 | 0 |
CS7 | 364.05 | 0 | 4.5 | 0 | 69.42 | 3.96 | −5.6 | −5.38 | 0.269 | 0 |
CS8 | 364.05 | 0 | 4.5 | 0 | 69.42 | 3.98 | −5.6 | −5.38 | 268 | 0 |
CS9 | 360.07 | 0 | 4.5 | 0 | 69.42 | 4.05 | −5.88 | −5.17 | 0.14 | 0 |
CS10 | 391.04 | 0 | 5.5 | 0 | 115.24 | 3.09 | −6.28 | −5.74 | −0.884 | 0 |
Code | AMES Toxicity | Max. Tolerated Dose (Human) | hERG I Inhibitor | hERGII Inhibitor | Oral Rat Acute Toxicity (LD50) | Oral Rat Chronic Toxicity (LOAEL) | Hepatotoxicity | Skin Sensitization | T. Pyriformis Toxicity | Minnow Toxicity (LC50) |
---|---|---|---|---|---|---|---|---|---|---|
CS1 | No | 0.051 | Yes | Yes | 2.219 | 0.901 | No | No | 0.285 | −1.712 |
CS2 | No | 0.083 | No | Yes | 2.236 | 0.683 | No | No | 0.285 | −2.489 |
CS3 | No | 0.082 | No | Yes | 2.235 | 0.693 | No | No | 0.285 | −2.343 |
CS4 | No | 0.068 | No | Yes | 2.222 | 0.791 | No | No | 0.285 | −1.465 |
CS5 | No | 0.068 | No | Yes | 2.222 | 0.791 | No | No | 0.285 | −1.465 |
CS6 | No | 0.068 | No | Yes | 2.222 | 0.791 | No | No | 0.285 | −1.465 |
CS7 | No | 0.037 | No | Yes | 2.241 | 0.821 | No | No | 0.285 | −1.796 |
CS8 | No | 0.039 | No | Yes | 2.233 | 0.801 | No | No | 0.285 | −1.344 |
CS9 | No | 0.075 | No | Yes | 2.224 | 0.92 | No | No | 0.285 | −2.126 |
CS10 | Yes | 0.102 | No | Yes | 2.509 | 0.835 | No | No | 0.285 | −3.167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samreen, S.; Ali, A.; Ahmedi, S.; Raghib, M.; Haque, A.; Manzoor, N.; Hussain, A.; Abid, M.; Inam, A. A Convenient One-Pot Synthesis of Novel Benzimidazole–Thiazinone Derivatives and Their Antimicrobial Activity. Antibiotics 2024, 13, 1155. https://doi.org/10.3390/antibiotics13121155
Samreen S, Ali A, Ahmedi S, Raghib M, Haque A, Manzoor N, Hussain A, Abid M, Inam A. A Convenient One-Pot Synthesis of Novel Benzimidazole–Thiazinone Derivatives and Their Antimicrobial Activity. Antibiotics. 2024; 13(12):1155. https://doi.org/10.3390/antibiotics13121155
Chicago/Turabian StyleSamreen, Sabahat, Asghar Ali, Saiema Ahmedi, Mohammad Raghib, Anzarul Haque, Nikhat Manzoor, Afzal Hussain, Mohammad Abid, and Afreen Inam. 2024. "A Convenient One-Pot Synthesis of Novel Benzimidazole–Thiazinone Derivatives and Their Antimicrobial Activity" Antibiotics 13, no. 12: 1155. https://doi.org/10.3390/antibiotics13121155
APA StyleSamreen, S., Ali, A., Ahmedi, S., Raghib, M., Haque, A., Manzoor, N., Hussain, A., Abid, M., & Inam, A. (2024). A Convenient One-Pot Synthesis of Novel Benzimidazole–Thiazinone Derivatives and Their Antimicrobial Activity. Antibiotics, 13(12), 1155. https://doi.org/10.3390/antibiotics13121155