Cephalotin Versus Dicloxacillin for the Treatment of Methicillin-Susceptible Staphylococcus aureus Bacteraemia: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods
4.1. Study Design and Population
4.2. Microbiological Assays
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ikuta, K.S.; Swetschinski, L.R.; Aguilar, G.R.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Weaver, N.D.; E Wool, E.; Han, C.; Hayoon, A.G.; et al. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef]
- Benfield, T.; Espersen, F.; Frimodt-Møller, N.; Jensen, A.; Larsen, A.; Pallesen, L.; Skov, R.; Westh, H.; Skinhøj, P. Increasing incidence but decreasing in-hospital mortality of adult Staphylococcus aureus bacteraemia between 1981 and 2000. Clin. Microbiol. Infect. 2007, 13, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Turnidge, J.D.; Kotsanas, D.; Munckhof, W.; Roberts, S.; Bennett, C.M.; Nimmo, G.R.; Coombs, G.W.; Murray, R.J.; Howden, B.; Johnson, P.D.R.; et al. Staphylococcus aureus bacteraemia: A major cause of mortality in Australia and New Zealand. Med. J. Aust. 2009, 191, 368–373. [Google Scholar] [CrossRef]
- van der Vaart, T.W.; Prins, J.M.; Soetekouw, R.; van Twillert, G.; Veenstra, J.; Herpers, B.L.; Rozemeijer, W.; Jansen, R.R.; Bonten, M.J.M.; van der Meer, J.T.M. All-Cause and Infection-Related Mortality in Staphylococcus aureus Bacteremia, a Multicenter Prospective Cohort Study. Open Forum Infect. Dis. 2022, 9, ofac653. [Google Scholar] [CrossRef]
- Sutherland, R.; PCroydon, E.A.; Rolinson, G.N. Flucloxacillin, a new isoxazolyl penicillin, compared with oxacillin, cloxacillin, and dicloxacillin. Br. Med. J. 1970, 21, 455–460. [Google Scholar] [CrossRef]
- Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.M. Isoxazolyl Penicillins: Oxacillin, Cloxacillin, Dicloxacillin, and Flucloxacillin. In Kucers’ The Use of Antibiotics; CRC Press: Boca Raton, FL, USA, 2017; Volume 1, pp. 143–161. [Google Scholar]
- Marcy, S.M.; Klein, J.O. The Isoxazolyl Penicillins: Oxacillin, Cloxacillin, and Dicloxacillin. Med. Clin. N. Am. 1970, 54, 1127–1143. [Google Scholar] [CrossRef] [PubMed]
- Avdic, E. Nafcillin. In Kucers’ The Use of Antibiotics; CRC Press: Boca Raton, FL, USA, 2017; Volume 1, pp. 162–172. [Google Scholar]
- Bush, K. B-Lactam antibiotics: Penicillins. In Antibiotic and Chemotherapy; Churchill Livingstone: London, UK, 2010; Volume 1, pp. 200–225. [Google Scholar]
- Quiimtiliaimi, R.; Nightingale, C.H. Diagnosis and Treatment Drugs Five Years Later Cefazolin. Ann. Intern. Med. 1978, 89, 650–656. Available online: http://annals.org/pdfaccess.ashx?url=/data/journals/aim/19539/ (accessed on 12 August 2023). [CrossRef]
- Christ, W. Pharmacological properties of cephalosporins. Infection 1991, 19, 244–252. [Google Scholar] [CrossRef]
- Brogard, J.M.; Comte, F.; Pinget, M. Pharmacokinetics of Cephalosporin Antibiotics. Antibiot. Chemother. 1978, 25, 123–162. [Google Scholar]
- Ponce-De-León, A.; Camacho-Ortiz, A.; E Macías, A.; Landín-Larios, C.; Villanueva-Walbey, C.; Trinidad-Guerrero, D.; López-Jácome, E.; Galindo-Fraga, A.; Bobadilla-Del-Valle, M.; Sifuentes-Osornio, J. Epidemiology and clinical characteristics of Staphylococcus aureus bloodstream infections in a tertiary-care center in Mexico City: 2003–2007. Rev. Investig. Clínica 2010, 62, 553–559. [Google Scholar]
- Bai, A.D.; Lo, C.K.; Komorowski, A.S.; Suresh, M.; Guo, K.; Garg, A.; Tandon, P.; Senecal, J.; Del Corpo, O.; Stefanova, I.; et al. Staphylococcus aureus bacteremia mortality across country income groups: A secondary analysis of a systematic review. Int. J. Infect. Dis. 2022, 122, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Osmon, S.; Ward, S.; Fraser, V.J.; Kollef, M.H. Hospital Mortality for Patients With Bacteremia Due to Staphylococcus aureus or Pseudomonas aeruginosa. Chest 2004, 125, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.N.; Rhodes, N.J.; Lee, B.J.; Scheetz, M.H.; Hanson, A.P.; Segreti, J.; Crank, C.W.; Wang, S.K. Treatment Outcomes with Cefazolin versus Oxacillin for Deep-Seated Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections. Antimicrob. Agents Chemother. 2015, 59, 5232–5238. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, J.B.; Knudsen, J.D.; Arpi, M.; Schønheyder, H.C.; Benfield, T.; Østergaard, C. Relative efficacy of cefuroxime versus dicloxacillin as definitive antimicrobial therapy in methicillin-susceptible Staphylococcus aureus bacteraemia: A propensity-score adjusted retrospective cohort study. J. Antimicrob. Chemother. 2014, 69, 506–514. [Google Scholar] [CrossRef]
- Flynt, L.K.; Kenney, R.M.; Zervos, M.J.; Davis, S.L. The Safety and Economic Impact of Cefazolin versus Nafcillin for the Treatment of Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections. Infect. Dis. Ther. 2017, 6, 225–231. [Google Scholar] [CrossRef]
- Renaud, C.J.; Lin, X.; Subramanian, S.; Fisher, D.A. High-dose cefazolin on consecutive hemodialysis in anuric patients with Staphylococcal bacteremia. Hemodial. Int. 2011, 15, 63–68. [Google Scholar] [CrossRef]
- Bai, A.D.; Showler, A.; Burry, L.; Steinberg, M.; Ricciuto, D.R.; Fernandes, T.; Chiu, A.; Raybardhan, S.; Science, M.; Fernando, E.; et al. Comparative effectiveness of cefazolin versus cloxacillin as definitive antibiotic therapy for MSSA bacteraemia: Results from a large multicentre cohort study. J. Antimicrob. Chemother. 2014, 70, 1539–1546. [Google Scholar] [CrossRef]
- Song, K.-H.; Jung, S.-I.; Park, W.; Lee, S.; Kim, Y.-S.; Kwak, Y.; Kiem, S.; Kim, H.-I.; Kim, E.; Park, K.-H.; et al. Comparative outcomes of cefazolin versus nafcillin for methicillin-susceptible Staphylococcus aureus bacteraemia: A prospective multicentre cohort study in Korea. Clin. Microbiol. Infect. 2018, 24, 152–158. [Google Scholar] [CrossRef]
- Li, J.; Echevarria, K.L.; Hughes, D.W.; Cadena, J.A.; Bowling, J.E.; Ii, J.S.L. Comparison of Cefazolin versus Oxacillin for Treatment of Complicated Bacteremia Caused by Methicillin-Susceptible Staphylococcus aureus. Antimicrob. Agents Chemother. 2014, 58, 5117–5124. [Google Scholar] [CrossRef]
- McDanel, J.S.; Roghmann, M.-C.; Perencevich, E.N.; Ohl, M.E.; Goto, M.; Livorsi, D.J.; Jones, M.; Albertson, J.P.; Nair, R.; O’shea, A.M.J.; et al. Comparative Effectiveness of Cefazolin Versus Nafcillin or Oxacillin for Treatment of Methicillin-Susceptible Staphylococcus aureus Infections Complicated by Bacteraemia: A Nationwide Cohort Study. Clin. Infect. Dis. 2017, 65, 100–106. [Google Scholar] [CrossRef]
- Pollett, S.; Baxi, S.M.; Rutherford, G.W.; Doernberg, S.B.; Bacchetti, P.; Chambers, H.F. Cefazolin versus Nafcillin for Methicillin-Sensitive Staphylococcus aureus Bloodstream Infection in a California Tertiary Medical Center. Antimicrob. Agents Chemother. 2016, 60, 4684–4689. [Google Scholar] [CrossRef]
- Paul, M.; Zemer-Wassercug, N.; Talker, O.; Lishtzinsky, Y.; Lev, B.; Samra, Z.; Leibovici, L.; Bishara, J. Are all beta-lactams similarly effective in the treatment of methicillin-sensitive Staphylococcus aureus bacteraemia? Clin. Microbiol. Infect. 2011, 17, 1581–1586. [Google Scholar] [CrossRef]
- Bidell, M.R.; Patel, N.; O’donnell, J.N. Optimal treatment of MSSA bacteraemias: A meta-analysis of cefazolin versus antistaphylococcal penicillins. J. Antimicrob. Chemother. 2018, 73, 2643–2651. [Google Scholar] [CrossRef]
- Rindone, J.P.; Mellen, C.K. Meta-analysis of trials comparing cefazolin to antistaphylococcal penicillins in the treatment of methicillin-sensitive Staphylococcus aureus bacteraemia. Br. J. Clin. Pharmacol. 2018, 84, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Xiao, Y.; Zhang, Q.; Li, Q.; Wang, F.; Wu, J.; Lin, N. Efficacy and safety of cefazolin versus antistaphylococcal penicillins for the treatment of methicillin-susceptible Staphylococcus aureus bacteremia: A systematic review and meta-analysis. BMC Infect. Dis. 2018, 18, 508. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.R.; Seas, C.; Carvajal, L.P.; Diaz, L.; Echeverri, A.M.; Ferro, C.; Rios, R.; Porras, P.; Luna, C.; Gotuzzo, E.; et al. The Cefazolin Inoculum Effect Is Associated With Increased Mortality in Methicillin-Susceptible Staphylococcus aureus Bacteremia. Open Forum Infect. Dis. 2018, 5, ofy123. [Google Scholar] [CrossRef] [PubMed]
- Nannini, E.C.; Stryjewski, M.E.; Singh, K.V.; Rude, T.H.; Corey, G.R.; Fowler, V.G.; Murray, B.E. Determination of an Inoculum Effect with Various Cephalosporins among Clinical Isolates of Methicillin-Susceptible Staphylococcus aureus. Antimicrob. Agents Chemother. 2010, 54, 2206–2208. [Google Scholar] [CrossRef] [PubMed]
- Tovar Vargas, M.; de los, Á.; Universidad Nacional Autónoma de México. Efecto del Inóculo en la Susceptibilidad a Cephalotina por Staphylococcus Aureus y S. Lugdunensis Susceptibles a Meticilina en Pacientes de un Hospital de Tercer Nivel. 2021. Available online: http://132.248.9.195/ptd2021/octubre/0818880/Index.htmlTextocompleto (accessed on 14 July 2023).
- Friedman, N.D.; Kaye, K.S.; Stout, J.E.; McGarry, S.A.; Trivette, S.L.; Briggs, J.P.; Lamm, W.; Clark, C.; MacFarquhar, J.; Walton, A.L.; et al. Health Care–Associated Bloodstream Infections in Adults: A Reason To Change the Accepted Definition of Community-Acquired Infections. Ann. Intern. Med. 2002, 137, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Mermel, L.A.; Allon, M.; Bouza, E.; Craven, D.E.; Flynn, P.; O’Grady, N.P.; Raad, I.I.; Rijnders, B.J.A.; Sherertz, R.J.; Warren, D.K. Clinical Practice Guidelines for the Diagnosis and Management of Intravascular Catheter-Related Infection: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 49, 1–45. [Google Scholar] [CrossRef] [PubMed]
- van Hal, S.J.; Jensen, S.O.; Vaska, V.L.; Espedido, B.A.; Paterson, D.L.; Gosbell, I.B. Predictors of Mortality in Staphylococcus aureus Bacteremia. Clin. Microbiol. Rev. 2012, 25, 362–386. [Google Scholar] [CrossRef] [PubMed]
- Kuehl, R.; Morata, L.; Boeing, C.; Subirana, I.; Seifert, H.; Rieg, S.; Bin Kim, H.; Kim, E.S.; Liao, C.-H.; Tilley, R.; et al. Defining persistent Staphylococcus aureus bacteraemia: Secondary analysis of a prospective cohort study. Lancet Infect. Dis. 2020, 20, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef]
- Hagel, S.; Bahrs, C.; Schumann, R.; Pletz, M.; Weis, S. Complicated and uncomplicated S. aureus bacteraemia: An international Delphi survey among infectious diseases experts on definitions and treatment. Clin. Microbiol. Infect. 2022, 28, 1026.e7–1026.e11. [Google Scholar] [CrossRef] [PubMed]
All n = 202 | Dicloxacillin n = 105 | Cephalotin n = 97 | p | |
---|---|---|---|---|
Age, median (IQR) | 50 (32–63) | 49 (31–61) | 52 (34–65) | 0.23 |
Sex, male, n (%) | 119 (59) | 58 (55) | 61 (63) | 0.34 |
BMI, median (IQR) | 24 (22–27) | 24 (21–27) | 24 (22–27) | 0.69 |
Charlson comorbidity index score, median (IQR) | 3 (2–4) | 2 (1–4) | 3 (2–4) | 0.15 |
Any comorbidity, n (%) | 185 (92) | 95 (91) | 90 (93) | 0.74 |
COVID-19, n (%) | 13 (3) | 0 | 13 (13) | <0.001 |
Diabetes mellitus, n (%) | 64 (38) | 27 (26) | 37 (38) | 0.08 |
HbA1c, median (IQR) | 7.5 (6.5–8.4) | 7.3 (6.2–9.3) | 7.7 (7.3–8.4) | |
Chronic hypertension, n (%) | 92 (46) | 45 (43) | 47 (49) | 0.51 |
End-stage renal disease, n (%) | 60 (30) | 31 (30) | 29 (30) | 1.00 |
Hemodialysis, n (%) | 58 (97) | 31 (100) | 27 (93) | 0.44 |
Ischemic heart disease, n (%) | 14 (7) | 7 (7) | 7 (7) | 1.00 |
Heart failure, n (%) | 11 (5) | 6 (6) | 5 (5) | 1.00 |
Heart valve disease, n (%) | 6 (3) | 3 (3) | 3 (3) | 1.00 |
Cirrhosis, n (%) | 13 (6) | 7 (7) | 6 (6) | 1.00 |
Child-Pugh score A | 3 (23) | 1 | 2 | |
Child-Pugh score B | 5 (39) | 4 | 1 | 0.32 |
Child-Pugh score C | 5 (39) | 2 | 3 | |
Autoimmune disease, n (%) | 51 (25) | 34 (32) | 17 (18) | 0.02 |
HIV infection, n (%) | 5 (3) | 3 (3) | 2 (2) | 1.00 |
CD4 cell count, median (IQR) | 376 (313–471) | 313 (163–510) | 423 (400–447) | |
Intravenous drug user, n (%) | 0 | 0 | 0 | |
Solid organ transplant, n (%) | 21 (10) | 11 (11) | 10 (10) | 1.00 |
Renal transplant, n (%) | 21 | 11 | 10 | |
Bone marrow transplant, n (%) | 1 (0.5) | 0 | 1 (1) | 0.97 |
Autologous, n (%) | 1 | 1 | ||
Malignant neoplasm, n (%) | 26 (13) | 11 (11) | 15 (16) | 0.40 |
Solid organ neoplasm, n (%) | 10 | 3 | 7 | |
Hematologic malignancy, n (%) | 16 | 8 | 8 | |
Pharmacologic immunosuppression, n (%) | 43 (21) | 26 (25) | 17 (18) | 0.28 |
ICU, n (%) | 60 (30) | 29 (28) | 31 (32) | 0.60 |
Vasopressor, n (%) | 64 (32) | 31 (30) | 33 (34) | 0.59 |
IMV, n (%) | 42 (21) | 21 (20) | 21 (22) | 0.91 |
Hospital-acquired infection, n (%) | 42 (21) | 18 (17) | 24 (25) | 0.25 |
Complications, n (%) | 95 (47) | 51 (49) | 44 (45) | 0.75 |
Persistently positive blood culture | 48 (24) | 23 (22) | 25 (26) | |
Endocarditis | 14 (7) | 6 (6) | 8 (8) | |
Infection of implantable device | 4 (2) | 1 (1) | 3 (3) | |
Empyema | 4 (2) | 2 (2) | 2 (2) | |
Persistent fever | 3 (2) | 1 (1) | 2 (2) | |
Distant hematogenous spread, n (%) | 64 (32) | 35 (33) | 29 (30) | 0.71 |
Lung | 21 (10) | 10 (10) | 11 (11) | |
Joints | 15 (7) | 7 (7) | 8 (8) | |
Bone | 11 (5) | 6 (6) | 5 (5) | |
Vertebrae | 9 (5) | 5 (5) | 4 (4) | |
CNS | 8 (4) | 4 (4) | 4 (4) | |
Psoas | 6 (3) | 3 (3) | 3 (3) | |
Kidney | 1 (1) | 1 (1) | 0 | |
Time to definitive antibiotic therapy in days, median (IQR) | 3 (2–4) | 3 (2–4) | 3 (2–4) | 0.57 |
Length of stay in days, median (IQR) | 23 (16–36) | 21 (16–35) | 24 (17–38) | 0.26 |
Univariate | Multivariate p < 0.10 | |||
---|---|---|---|---|
aOR (95% CI) | p | aOR (95% CI) | p | |
COVID-19 | 2.57 (0.79–8.30) | 0.12 | ||
Diabetes mellitus | 1.86 (0.92–3.75) | 0.08 | 1.90 (0.70–5.20) | 0.21 |
Chronic hypertension | 1.11 (0.56–2.19) | 0.76 | ||
End-stage renal disease | 0.49 (0.21–1.13) | 0.09 | 0.39 (0.11–1.34) | 0.13 |
Ischemic heart disease | 1.04 (0.28–3.92) | 0.95 | ||
Heart failure | 0.84 (0.17–4.04) | 0.83 | ||
Cirrhosis | 16.35 (4.26–62.78) | <0.001 | 23.84 (4.10–138.52) | <0.001 |
Autoimmune disease | 0.64 (0.28–1.49) | 0.30 | ||
Solid organ transplant | 0.17 (0.02–1.31) | 0.09 | 0.32 (0.03–4.01) | 0.38 |
Malignant neoplasm | 0.66 (0.22–2.03) | 0.47 | ||
Pharmacologic immunosuppression | 0.23 (0.07–0.79) | 0.02 | 0.36 (0.07–1.76) | 0.20 |
Intensive care unit admission | 6.93 (3.31–14.49) | <0.001 | 3.03 (0.62–14.70) | 0.17 |
Vasopressor | 10.85 (4.93–28.83) | <0.001 | 8.27 (2.14–31.94) | 0.002 |
IMV | 4.92 (2.32–10.43) | <0.001 | 0.46 (0.11–2.00) | 0.30 |
Hospital-acquired infection | 1.73 (0.78–3.78) | 0.17 | ||
Duration of bacteremia (days) | 1.04 (0.94–1.14) | 0.47 | ||
Complicated bacteremia | 2.50 (1.24–5.06) | 0.01 | 1.47 (0.26–8.45) | 0.67 |
Persistently positive blood culture | 2.14 (1.02–4.47) | 0.04 | 1.57 (0.42–5.92) | 0.51 |
Endocarditis | 8.46 (2.66–26.86) | <0.001 | 6.92 (1.39–34.50) | 0.02 |
Persistent fever | 1.93 (0.17–21.78) | 0.60 | ||
Distant hematogenous spread | 1.86 (0.92–3.75) | 0.08 | 0.78 (0.19–3.15) | 0.72 |
Lung | 2.66 (1.02–6.92) | 0.05 | ||
Joints | 0.95 (0.26–3.53) | 0.94 | ||
Bone | 0.84 (0.17–4.04) | 0.83 | ||
Vertebrae | 1.09 (0.22–5.47) | 0.91 | ||
CNS | 0.53 (0.06–4.46) | 0.56 | ||
Psoas | 1.95 (0.35–11.03) | 0.45 | ||
Definitive antibiotic treatment | 0.95 | 0.43 | ||
Dicloxacillin | Ref | Ref | ||
Cephalotin | 0.98 (0.49–1.93) | 0.69 (0.27–1.74) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiñonez-Flores, A.; Martinez-Guerra, B.A.; Román-Montes, C.M.; Tamez-Torres, K.M.; González-Lara, M.F.; Ponce-de-León, A.; Rajme-López, S. Cephalotin Versus Dicloxacillin for the Treatment of Methicillin-Susceptible Staphylococcus aureus Bacteraemia: A Retrospective Cohort Study. Antibiotics 2024, 13, 176. https://doi.org/10.3390/antibiotics13020176
Quiñonez-Flores A, Martinez-Guerra BA, Román-Montes CM, Tamez-Torres KM, González-Lara MF, Ponce-de-León A, Rajme-López S. Cephalotin Versus Dicloxacillin for the Treatment of Methicillin-Susceptible Staphylococcus aureus Bacteraemia: A Retrospective Cohort Study. Antibiotics. 2024; 13(2):176. https://doi.org/10.3390/antibiotics13020176
Chicago/Turabian StyleQuiñonez-Flores, Alejandro, Bernardo A. Martinez-Guerra, Carla M. Román-Montes, Karla M. Tamez-Torres, María F. González-Lara, Alfredo Ponce-de-León, and Sandra Rajme-López. 2024. "Cephalotin Versus Dicloxacillin for the Treatment of Methicillin-Susceptible Staphylococcus aureus Bacteraemia: A Retrospective Cohort Study" Antibiotics 13, no. 2: 176. https://doi.org/10.3390/antibiotics13020176
APA StyleQuiñonez-Flores, A., Martinez-Guerra, B. A., Román-Montes, C. M., Tamez-Torres, K. M., González-Lara, M. F., Ponce-de-León, A., & Rajme-López, S. (2024). Cephalotin Versus Dicloxacillin for the Treatment of Methicillin-Susceptible Staphylococcus aureus Bacteraemia: A Retrospective Cohort Study. Antibiotics, 13(2), 176. https://doi.org/10.3390/antibiotics13020176