Next Article in Journal
Perioperative Considerations for the Surgical Treatment of Crohn’s Disease with Discussion on Surgical Antibiotics Practices and Impact on the Gut Microbiome
Next Article in Special Issue
A Real-World Data Observational Analysis of the Impact of Liposomal Amphotericin B on Renal Function Using Machine Learning in Critically Ill Patients
Previous Article in Journal
Heterogeneous Antibiotic Resistance Gene Removal Impedes Evaluation of Constructed Wetlands for Effective Greywater Treatment
Previous Article in Special Issue
Experience with PCR Testing for Enteric Bacteria and Viruses of Emergency Department Patients with Acute Gastroenteritis: Are There Implications for the Early Treatment of Clostridioides difficile Infection?
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Rebound Inverts the Staphylococcus aureus Bacteremia Prevention Effect of Antibiotic Based Decontamination Interventions in ICU Cohorts with Prolonged Length of Stay

1
Melbourne Medical School, University of Melbourne, Melbourne, VIC 3052, Australia
2
Ballarat Health Services, Grampians Health, Ballarat, VIC 3350, Australia
3
Ballarat Clinical School, Deakin University, Ballarat, VIC 3350, Australia
Antibiotics 2024, 13(4), 316; https://doi.org/10.3390/antibiotics13040316
Submission received: 25 February 2024 / Revised: 25 March 2024 / Accepted: 28 March 2024 / Published: 29 March 2024
(This article belongs to the Special Issue Infection Diagnostics and Antimicrobial Therapy for Critical Patient)

Abstract

:
Could rebound explain the paradoxical lack of prevention effect against Staphylococcus aureus blood stream infections (BSIs) with antibiotic-based decontamination intervention (BDI) methods among studies of ICU patients within the literature? Two meta-regression models were applied, each versus the group mean length of stay (LOS). Firstly, the prevention effects against S. aureus BSI [and S. aureus VAP] among 136 studies of antibiotic-BDI versus other interventions were analyzed. Secondly, the S. aureus BSI [and S. aureus VAP] incidence in 268 control and intervention cohorts from studies of antibiotic-BDI versus that among 165 observational cohorts as a benchmark was modelled. In model one, the meta-regression line versus group mean LOS crossed the null, with the antibiotic-BDI prevention effect against S. aureus BSI at mean LOS day 7 (OR 0.45; 0.30 to 0.68) inverted at mean LOS day 20 (OR 1.7; 1.1 to 2.6). In model two, the meta-regression line versus group mean LOS crossed the benchmark line, and the predicted S. aureus BSI incidence for antibiotic-BDI groups was 0.47; 0.09–0.84 percentage points below versus 3.0; 0.12–5.9 above the benchmark in studies with 7 versus 20 days mean LOS, respectively. Rebound within the intervention groups attenuated and inverted the prevention effect of antibiotic-BDI against S. aureus VAP and BSI, respectively. This explains the paradoxical findings.

1. Introduction

Patient colonization [1,2], ICU colonization pressure [3,4] and length of stay (LOS) are each major risk factors for ICU-acquired infection with S. aureus. In European ICU cohorts, S. aureus colonization increases the risk of S. aureus pneumonia by up to 15-fold, with pneumonia onset generally within 14 days following ICU admission [1,2].
Reducing both patient and ICU colonization, through decontamination interventions, would seem logical to prevent S. aureus infections, whether occurring as pneumonia or blood stream infections (BSIs), and multiple potential candidate agents have been tested in various singleton and combination regimens [5,6]. However, the results of numerous studies of decontamination interventions conducted in ICU populations are unclear at four levels [7,8].
Firstly, at the patient level, the strong prevention effects seen against overall ventilator-associated pneumonia (VAP) and overall BSI in antibiotic-based decontamination intervention (BDI) studies, and possibly also antiseptic-BDI studies, generally match the prevention effects against S. aureus VAP but, paradoxically, not against S. aureus BSI [9,10,11,12,13,14].
Second, at the level of the ICU population, concerns for decontamination possibly ‘driving’ the emergence of both antimicrobial resistance and S. aureus and other Gram-positive infections with its prolonged use in the ICU, and rebound colonization and infection on withdrawal of antibiotic-based decontamination interventions (BDIs), remain unresolved [15,16,17,18,19,20,21,22].
Thirdly, there is the unresolved issue of spillover effects to concurrent patients within the ICU not receiving decontamination which might also ‘drive’ event rates [17,18,19]. This is especially concerning for high quality studies of decontamination interventions with concurrent controls [23].
Finally, decontamination interventions presumably mediate their prevention effects against S. aureus infections by targeted decolonization of S. aureus. Hence, modelling of S. aureus colonization would provide more accurate insights into the various ‘drivers’ within these studies, particularly where the prophylactic measures do not eradicate colonizing staphylococci completely.
There are four objectives here. Firstly, to recapitulate indicative prevention effect size estimates for antibiotic-BDI versus other interventions against both overall VAP and overall BSI, as well as S. aureus VAP and S. aureus BSI end points within the literature [9,10,11,12,13,24,25,26,27,28,29,30,31,32,33,34,35,36,37]. Secondly, to determine whether the study level prevention effect sizes vary with study LOS. The third objective is to detect rebound in incidence of S. aureus VAP and S. aureus BSIs within these studies versus that within ICU patient cohorts and within study arms not exposed, either directly or indirectly, to decontamination interventions. To this end, meta-regression and structural equation modelling of S. aureus colonization are each applied to the data from studies in the broader literature which serve, ‘in toto’, as a natural experiment of various exposures. The fourth objective is to triangulate the findings here with the previous effect size summaries for antiseptic- and antibiotic-BDIs within the literature.

2. Results

2.1. Characteristics of the Studies

Of the 282 studies identified by the search, 61 of 139 intervention studies were found in either ten Cochrane or other systematic reviews [9,10,11,12,13,24,25,26,27,28,29,30,31,32,33,34,35,36,37]. Most studies were published between 1990 and 2010 and most had a mean ICU-LOS exceeding ten days. Fourteen studies of infection prevention interventions had more than one type of intervention group and fourteen studies had either more than one or no control group. Most groups from observational studies had more than 150 patients per group versus less than 150 patients in the groups of the interventional studies. Most studies originated from either North American or European ICUs. Both S. aureus VAP and S. aureus BSI incidence data were available from 32 studies, while only S. aureus BSI incidence data were available from 34 studies and only S. aureus VAP incidence data from the remaining 215 studies (Table 1).

2.2. Indicative Effect Sizes

The indicative study-specific and summary effect sizes for the three categories of intervention against S. aureus VAP and S. aureus BSI are presented as caterpillar plots (Figures S1–S3). Significant summary prevention effects against both overall VAP and against S. aureus VAP were evident for all three categories. A summary prevention effect against overall BSI was apparent for the antiseptic-BDI and antibiotic-BDI categories but no category demonstrated a summary prevention effect against S. aureus BSI (Table 1). Of note, of the 25 studies of antibiotic-BDI against S. aureus BSI, the study specific odds ratios were <0.5 for seven and >2.0 for six (Figure S3).

2.3. Prevention Effect Size Meta-Regression versus LOS

The relationship between S. aureus VAP prevention effect sizes versus group mean LOS for the three categories of interventions are presented as meta-regressions (see Table S5; Figures S4–S11). In these models, all three categories of intervention demonstrated significant prevention effects against S. aureus VAP at the day 7 intercept but in each case the effect attenuated towards the null in association with increasing group mean LOS.
The relationship between S. aureus BSI effect sizes versus group mean LOS for the three categories of interventions are presented as meta-regressions (see Table S5 and Figure S4–S11). In these models, only the antibiotic-BDI category demonstrated significant prevention effects against S. aureus BSI at the day 7 intercept. For all three categories, there was attenuation of prevention effects against S. aureus BSI [manifested as a positive slope coefficient] in association with increasing group mean LOS which, in the case of the antiseptic-BDI (Figure 1a) and antibiotic-BDI (Figure 1b) categories, crossed the null. Consequently, the predicted antibiotic-BDI prevention effect against S. aureus BSI at day 7 (OR 0.45; 0.30 to 0.68) inverts at day 20 (OR 1.7; 1.1 to 2.6).

2.4. S. aureus VAP and BSI Incidence versus LOS

The incidence of S. aureus VAP and S. aureus BSI across all categories varied in each case by >100-fold. The S. aureus VAP and S. aureus BSI data versus group mean LOS as derived from the meta-regression models for each category in comparison to the benchmark groups are displayed (Table 2 and Table S6, and Figure 2, Figures S10 and S11).
The predicted S. aureus VAP for benchmark groups per 100 patients with a group mean LOS of 7 and 20 days was 3.0 (2.5–3.6) and 7.6 (5.9–9.1), respectively (Figure 2 and Figure S10). The predicted S. aureus BSI for benchmark groups with a group mean LOS of 7 and 20 days was 1.1 (0.9–1.5) and 3.2 (1.9–4.7), respectively (Figure 2 and Figure S11 and Table 2).
The day 7 predicted S. aureus VAP per 100 patients for the antiseptic-BDI and antibiotic-BDI intervention groups were each approximately 1.5 percentage points below that predicted for benchmark groups, whereas the day 20 predicted S. aureus VAP for the antibiotic-BDI and antiseptic-BDI intervention groups were each 1.5 to 2.5 percentage points (p = NS) above that predicted for benchmark groups. By contrast, the predicted S. aureus VAP for antibiotic-BDI control groups was approximately 4 percentage points above that predicted for benchmark groups at both day 7 and day 20 (Table 2).
The day 7 predicted S. aureus BSI per 100 patients for the antibiotic-BDI intervention groups was 0.4 percentage points below that predicted for the benchmark groups whereas the day 20 predicted S. aureus BSI for the antibiotic-BDI intervention groups was >2 percentage points above that predicted for not only the benchmark groups (being double that of the benchmark groups) but also that predicted for all other control and intervention groups (Table 2).

2.5. GSEM Modelling of S. aureus Colonization

The GSEM model (Figure 3 and Table 3) is based on the postulated model of causation wherein S. aureus colonization, a latent variable in the model, ‘drives’ the count of S. aureus VAP and S. aureus BSI. S. aureus colonization in turn is ‘driven’ by increasing LOS, membership of a concurrent control group (in response to spillover), and origin from a trauma ICU as positive factors and exposure to antibiotic-BDI and antiseptic-BDI as negative factors. Adding the interaction terms between increasing LOS and exposure to antiseptic-and antibiotic-BDI, which represent rebound, lowers the Akaike Information Criteria (AIC), which indicates improvement to the model.

3. Discussion

In this analysis of the results from 282 studies of three broad categories of infection prevention interventions, there were four objectives. Firstly, in contrast to the non-decontamination interventions, both antiseptic-BDI and antibiotic-BDI have strong prevention activities against both overall and S. aureus VAP, and indeed overall BSI, but neither have activity in preventing S. aureus BSI in summary estimates. The indicative summary prevention effect size estimates here recapitulate previous estimates in the literature based on fewer studies (Table 4).
Secondly, attenuation of prevention activity is generally apparent across all categories of intervention and for both S. aureus infection end points in association with increasing mean study LOS. However, antibiotic-BDI prevention activity against S. aureus BSI attenuates, crosses the null and inverts in studies with LOS > 14 days. This inversion could account for the otherwise paradoxical finding of apparent lack of effect of antibiotic-BDI against S. aureus BSI in the summary effect size estimates derived across all studies as generally reported (Table 4).
Thirdly, the S. aureus BSI incidence rebounds among the antibiotic-BDI groups with LOS >14 days to exceed that predicted for not only benchmark but also all other categories of the control and intervention groups (Figure 2). This rebound underlies the inversion of the antibiotic-BDI prevention effect against S. aureus BSI in studies with mean LOS > 14 days. There are too few studies of antiseptic-BDI to be able to determine whether or when rebound might occur and whether prevention effect inversion occurs.
The postulated prevention effect of antibiotic-BDI (appearing in the model as TAP) against S. aureus colonization is affirmed within the GSEM, together with the confounding effects of group mean LOS and rebound (appearing as an interaction term between LOS and antibiotic-BDI appearing as TAP). Rebound is a positive ‘driver’ in this model.
Finally, the findings here can account for rebound and spillover resulting from antibiotic- and antiseptic-BDI and yet the summary effect size estimates derived here are consistent with previous published effect size summaries (Table 4). This triangulation reconciles an outstanding paradox in the literature.
That antibiotic-BDI’s should have strong prevention effects against both overall VAP, overall BSI and S. aureus VAP in summary estimates, and yet not against S. aureus BSI, is paradoxical (Table 4; Figure S3). This paradox is also reflected in the wide range of study-specific effect sizes of three large individual studies included in this analysis, in which decreased S. aureus BSI was [38] or was not observed [39,40] where similar antibiotic-BDIs regimens were used. Moreover, in one large study (>2000 patients per arm) of an antiseptic-BDI regimen [39], the S. aureus BSI incidence in the chlorhexidine arm (1.2%) was double that of the control arm (0.6%). Of further note, a narrow spectrum anti-S. aureus monoclonal antibody failed to prevent S. aureus BSI or S. aureus VAP in a large RCT with a mean LOS ~20 days, contrary to the results of preclinical studies [41].
Moreover, antibiotic-BDI intervention groups have higher day 20 incidences of S. aureus BSI than control groups (Table 2) among studies which, overall, appear to indicate prevention of S. aureus VAP (Table 4). This observation is profoundly paradoxical and represents the effect of rebound which is more apparent for S. aureus BSI than for S. aureus VAP (Figures S8 and S9).
Rebound infection on premature withdrawal of antibiotic-BDI had been noted among patients neutropenic following cytotoxic chemotherapy in hematology units in the 1970s. These severe and occasionally fatal infections were observed in patients who had prematurely discontinued antibiotic-BDI due to its intolerable taste. Rebound sepsis has been noted following hospital discharge among patients exposed to antibiotic therapy considered high risk for causing microbiome disruption [42].
Rebound may be imperceptible without specific surveillance for colonization and infections on withdrawal of decontamination interventions [20,21,22]. Rebound following antibiotic-BDI discontinuation and ICU discharge manifests as a 50% (non-significant) increased risk of hospital-acquired infection [22]. Rebound of ceftazidime-resistant Gram-negative bacteria may occur as a ‘whole of ICU’ phenomenon not limited to the antibiotic-BDI recipients, persisting as an ecological effect for several months after antibiotic-BDI withdrawal [20].
The use of PPAP within some concurrent control groups may have modified the rebound and spillover effects from the intervention groups within some of the antibiotic-BDI studies.
Increased rates of S. aureus and other Gram-positive isolates were noted in the five years following the introduction of antibiotic-BDI into Dutch and Austrian ICU’s [15,16]. Any ecological effect following antibiotic-BDI withdrawal will likely contribute to the spill-over effect [43]. Whether reversible antibiotic tolerance induced in S. aureus by exposure to colistin, a common constituent of antibiotic-BDI regimens, contributes to this emergence of Gram-positive isolates is unclear. This tolerance will be undetectable by standard susceptibility testing [44].
The high S. aureus VAP and S. aureus BSI incidences within the concurrent control groups of antibiotic-BDI studies noted here as a spill-over effect, which is as previously noted for several end points [8,17,18,19,23,43,45,46], would conflate the apparent prevention effect.
For antiseptic-BDI, the results of prevention studies may differ depending on the end point of interest, the patient risk category and LOS. For example, pneumonia prevention is noted among cardiac ICU patient populations, with short LOS, whereas possible harm occurs with medical ICU patient populations, in association with long LOS [13,14].

Limitations

Several limitations should be considered. In meeting objective one, the indicative summary estimates derived here are comparable with those elsewhere in the literature (Table 1 and Table 4). Given the uncertain amount of spillover effect in these concurrent controlled decontamination studies, achieving unbiased patient level effect estimates will be elusive and here are designated indicative. In meeting the other objectives, group-level estimates were derived from broadly selected studies from the literature, not limited to those that were randomized, blinded or even controlled. Hence, the literature search has been opportunistic rather than systematic. By using existing systematic reviews as a starting point, the key interventions can be readily identified and classified.
In meeting objective two, there is considerable heterogeneity in the interventions, populations, modes of VAP diagnosis, study quality and study designs among studies published over several decades included in the analysis here with no ability to adjust for underlying patient risk. Hence, these effect estimates are also considered ‘indicative’ and primarily relate to the group level rather than the patient level of analysis. The definitions of VAP used in various studies vary and this further adds to the heterogeneity for endpoints related to VAP incidence.
In meeting objective three, the use of broad inclusion criteria was intentional as this objective required estimating the incidence of S. aureus infections in cohorts with various exposures to interventions, spillover and LOS. This requires a benchmark derived from non-interventional (observational) cohorts for comparison. Studies with a non-concurrent control (NCC) design are also of great interest as they will be free from any spill-over effect from any intervention concurrently under study in the ICU, in contrast to the case in studies where control and intervention groups are concurrent. NCC studies are usually excluded from Cochrane reviews which rate these studies with lower quality scores. However, the potential effects of spillover and rebound are not recognized in the scoring of study quality.
Of note, there were no obvious individual study result outliers driving the overall findings despite the heterogeneity among the results of studies included in accord with broad selection criteria.
Mean LOS and even median LOS are crude measures of group-level exposure of each group to the ICU context and exposure to the infection prevention interventions in the intervention groups. The analysis is ecological, and the estimates relate to the impacts of antiseptic-BDI and antibiotic-BDI on ICU patient cohorts. Of note, even cohorts with short mean LOS will contain patients with long LOS and vice versa. The associations for group-wide exposures may not equate to associations at the patient level of exposure.
This analysis here is unable to determine either the duration of S. aureus spillover as a driver nor the relationship between the timing of the S. aureus rebound and the cessation of the antibiotic- or antiseptic-BDI, which for many studies was unclear.
Many studies of decontamination interventions will have been underpowered to adequately assess key safety end points. Moreover, none were able to assess for whatever microbiome interactions that might underlie the bacteremia prevention effect [19].
The GSEM is a group-level modelling of the latent variable, Staphylococcus aureus colonization, within a postulated model of causation which can accommodate all studies and both infection end points. This latent variable and the coefficients derived in the GSEM are indicative only. They have no counterpart at the level of any one patient or study. They indicate the propensity for invasive infection arising, by whatever mechanism, from colonization as a latent construct rather than colonization measured by its presence and density.
Finally, there is the potential for publication and reporting bias as studies finding a significant effect size are more likely to be published. Whilst S. aureus infection incidences were rarely the primary end point, those that have found significant differences for S. aureus infection incidences may be more likely to report these findings as secondary end points than if the differences were neutral or negative. Whilst the possibility of competing risks in estimating S. aureus infections, such as early exclusion due to ICU discharge or mortality, would likely be similar for the studies regardless of study intervention, the development of VAP would be expected to prolong the ICU stay, and this is likely reflected in the higher LOS among studies of antibiotic-BDIs.

4. Conclusions

Antibiotic-BDIs appear to prevent S. aureus VAP and S. aureus BSI, although this effect varies with mean study LOS. The prevention effect of antibiotic-BDIs against S. aureus VAP attenuates in association with group mean LOS. The prevention effect of antibiotic-BDIs against S. aureus BSI inverts in studies with mean LOS > 14 days due to rebound within the intervention groups. This rebound would explain the paradoxical findings in the literature.

5. Materials and Methods

Being an analysis of published work, ethics committee review of this study was not required.

5.1. Study Selection and Decant of Groups

The literature search used here is as described previously [23]. Cochrane reviews and other systematic reviews were used as the primary source of studies, with additional studies being found by snowball sampling using the “Related articles” function within Google Scholar [9,10,11,12,13,24,25,26,27,28,29,30,31,32,33,34,35,36,37].
The inclusion criteria were cohorts of patients requiring prolonged (>24 h) ICU stay for which either or both incidence proportions of S. aureus VAP or S. aureus BSIs and either mean or median LOS were reported. Where possible, data were extracted for each identifiable sub-cohort representing different patient types or observation eras from the studies.
The studies were classified into four broad groups of either non-decontamination, antiseptic-BDI or antibiotic-BDI and studies (observational) without an intervention under study. The fourth category served as the benchmark category in the meta-regression of S. aureus VAP or S. aureus BSI incidence. These observational studies were screened to exclude any in which an infection prevention intervention was under study.
Non-decontamination interventions were studies of various approaches to the control of upper gastro-intestinal tract colonization through various stress ulcer prevention or feeding approaches and various approaches to control airway colonization through airway management.
Antiseptic-BDI included use of agents such as chlorhexidine, povidone–iodine and iseganan. All antiseptic exposures were included regardless of whether the application was to the oropharynx, by toothbrushing or by body-wash. Antibiotic-BDI is the use of topical antibiotic prophylaxis (TAP) to the oropharynx or stomach without regard to the specific antibiotic constituents or whether protocolized parenteral antibiotic prophylaxis (PPAP) was used in addition as part of the antibiotic-BDI regimen. Note that mupirocin appears as a component within arms of one antiseptic-BDI and two antibiotic-BDI studies. The use of antibiotic therapy outside of that dictated by study protocols has not been factored into this study.
The inclusion criteria were deliberately broad without regard to the frequency or duration of intervention under study or any criteria of study quality.

5.2. Outcomes of Interest

The independent variable in the regression models was the mean length of ICU stay (LOS). If this was not available, the median LOS or the mean or median duration of mechanical ventilation (MV) were used. The S. aureus VAP, S. aureus BSI and LOS data were all derived from the original publications. The S. aureus VAP, S. aureus BSI and LOS data required transformation. The first two, being count data, were logit transformed. The S. aureus VAP incidence proportion is the proportion with S. aureus VAP using the number receiving prolonged (>24 h) MV as the denominator. The S. aureus BSI incidence proportion is the proportion with S. aureus BSI using the number of patients with prolonged (>24 h) ICU stay as the denominator. The LOS data are positively skewed and were transformed for all analyses as follows: any LOS < 4 days was truncated to 4 days; the LOS was divided by 7 and then log transformed. With this transformation, all model intercepts equated to group mean LOS 7 days.

5.3. Summary Effect Size

Indicative summary prevention effect sizes, versus each of S. aureus VAP and S. aureus BSI, for each category were derived from all studies regardless of whether the intervention was randomly assigned and whether study blinding was achieved. The summary prevention effect sizes versus overall VAP and overall BSI were also derived from the same studies where available.
The study-specific and summary prevention effect sizes of each of the three broad categories of intervention toward the prevention of S. aureus VAP and S. aureus BSI incidence were generated by random effects using the meta-analysis command in Stata (Stata 18, College Station, TX, USA) [47].

5.4. Meta-Regression Model 1: Study Effect Size versus LOS

Models of the relationship between study-specific prevention effect sizes versus log transformed LOS of each of the three broad categories of intervention toward the prevention of S. aureus VAP and S. aureus BSI incidence were generated by meta-regression. The estimated effect sizes for studies with mean LOS of 7 and 20 days were derived post estimation using the margins command in Stata.

5.5. Meta-Regression Model 2: S. aureus VAP and S. aureus BSI Incidences versus LOS

Models of the relationship between logit transformed S. aureus VAP and S. aureus BSI incidence proportion versus log transformed LOS were generated using the meta-regress command in Stata. Scatter plots also were generated to facilitate a visual summary. In the scatter plots, the linear regression derived for each of the transformed S. aureus VAP and S. aureus BSI incidence versus the transformed LOS among observational cohorts were used as the respective benchmarks. The estimated S. aureus BSI and S. aureus VAP incidence for studies with a mean LOS of 7 and 20 days were derived post estimation using the margins command in Stata.

5.6. Generalized Structural Equation Modelling

Generalized structural equation modelling (GSEM) methods are an extension of SEM methods applied to count data. In the GSEM models, the VAP and BSI incidence proportion data serve as the measurement components, the group-level exposure parameters serve as the indicator variables and S. aureus colonization, being represented as a latent variable, links the indicator and measurement components in the model. In these models the antibiotic-BDI are factorized into TAP and PPAP components. The GSEM methodology used here is described in detail in previous publications [19,48].
Study identifiers were used in the models to enable the generation of robust variance covariance matrices of the coefficient estimate parameters of observations clustered by study. The ‘GSEM’ command in Stata (Stata 18, College Station, TX, USA) was used.

5.7. Availability of Data and Materials

All data generated or analyzed during this study are included in this published article and its supplementary information files (see ESM).

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/antibiotics13040316/s1, Table S1: Observational studies (Benchmark groups); Table S2: Studies of non-decontamination-based methods of VAP prevention; Table S3: Studies of topical antiseptic-based methods of VAP prevention; Table S4: Studies of antibiotic-based methods of VAP prevention; Table S5. Meta-regression models of prevention effect size versus LOS; Table S6. Meta-regression models of S. aureus infection incidence versus LOS; References [49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326] which are cited in the supplement (with duplicates) as S1–S283]; Figure S1: S. aureus VAP prevention effect sizes; non-decontamination interventions; Figure S2: S. aureus VAP prevention effect sizes; decontamination interventions; Figure S3: S. aureus BSI prevention effect sizes; all studies; Figure S4: Meta-regression S. aureus VAP prevention effect sizes, non-decontamination studies; Figure S5: Meta-regression S. aureus BSI prevention effect sizes, non-decontamination studies; Figure S6: Meta-regression S. aureus VAP prevention effect sizes, antiseptic studies; Figure S7: Meta-regression S. aureus BSI prevention effect sizes, antiseptic studies; Figure S8: Meta-regression S. aureus VAP prevention effect sizes, antibiotic studies; Figure S9: Meta-regression S. aureus BSI prevention effect sizes, antibiotic studies; Figures S10 and S11: S. aureus VAP incidence among observational cohorts & NCC groups; Figure S12: GSEM of postulated model.

Funding

This research has been supported by the Australian Government Department of Health and Ageing through the Rural Clinical Training and Support (RCTS) program.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The datasets analyzed during the current study are provided in the Supplementary Materials.

Conflicts of Interest

The author declares no conflicts of interest.

References

  1. Paling, F.P.; Hazard, D.; Bonten, M.J.; Goossens, H.; Jafri, H.S.; Malhotra-Kumar, S.; Sifakis, F.; Weber, S.; Kluytmans, J.A.; ASPIRE-ICU Study Team. Association of Staphylococcus aureus colonization and pneumonia in the intensive care unit. JAMA Netw. Open 2020, 3, e2012741. [Google Scholar] [CrossRef] [PubMed]
  2. Paling, F.P.; Wolkewitz, M.; Bode, L.G.; Klouwenberg, P.K.; Ong, D.S.; Depuydt, P.; de Bus, L.; Sifakis, F.; Bonten, M.J.; Kluytmans, J.A. Staphylococcus aureus colonization at ICU admission as a risk factor for developing S. aureus ICU pneumonia. Clin. Microbiol. Infect. 2017, 23, 49.e9–49.e14. [Google Scholar] [CrossRef] [PubMed]
  3. Masse, J.; Elkalioubie, A.; Blazejewski, C.; Ledoux, G.; Wallet, F.; Poissy, J.; Preau, S.; Nseir, S. Colonization pressure as a risk factor of ICU-acquired multidrug resistant bacteria: A prospective observational study. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 797–805. [Google Scholar] [CrossRef] [PubMed]
  4. Masse, J.; Elkalioubie, A.; Blazejewski, C.; Ledoux, G.; Wallet, F.; Poissy, J.; Preau, S.; Nseir, S. “Colonization pressure” and risk of acquisition of methicillin-resistant Staphylococcus aureus in a medical intensive care unit. Infect. Control Hosp. Epidemiol. 2000, 21, 718–723. [Google Scholar]
  5. Septimus, E.J.; Schweizer, M.L. Decolonization in prevention of health care-associated infections. Clin. Microbiol. Rev. 2016, 29, 201–222. [Google Scholar] [CrossRef] [PubMed]
  6. Troeman, D.P.; Van Hout, D.; Kluytmans, J.A. Antimicrobial approaches in the prevention of Staphylococcus aureus infections: A review. J. Antimicrob. Chemother. 2019, 74, 281–294. [Google Scholar] [CrossRef] [PubMed]
  7. Simor, A.E. Staphylococcal decolonisation: An effective strategy for prevention of infection? Lancet Infect. Dis. 2011, 11, 952–962. [Google Scholar] [CrossRef] [PubMed]
  8. Hurley, J.C. Selective digestive decontamination-Con. Intensive Care Med. 2023, 30, 982–983. [Google Scholar] [CrossRef] [PubMed]
  9. Silvestri, L.; Weir, I.; Gregori, D.; Taylor, D.; Van Saene, J.; Van Saene, H. Effectiveness of oral chlorhexidine on nosocomial pneumonia, causative microorganisms and mortality in critically ill patients: A systematic review and meta-analysis. Minerva Anestesiol. 2014, 80, 805–820. [Google Scholar] [PubMed]
  10. Silvestri, L.; Van Saene, H.K.; Casarin, A.; Berlot, G.; Gullo, A. Impact of selective decontamination of the digestive tract on carriage and infection due to Gram-negative and Gram-positive bacteria: A systematic review of randomised controlled trials. Anaesth. Intensive Care 2008, 36, 324–338. [Google Scholar] [CrossRef] [PubMed]
  11. Silvestri, L.; Van Saene, H.K.; Milanese, M.; Gregori, D.; Gullo, A. Selective decontamination of the digestive tract reduces bacterial bloodstream infection and mortality in critically ill patients. Systematic review of randomized, controlled trials. J. Hosp. Infect. 2007, 65, 187–203. [Google Scholar] [PubMed]
  12. Silvestri, L.; Weir, W.I.; Gregori, D.; Taylor, N.; Zandstra, D.F.; van Saene, J.J.; van Saene, H.K. Impact of Oral Chlorhexidine on Bloodstream Infection in Critically Ill Patients: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Cardiothoracic. Vasc. Anesth. 2017, 31, 2236–2244. [Google Scholar] [CrossRef] [PubMed]
  13. Klompas, M.; Speck, K.; Howell, M.D.; Greene, L.R.; Berenholtz, S.M. Reappraisal of routine oral care with chlorhexidine gluconate for patients receiving mechanical ventilation: Systematic review and meta-analysis. JAMA Intern. Med. 2014, 174, 751–761. [Google Scholar] [CrossRef] [PubMed]
  14. Noto, M.J.; Wheeler, A.P. Understanding chlorhexidine decolonization strategies. Intensive Care Med. 2015, 41, 1351–1354. [Google Scholar] [CrossRef] [PubMed]
  15. Van der Bij, A.K.; Frentz, D.; Bonten, M.J.; Stuart, J.C.; van Hees, B.C.; Vijfhuizen, J.; Wintermans, R.G.; der Kuil, W.A.; Alblas, J.; van der Bij, A.K.; et al. Gram-positive cocci in Dutch ICUs with and without selective decontamination of the oropharyngeal and digestive tract: A retrospective database analysis. J. Antimicrob. Chemother. 2016, 71, 816–820. [Google Scholar] [CrossRef]
  16. Lingnau, W.; Berger, J.; Javorsky, F.; Fille, M.; Allerberger, F.; Benzer, H. Changing bacterial ecology during a five year period of selective intestinal decontamination. J. Hosp. Infect. 1998, 39, 195–206. [Google Scholar] [CrossRef]
  17. Hurley, J.C. Studies of selective digestive decontamination as a natural experiment to evaluate topical antibiotic prophylaxis and cephalosporin use as population-level risk factors for enterococcal bacteraemia among ICU patients. J. Antimicrob. Chemother. 2019, 74, 3087–3094. [Google Scholar] [CrossRef] [PubMed]
  18. Hurley, J.C. Incidence of coagulase-negative staphylococcal bacteremia among ICU patients: Decontamination studies as a natural experiment. Eur. J Clin. Micro. Infect. Dis. 2019, 39, 657–664. [Google Scholar] [CrossRef] [PubMed]
  19. Hurley, J.C. Staphylococcus aureus hitchhiking from colonization to bacteremia via Candida within ICU infection prevention studies: A proof of concept modelling. Eur. J. Clin. Microbiol. Infect. Dis 2023, 42, 543–554. [Google Scholar] [CrossRef] [PubMed]
  20. Oostdijk, E.A.; de Smet, A.M.; Blok, H.E.; Thieme Groen, E.S.; van Asselt, G.J.; Benus, R.F.; Bernards, S.A.; Frénay, I.H.; Jansz, A.R.; de Jongh, B.M.; et al. Ecological effects of selective decontamination on resistant Gram-negative bacterial colonization. Am. J. Resp. Crit. Care. Med. 2010, 181, 452–457. [Google Scholar] [CrossRef] [PubMed]
  21. Tetteroo, G.W.; Wagenvoort, J.H.; Bruining, H.A. Bacteriology of selective decontamination: Efficacy and rebound colonization. J. Antimicrob. Chemother. 1994, 34, 139–148. [Google Scholar] [CrossRef] [PubMed]
  22. de Smet, A.M.; Hopmans, T.E.; Minderhoud, A.L.; Blok, H.E.; Gossink-Franssen, A.; Bernards, A.T.; Bonten, M.J. Decontamination of the digestive tract and oropharynx: Hospital acquired infections after discharge from the intensive care unit. Intensive Care Med. 2009, 35, 1609. [Google Scholar] [CrossRef] [PubMed]
  23. Hurley, J.C. Length of ICU stay and the apparent efficacy of antimicrobial based versus non-antimicrobial based ventilator pneumonia prevention interventions within the Cochrane review database. J. Hosp. Infect. 2023, 140, 46–53. [Google Scholar] [CrossRef] [PubMed]
  24. Liberati, A.; D’Amico, R.; Pifferi, S.; Torri, V.; Brazzi, L.; Parmelli, E. Antibiotic prophylaxis to reduce respiratory tract infections and mortality in adults receiving intensive care (Review). Cochrane Database Syst. Rev. 2009, CD000022. [Google Scholar] [CrossRef]
  25. Minozzi, S.; Pifferi, S.; Brazzi, L.; Pecoraro, V.; Montrucchio, G.; D’Amico, R. Topical antibiotic prophylaxis to reduce respiratory tract infections and mortality in adults receiving mechanical ventilation. Cochrane Database Syst. Rev. 2021, CD000022. [Google Scholar] [CrossRef]
  26. Hammond, N.E.; Myburgh, J.; Seppelt, I.; Garside, T.; Vlok, R.; Mahendran, S.; Adigbli, D.; Finfer, S.; Gao, Y.; Goodman, F.; et al. Association between selective decontamination of the digestive tract and in-hospital mortality in intensive care unit patients receiving mechanical ventilation: A systematic review and meta-analysis. JAMA 2022, 328, 1922–1934. [Google Scholar] [CrossRef] [PubMed]
  27. Hua, F.; Xie, H.; Worthington, H.V.; Furness, S.; Zhang, Q.; Li, C. Oral hygiene care for critically ill patients to prevent ventilator-associated pneumonia. Cochrane Database Syst. Rev. 2016, CD008367. [Google Scholar] [CrossRef] [PubMed]
  28. Zhao, T.; Wu, X.; Zhang, Q.; Li, C.; Worthington, H.V.; Hua, F. Oral hygiene care for critically ill patients to prevent ventilator-associated pneumonia. Cochrane Database Syst. Rev. 2020, CD008367. [Google Scholar] [CrossRef]
  29. Pileggi, C.; Bianco, A.; Flotta, D.; Nobile, C.G.; Pavia, M. Prevention of ventilator-associated pneumonia, mortality and all intensive care unit acquired infections by topically applied antimicrobial or antiseptic agents: A meta-analysis of randomized controlled trials in intensive care units. Crit. Care 2011, 15, R155. [Google Scholar] [CrossRef] [PubMed]
  30. Labeau, S.O.; Van de Vyver, K.; Brusselaers, N.; Vogelaers, D.; Blot, S.I. Prevention of ventilator-associated pneumonia with oral antiseptics: A systematic review and meta-analysis. Lancet Infect. Dis. 2011, 11, 845–854. [Google Scholar] [CrossRef] [PubMed]
  31. Alhazzani, W.; Smith, O.; Muscedere, J.; Medd, J.; Cook, D. Toothbrushing for Critically Ill Mechanically Ventilated Patients: A Systematic Review and Meta-Analysis of Randomized Trials Evaluating Ventilator-Associated Pneumonia. Crit. Care Med. 2013, 41, 646–655. [Google Scholar] [CrossRef]
  32. Bo, L.; Li, J.; Tao, T.; Bai, Y.; Ye, X.; Hotchkiss, R.S.; Kollef, M.H.; Crooks, N.H.; Deng, X. Probiotics for preventing ventilator-associated pneumonia. Cochrane Database Syst. Rev. 2014, CD009066. [Google Scholar] [CrossRef] [PubMed]
  33. Gillies, D.; Todd, D.A.; Foster, J.P.; Batuwitage, B.T. Heat and moisture exchangers versus heated humidifiers for mechanically ventilated adults and children. Cochrane Database Syst. Rev. 2017, CD004711. [Google Scholar] [CrossRef] [PubMed]
  34. Solà, I.; Benito, S. Closed tracheal suction systems versus open tracheal suction systems for mechanically ventilated adult patients. Cochrane Database Syst. Rev. 2007, CD004581. [Google Scholar] [CrossRef] [PubMed]
  35. Tokmaji, G.; Vermeulen, H.; Müller, M.C.A.; Kwakman, P.H.S.; Schultz, M.J.; Zaat, S.A.J. Silver-coated endotracheal tubes for prevention of ventilator-associated pneumonia in critically ill patients. Cochrane Database Syst. Rev. 2015, CD009201. [Google Scholar] [CrossRef] [PubMed]
  36. Toews, I.; George, A.T.; Peter, J.V.; Kirubakaran, R.; Fontes, L.E.S.; Ezekiel, J.P.B.; Meerpohl, J.J. Interventions for preventing upper gastrointestinal bleeding in people admitted to intensive care units. Cochrane Database Syst. Rev. 2018, CD008687. [Google Scholar] [CrossRef] [PubMed]
  37. Wang, L.; Li, X.; Yang, Z.; Tang, X.; Yuan, Q.; Deng, L.; Sun, X. Semi-recumbent position versus supine position for the prevention of ventilator-associated pneumonia in adults requiring mechanical ventilation. Cochrane Database Syst. Rev. 2016, CD009946. [Google Scholar] [CrossRef] [PubMed]
  38. De Smet, A.M.; Kluytmans, J.A.; Cooper, B.S.; Mascini, E.M.; Benus, R.F.; Van der Werf, T.S.; Van der Hoeven, J.G.; Pickkers, P.; Bogaers-Hofman, D.; Van Der Meer, N.J.; et al. Decontamination of the digestive tract and oropharynx in ICU patients. N. Engl. J. Med. 2009, 360, 20–31. [Google Scholar] [CrossRef] [PubMed]
  39. Wittekamp, B.H.; Plantinga, N.L.; Cooper, B.S.; Lopez-Contreras, J.; Coll, P.; Mancebo, J.; Wise, M.P.; Morgan, M.P.; Depuydt, P.; Boelens, J.; et al. Decontamination strategies and bloodstream infections with antibiotic-resistant microorganisms in ventilated patients: A randomized clinical trial. JAMA 2018, 320, 2087–2098. [Google Scholar] [CrossRef] [PubMed]
  40. The SuDDICU Investigators for the Australian and New Zealand Intensive Care Society Clinical Trials Group. Effect of selective decontamination of the digestive tract on hospital mortality in critically ill patients receiving mechanical ventilation: A randomized clinical trial. JAMA 2022, 328, 1911–1921. [Google Scholar] [CrossRef] [PubMed]
  41. François, B.; Jafri, H.S.; Chastre, J.; Sánchez-García, M.; Eggimann, P.; Dequin, P.F.; Huberlant, V.; Soria, L.V.; Boulain, T.; Bretonnière, C.; et al. Efficacy and safety of suvratoxumab for prevention of Staphylococcus aureus ventilator-associated pneumonia (SAATELLITE): A multicentre, randomised, double-blind, placebo-controlled, parallel-group, phase 2 pilot trial. Lancet Infect. Dis. 2021, 21, 1313–1323. [Google Scholar] [CrossRef] [PubMed]
  42. Baggs, J.; Jernigan, J.A.; Halpin, A.L.; Epstein, L.; Hatfield, K.M.; McDonald, L.C. Risk of subsequent sepsis within 90 days after a hospital stay by type of antibiotic exposure. Clin. Infect. Dis 2018, 66, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
  43. Hurley, J.C. The perfidious effect of topical placebo: Calibration of Staphylococcus aureus ventilator-associated pneumonia incidence within selective digestive decontamination studies versus the broader evidence base. Antimicrob. Agents. Chemother. 2013, 57, 4524–4531. [Google Scholar] [CrossRef] [PubMed]
  44. Haaber, J.; Friberg, C.; McCreary, M.; Lin, R.; Cohen, S.N.; Ingmer, H. Reversible antibiotic tolerance induced in Staphylococcus aureus by concurrent drug exposure. MBio 2015, 6, 10–128. [Google Scholar] [CrossRef] [PubMed]
  45. Hurley, J.C. Establishing the safety of Selective Digestive Decontamination within the ICU population. A bridge too far? Trials 2023, 24, 337. [Google Scholar] [CrossRef] [PubMed]
  46. Hurley, J.C. Comparison of mortality associated with methicillin-susceptible and methicillin-resistant Staphylococcus aureus bacteremia: An ecological analysis. Clin. Infect. Dis. 2003, 37, 866–868. [Google Scholar] [CrossRef] [PubMed]
  47. Stata Corporation. Meta-analysis reference manual. In Stata 16 Documentation; StataCorp LLC: College Station, TX, USA, 2023. [Google Scholar]
  48. Hurley, J.C. Candida and the Gram-positive trio: Testing the vibe in the ICU patient microbiome using structural equation modelling of literature derived data. Emerg. Themes Epidemiol. 2022, 19, 7. [Google Scholar] [CrossRef] [PubMed]
  49. A’Court, C.H.; Garrard, C.S.; Crook, D.; Bowler, I.; Conlon, C.; Peto, T.; Anderson, E. Microbiological lung surveillance in mechanically ventilated patients, using non-directed bronchial lavage and quantitative culture. Q. J. Med. 1993, 86, 635–648. [Google Scholar] [CrossRef] [PubMed]
  50. Alvarez-Lerma, F.; IC U-acquired Pneumonia Study Group. Modification of empiric antibiotic treatment in patients with pneumonia acquired in the intensive care unit. Intensive Care Med. 1996, 22, 387–394. [Google Scholar] [CrossRef] [PubMed]
  51. Apostolopoulou, E.; Bakakos, P.; Katostaras, T.; Gregorakos, L. Incidence and risk factors for ventilator-associated pneumonia in 4 multidisciplinary intensive care units in Athens, Greece. Respir. Care 2003, 48, 681–688. [Google Scholar] [PubMed]
  52. Arroliga, A.C.; Pollard, C.L.; Wilde, C.D.; Pellizzari, S.J.; Chebbo, A.; Song, J.; Ordner, J.; Cormier, S.; Meyer, T. Reduction in the incidence of ventilator-associated pneumonia: A multidisciplinary approach. Respir. Care 2012, 57, 688–696. [Google Scholar] [CrossRef] [PubMed]
  53. Arumugam, S.K.; Mudali, I.; Strandvik, G.; El-Menyar, A.; Al-Hassani, A.; Al-Thani, H. Risk factors for ventilator-associated pneumonia in trauma patients: A descriptive analysis. World J. Emerg. Med. 2018, 9, 203. [Google Scholar] [CrossRef] [PubMed]
  54. Baldesi, O.; Bailly, S.; Ruckly, S.; Lepape, A.; L’Heriteau, F.; Aupee, M.; Boussat, S.; Bervas, C.; Machut, A.; Berger-Carbonne, A.; et al. ICU-acquired candidaemia in France: Epidemiology and temporal trends, 2004–2013–A study from the REA-RAISIN network. J. Infect. 2017, 75, 59–67. [Google Scholar] [CrossRef] [PubMed]
  55. Bekaert, M.; Timsit, J.F.; Vansteelandt, S.; Depuydt, P.; Vésin, A.; Garrouste-Orgeas, M.; Decruyenaere, J.; Clec’h, C.; Azoulay, E.; Benoit, D. Attributable mortality of ventilator-associated pneumonia: A reappraisal using causal analysis. Am. J. Respir. Crit. Care Med. 2011, 184, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
  56. Bercault, N.; Boulain, T. Mortality rate attributable to ventilator-associated nosocomial pneumonia in an adult intensive care unit: A prospective case-control study. Crit. Care Med. 2001, 29, 2303–2309. [Google Scholar] [CrossRef] [PubMed]
  57. Blot, S.; Koulenti, D.; Dimopoulos, G.; Martin, C.; Komnos, A.; Krueger, W.A.; Spina, G.; Armaganidis, A.; Rello, J. Prevalence, risk factors, and mortality for ventilator-associated pneumonia in middle-aged, old, and very old critically ill patients. Crit. Care Med. 2014, 42, 601–609. [Google Scholar] [CrossRef] [PubMed]
  58. Bochicchio, G.V.; Joshi, M.; Bochicchio, K.; Tracy, K.; Scalea, T.M. A time-dependent analysis of intensive care unit pneumonia in trauma patients. J. Trauma 2004, 56, 296–301. [Google Scholar] [CrossRef] [PubMed]
  59. Bonten, M.J.; Gaillard, C.A.; van Tiel, F.H.; Smeets, H.G.; van der Geest, S.; Stobberingh, E.E. The stomach is not a source for colonization of the upper respiratory tract and pneumonia in ICU patients. Chest 1994, 105, 878–884. [Google Scholar] [CrossRef] [PubMed]
  60. Boots, R.J.; George, N.; Faoagali, J.L.; Druery, J.; Dean, K.; Heller, R.F. Double-heater-wire circuits and heat-and-moisture exchangers and the risk of ventilator-associated pneumonia. Crit. Care Med. 2006, 34, 687–693. [Google Scholar] [CrossRef] [PubMed]
  61. Boots, R.J.; Phillips, G.E.; George, N.; Faoagali, J.L. Surveillance culture utility and safety using low-volume blind bronchoalveolar lavage in the diagnosis of ventilator-associated pneumonia. Respirology 2008, 13, 87–96. [Google Scholar] [CrossRef] [PubMed]
  62. Bornstain, C.; Azoulay, E.; De Lassence, A.; Cohen, Y.; Costa, M.A.; Mourvillier, B.; Descorps-Declere, A.; Garrouste-Orgeas, M.; Thuong, M.; Schlemmer, B.; et al. Sedation, sucralfate, and antibiotic use are potential means for protection against early-onset ventilator-associated pneumonia. Clin. Infect. Dis. 2004, 38, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
  63. Braun, S.R.; Levin, A.B.; Clark, K.L. Role of corticosteroids in the development of pneumonia in mechanically ventilated head-trauma victims. Crit. Care Med. 1986, 14, 198–201. [Google Scholar] [CrossRef] [PubMed]
  64. Bregeon, F.; Papazian, L.; Visconti, A.; Gregoire, R.; Thirion, X.; Gouin, F. Relationship of microbiologic diagnostic criteria to morbidity and mortality in patients with ventilator-associated pneumonia. JAMA 1997, 277, 655–662. [Google Scholar] [CrossRef] [PubMed]
  65. Cade, J.F.; McOwat, E.; Siganporia, R.; Keighley, C.; Presneill, J.; Sinickas, V. Uncertain relevance of gastric colonization in the seriously ill. Intensive Care Med. 1992, 18, 210–217. [Google Scholar] [CrossRef] [PubMed]
  66. Cavalcanti, M.; Ferrer, M.; Ferrer, R.; Morforte, R.; Garnacho, A.; Torres, A. Risk and prognostic factors of ventilator-associated pneumonia in trauma patients. Crit. Care Med. 2006, 34, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
  67. Cendrero, J.A.; Solé-Violán, J.; Benitez, A.B.; Catalán, J.N.; Fernández, J.A.; Santana, P.S.; de Castro, F.R. Role of different routes of tracheal colonization in the development of pneumonia in patients receiving mechanical ventilation. Chest 1999, 116, 462–470. [Google Scholar] [CrossRef] [PubMed]
  68. Chaari, A.; El Habib, M.; Ghdhoun, H.; Algia, N.B.; Chtara, K.; Hamida, C.B.; Chelly, H.; Bahloul, M.; Bouaziz, M. Does low-dose hydrocortisone therapy prevent ventilator-associated pneumonia in trauma patients? Am. J. Therap. 2015, 22, 22–28. [Google Scholar] [CrossRef] [PubMed]
  69. Chastre, J.; Trouillet, J.L.; Vuagnat, A.; Joly-Guillou, M.L.; Clavier, H.; Dombret, M.C.; Gibert, C. Nosocomial pneumonia in patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1998, 157, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
  70. Chevret, S.; Hemmer, M.; Carlet, J. Incidence and risk factors of pneumonia acquired in intensive care units. Results from a multicenter prospective study on 996 patients. European Cooperative Group on Nosocomial Pneumonia. Intensive Care Med. 1993, 19, 256–264. [Google Scholar] [CrossRef] [PubMed]
  71. Combes, P.; Fauvage, B.; Oleyer, C. Nosocomial pneumonia in mechanically ventilated patients, a prospective randomised evaluation of the Stericath closed suctioning system. Intensive Care Med. 2000, 26, 878–882. [Google Scholar] [CrossRef] [PubMed]
  72. Cook, A.; Norwood, S.; Berne, J. Ventilator-associated pneumonia is more common and of less consequence in trauma patients compared with other critically ill patients. J. Trauma Acute Care Surg. 2010, 69, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
  73. Craven, D.E.; Kunches, L.M.; Lichtenberg, D.A.; Kollisch, N.R.; Barry, M.A.; Heeren, T.C.; McCabe, W.R. Nosocomial infection and fatality in medical and surgical intensive care unit patients. Arch. Intern. Med. 1988, 148, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
  74. Daschner, F.; Kappstein, I.; Schuster, F.; Scholz, R.; Bauer, E.; Jooβens, D.; Just, H. Influence of disposable (‘Conchapak’) and reusable humidifying systems on the incidence of ventilation pneumonia. J. Hosp. Infect. 1988, 11, 161–168. [Google Scholar] [CrossRef] [PubMed]
  75. Delclaux, C.; Roupie, E.; Blot, F.; Brochard, L.; Lemaire, F.; Brun-Buisson, C. Lower respiratory tract colonization and infection during severe acute respiratory distress syndrome: Incidence and diagnosis. Am. J. Respir. Crit. Care Med. 1997, 156, 1092–1098. [Google Scholar] [CrossRef] [PubMed]
  76. Delle Rose, D.; Pezzotti, P.; Fortunato, E.; Sordillo, P.; Gini, S.; Boros, S.; Meledandri, M.; Gallo, M.T.; Prignano, G.; Caccese, R.; et al. Clinical predictors and microbiology of ventilator-associated pneumonia in the intensive care unit: A retrospective analysis in six Italian hospitals. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1531–1539. [Google Scholar] [CrossRef]
  77. Edgeworth, J.D.; Treacher, D.F.; Eykyn, S.J. A 25-year study of nosocomial bacteremia in an adult intensive care unit. Crit. Care Med. 1999, 27, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
  78. El-Masri, M.M.; Hammad, T.A.; McLeskey, S.W.; Joshi, M.; Korniewicz, D.M. Predictors of nosocomial bloodstream infections among critically ill adult trauma patients. Infect. Cont. Hosp. Epidemiol. 2004, 25, 656–663. [Google Scholar] [CrossRef]
  79. Ensminger, S.A.; Wright, R.S.; Baddour, L.M.; Afess, B. Suspected ventilator-associated pneumonia in cardiac patients admitted to the coronary care unit. Mayo Clin. Proc. 2006, 81, 32–35. [Google Scholar] [CrossRef] [PubMed]
  80. Ertugrul, B.M.; Yildirim, A.; Ay, P.; Oncu, S.; Cagatay, A.; Cakar, N.; Ertekin, C.; Ozsut, H.; Eraksoy, H.; Calangu, S. Ventilator-associated pneumonia in surgical emergency intensive care unit. Saudi Med. J. 2006, 27, 52–57. [Google Scholar] [PubMed]
  81. Esnault, P.; Nguyen, C.; Bordes, J.; D’Aranda, E.; Montcriol, A.; Contargyris, C.; Cotte, J.; Goutorbe, P.; Joubert, C.; Dagain, A.; et al. Early-onset ventilator-associated pneumonia in patients with severe traumatic brain injury: Incidence, risk factors, and consequences in cerebral oxygenation and outcome. Neurocrit. Care 2017, 27, 187–198. [Google Scholar] [CrossRef]
  82. Evans, H.L.; Zonies, D.H.; Warner, K.J.; Bulger, E.M.; Sharar, S.R.; Maier, R.V.; Cuschieri, J. Timing of intubation and ventilator-associated pneumonia following injury. Arch. Surg. 2010, 145, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
  83. Ewig, S.; Torres, A.; El-Ebiary, M.; Fàbregas, N.; Hernandez, C.; Gonzalez, J.; Nicolas, J.M.; Soto, L. Bacterial colonization patterns in mechanically ventilated patients with traumatic and medical head injury. Incidence, risk factors, and association with ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 1999, 159, 188–198. [Google Scholar] [CrossRef] [PubMed]
  84. Fabian, T.C.; Boucher, B.A.; Croce, M.A.; Kuhl, D.A.; Janning, S.W.; Coffey, B.C.; Kudsk, K.A. Pneumonia and stress ulceration in severely injured patients: A prospective evaluation of the effects of stress ulcer prophylaxis. Arch. Surg. 1993, 128, 185–192. [Google Scholar] [CrossRef] [PubMed]
  85. Fagon, J.Y.; Chastre, J.; Domart, Y.; Trouillet, J.L.; Pierre, J.; Darne, C.; Gibert, C. Nosocomial pneumonia in patients receiving continuous mechanical ventilation. Prospective analysis of 52 episodes with use of a protected specimen brush and quantitative culture techniques. Am. Rev. Respir. Dis. 1989, 139, 877–884. [Google Scholar] [CrossRef] [PubMed]
  86. García-Garmendia, J.L.; Ortiz-Leyba, C.; Garnacho-Montero, J.; Jiménez-Jiménez, F.J.; Pérez-Paredes, C.; Barrero-Almodóvar, A.E.; Miner, M.G. Risk factors for Acinetobacter baumannii nosocomial bacteremia in critically ill patients: A cohort study. Clin. Infect. Dis. 2001, 33, 939–946. [Google Scholar] [CrossRef] [PubMed]
  87. Garrouste-Orgeas, M.; Chevret, S.; Arlet, G.; Marie, O.; Rouveau, M.; Popoff, N.; Schlemmer, B. Oropharyngeal or gastric colonization and nosocomial pneumonia in adult intensive care unit patients. A prospective study based on genomic DNA analysis. Am. J. Respir. Crit. Care Med. 1997, 156, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
  88. Garrouste-Orgeas, M.; Timsit, J.F.; Tafflet, M.; Misset, B.; Zahar, J.R.; Soufir, L.; Lazard, T.; Jamali, S.; Mourvillier, B.; Cohen, Y.; et al. Excess risk of death from intensive care unit—Acquired nosocomial bloodstream infections: A reappraisal. Clin. Infect. Dis. 2006, 42, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
  89. George, D.L.; Falk, P.S.; Wunderink, R.G.; Leeper, K.V., Jr.; Meduri, G.U.; Steere, E.L.; Glen Mayhall, C. Epidemiology of ventilator-acquired pneumonia based on protected bronchoscopic sampling. Am. J. Respir. Crit. Care Med. 1998, 158, 1839–1847. [Google Scholar] [CrossRef] [PubMed]
  90. Georges, H.; Leroy, O.; Guery, B.; Alfandari, S.; Beaucaire, G. Predisposing factors for nosocomial pneumonia in patients receiving mechanical ventilation and requiring tracheotomy. Chest 2000, 118, 767–774. [Google Scholar] [CrossRef] [PubMed]
  91. Giard, M.; Lepape, A.; Allaouchiche, B.; Guerin, C.; Lehot, J.J.; Robert, M.O.; Vanhems, P. Early-and late-onset ventilator-associated pneumonia acquired in the intensive care unit: Comparison of risk factors. J. Crit. Care 2008, 23, 27–33. [Google Scholar] [CrossRef] [PubMed]
  92. Girou, E.; Schortgen, F.; Delclaux, C.; Brun-Buisson, C.; Blot, F.; Lefort, Y.; Lemaire, F.; Brochard, L. Association of noninvasive ventilation with nosocomial infections and survival in critically ill patients. JAMA 2000, 284, 2361–2367. [Google Scholar] [CrossRef] [PubMed]
  93. Gouel-Cheron, A.; Swihart, B.J.; Warner, S.; Mathew, L.; Strich, J.R.; Mancera, A.; Follmann, D.; Kadri, S.S. Epidemiology of ICU-Onset Bloodstream Infection: Prevalence, Pathogens, and Risk Factors Among 150,948 ICU Patients at 85 US Hospitals. Crit. Care Med. 2022, 50, 1725–1736. [Google Scholar] [CrossRef] [PubMed]
  94. Gruson, D.; Hilbert, G.; Vargas, F.; Valentino, R.; Bebear, C.; Allery, A.; Bebear, C.; Gbikpi-Benissan, G.E.; Cardinaud, J.P. Rotation and restricted use of antibiotics in a medical intensive care unit: Impact on the incidence of ventilator-associated pneumonia caused by antibiotic-resistant gram-negative bacteria. Am. J. Respir. Crit. Care Med. 2000, 162, 837–843. [Google Scholar] [CrossRef] [PubMed]
  95. Gruson, D.; Hilbert, G.; Vargas, F.; Valentino, R.; Bui, N.; Pereyre, S.; Bebear, C.; Bebear, C.M.; Gbikpi-Benissan, G. Strategy of antibiotic rotation: Long-term effect on incidence and susceptibilities of Gram-negative bacilli responsible for ventilator-associated pneumonia. Crit. Care Med. 2003, 31, 1908–1914. [Google Scholar] [CrossRef] [PubMed]
  96. Guérin, C.; Girard, R.; Chemorin, C.; De Varax, R.; Fournier, G. Facial mask noninvasive mechanical ventilation reduces the incidence of nosocomial pneumonia. Intensive Care Med. 1997, 23, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
  97. Guimaraes, M.M.; Rocco, J.R. Prevalence of ventilator-associated pneumonia in a university hospital and prognosis for the patients affected. J. Bras. Pneumol. 2006, 32, 339–346. [Google Scholar] [CrossRef] [PubMed]
  98. Gursel, G.; Aydogdu, M.; Nadir Ozis, T.; Tasyurek, S. Comparison of the value of initial and serial endotracheal aspirate surveillance cultures in predicting the causative pathogen of ventilator-associated pneumonia. Scand. J. Infect. Dis. 2010, 42, 341–346. [Google Scholar] [CrossRef] [PubMed]
  99. Alkhawaja, S.; Martin, C.; Butler, R.J.; Gwadry-Sridhar, F. Post-pyloric versus gastric tube feeding for preventing pneumonia and improving nutritional outcomes in critically ill adults. Cochrane Database Syst. Rev. 2015, CD008875. [Google Scholar] [CrossRef] [PubMed]
  100. Holzapfel, L.; Chevret, S.; Madinier, G.; Ohen, F.; Demingeon, G.; Coupry, A.; Chaudet, M. Influence of long-term oro- or nasotracheal intubation on nosocomial maxillary sinusitis and pneumonia: Results of a prospective, randomized, clinical trial. Crit. Care Med. 1993, 21, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
  101. Hortal, J.; Muñoz, P.; Cuerpo, G.; Litvan, H.; Rosseel, P.M.; Bouza, E.; European Study Group on Nosocomial Infections, European Workgroup of Cardiothoracic Intensivists. Ventilator-associated pneumonia in patients undergoing major heart surgery: An incidence study in Europe. Crit. Care 2009, 13, R80. [Google Scholar] [CrossRef] [PubMed]
  102. Hugonnet, S.; Uçkay, I.; Pittet, D. Staffing level: A determinant of late-onset ventilator-associated pneumonia. Crit. Care 2007, 11, R80. [Google Scholar] [CrossRef] [PubMed]
  103. Hyllienmark, P.; Gardlund, B.; Persson, J.O.; Ekdahl, K. Nosocomial pneumonia in the ICU: A prospective cohort study. Scand. J. Infect. Dis. 2007, 39, 676–682. [Google Scholar] [CrossRef] [PubMed]
  104. Ibáñez, J.; Peñafiel, A.; Marsé, P.; Jordá, R.; Raurich, J.M.; Mata, F. Incidence of gastroesophageal reflux and aspiration in mechanically ventilated patients using small-bore nasogastric tubes. J. Parenter. Enter. Nutr. 2000, 24, 103–106. [Google Scholar] [CrossRef] [PubMed]
  105. Ibrahim, E.H.; Ward, S.; Sherman, G.; Kollef, M.H. A comparative analysis of patients with early-onset vs late-onset nosocomial pneumonia in the ICU setting. Chest 2000, 117, 1434–1442. [Google Scholar] [CrossRef] [PubMed]
  106. Ibrahim, E.H.; Sherman, G.; Ward, S.; Fraser, V.J.; Kollef, M.H. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 2000, 118, 146–155. [Google Scholar] [CrossRef] [PubMed]
  107. Jacobs, S.; Chang, R.W.; Lee, B.; Bartlett, F.W. Continuous enteral feeding: A major cause of pneumonia among ventilated intensive care unit patients. JPEN J. Parenter. Enter. Nutr. 1990, 14, 353–356. [Google Scholar] [CrossRef] [PubMed]
  108. Jaillette, E.; Nseir, S. Relationship between inhaled β2-agonists and ventilator-associated pneumonia: A cohort study. Crit. Care Med. 2011, 39, 725–730. [Google Scholar] [CrossRef] [PubMed]
  109. Jaimes, F.; De La Rosa, G.; Gómez, E.; Múnera, P.; Ramírez, J.; Castrillón, S. Incidence and risk factors for ventilator-associated pneumonia in a developing country Where is the difference? Respir. Med. 2007, 101, 762–767. [Google Scholar] [CrossRef] [PubMed]
  110. Jiménez, P.; Torres, A.; Rodríguez-Roisin, R.; de la Bellacasa, J.P.; Aznar, R.; Gatell, J.M.; Agustí-Vidal, A. Incidence and etiology of pneumonia acquired during mechanical ventilation. Crit. Care Med. 1989, 17, 882–885. [Google Scholar] [CrossRef] [PubMed]
  111. Kallel, H.; Chelly, H.; Bahloul, M.; Ksibi, H.; Dammak, H.; Chaari, A.; Hamida, C.B.; Rekik, N.; Bouaziz, M. The effect of ventilator-associated pneumonia on the prognosis of head trauma patients. J. Trauma Acute Care Surg. 2005, 59, 705–710. [Google Scholar]
  112. Kallel, H.; Houcke, S.; Resiere, D.; Roy, M.; Mayence, C.; Mathien, C.; Mootien, J.; Demar, M.; Hommel, D.; Djossou, F. Epidemiology and Prognosis of Intensive Care Unit–Acquired Bloodstream Infection. Am. J. Trop. Med. Hyg. 2020, 103, 508. [Google Scholar] [CrossRef] [PubMed]
  113. Kanafani, Z.A.; Kara, L.; Hayek, S.; Kanj, S.S. Ventilator-associated pneumonia at a tertiary-care center in a developing country: Incidence, microbiology, and susceptibility patterns of isolated microorganisms. Infect. Control Hosp. Epidemiol. 2003, 24, 864–869. [Google Scholar] [CrossRef] [PubMed]
  114. Kantorova, I.; Svoboda, P.; Scheer, P.; Doubek, J.; Rehorkova, D.; Bosakova, H.; Ochmann, J. Stress ulcer prophylaxis in critically ill patients: A randomized controlled trial. Hepato-Gastroenterology 2004, 51, 757–761. [Google Scholar]
  115. Karin, A.; Peršec, J.; Bakran, K.; Pražetina, M.; Šribar, A. Etiology, incidence and mortality in patients with ventilator-associated pneumonia in adult general surgery and cardiac surgery intensive care units in University Hospital Dubrava. Infektološki Glas. 2019, 39, 124–128. [Google Scholar] [CrossRef]
  116. Kasuya, Y.; Hargett, J.L.; Lenhardt, R.; Heine, M.F.; Doufas, A.G.; Remmel, K.S.; Ramirez, J.A.; Akça, O. Ventilator-associated pneumonia in critically ill stroke patients: Frequency, risk factors, and outcomes. J. Crit. Care 2011, 26, 273–279. [Google Scholar] [CrossRef] [PubMed]
  117. Kirschenbaum, L.; Azzi, E.; Sfeir, T.; Tietjen, P.; Astiz, M. Effect of continuous lateral rotational therapy on the prevalence of ventilator-associated pneumonia in patients requiring long-term ventilatory care. Crit. Care Med. 2002, 30, 1983–1986. [Google Scholar] [CrossRef] [PubMed]
  118. Ko, H.K.; Yu, W.K.; Lien, T.C.; Wang, J.H.; Slutsky, A.S.; Zhang, H.; Kou, Y.R. Intensive care unit-acquired bacteremia in mechanically ventilated patients: Clinical features and outcomes. PLoS ONE 2013, 8, e83298. [Google Scholar] [CrossRef] [PubMed]
  119. Kollef, M.H. Ventilator-associated pneumonia. A multivariate analysis. JAMA 1993, 270, 1965–1970. [Google Scholar] [CrossRef] [PubMed]
  120. Kollef, M.H.; Shapiro, S.D.; Fraser, V.J.; Silver, P.; Murphy, D.M.; Trovillion, E.; Hearns, M.L.; Richards, R.D.; Cracchilo, L.; Hossin, L. Mechanical ventilation with or without 7-day circuit changes. A randomized controlled trial. Ann. Intern. Med. 1995, 123, 168–174. [Google Scholar] [CrossRef] [PubMed]
  121. Kollef, M.H.; Silver, P.; Murphy, D.M.; Trovillion, E. The effect of late-onset ventilator-associated pneumonia in determining patient mortality. Chest 1995, 108, 1655–1662. [Google Scholar] [CrossRef] [PubMed]
  122. Kollef, M.H.; Von Harz, B.; Prentice, D.; Shapiro, S.D.; Silver, P.; John, R.S.; Trovillion, E. Patient transport from intensive care increases the risk of developing ventilator-associated pneumonia. Chest 1997, 112, 765–773. [Google Scholar] [CrossRef] [PubMed]
  123. Kollef, M.H.; Prentice, D.; Shapiro, S.D.; Fraser, V.J.; Silver, P.; Trovillion, E.; Weilitz, P.; Von Harz, B. STJOHNRO Mechanical ventilation with or without daily changes of in-line suction catheters. Am. J. Respir. Crit. Care Med. 1997, 156, 466–472. [Google Scholar] [CrossRef] [PubMed]
  124. Kollef, M.H.; Chastre, J.; Fagon, J.Y.; François, B.; Niederman, M.S.; Rello, J.; Torres, A.; Vincent, J.L.; Wunderink, R.G.; Go, K.W.; et al. Global prospective epidemiologic and surveillance study of ventilator-associated pneumonia due to Pseudomonas aeruginosa. Crit. Care Med. 2014, 42, 2178–2187. [Google Scholar] [CrossRef] [PubMed]
  125. Kołpa, M.; Wałaszek, M.; Gniadek, A.; Wolak, Z.; Dobroś, W. Incidence, microbiological profile and risk factors of healthcare-associated infections in intensive care units: A 10 year observation in a provincial hospital in Southern Poland. Int. J. Environ. Res. Public Health 2018, 15, 112. [Google Scholar] [CrossRef]
  126. Koss, W.G.; Khalili, T.M.; Lemus, J.F.; Chelly, M.M.; Margulies, D.R.; Shabot, M.M. Nosocomial pneumonia is not prevented by protective contact isolation in the surgical intensive care unit. Am. Surg. 2001, 67, 1140–1144. [Google Scholar] [CrossRef] [PubMed]
  127. Kunac, A.; Sifri, Z.C.; Mohr, A.M.; Horng, H.; Lavery, R.F.; Livingston, D.H. Bacteremia and Ventilator-Associated Pneumonia: A Marker for Contemporaneous Extra-Pulmonic Infection. Surg. Infect. 2014, 15, 77–83. [Google Scholar] [CrossRef] [PubMed]
  128. Lambert, M.L.; Suetens, C.; Savey, A.; Palomar, M.; Hiesmayr, M.; Morales, I.; Agodi, A.; Frank, U.; Mertens, K.; Schumacher, M.; et al. Clinical outcomes of health-care-associated infections and antimicrobial resistance in patients admitted to European intensive-care units: A cohort study. Lancet Infect. Dis. 2011, 11, 30–38. [Google Scholar] [CrossRef] [PubMed]
  129. Laupland, K.B.; Zygun, D.A.; Davies, H.D.; Church, D.L.; Louie, T.J.; Doig, C.J. Population-based assessment of intensive care unit-acquired bloodstream infections in adults: Incidence, risk factors, and associated mortality rate. Crit. Care Med. 2002, 30, 2462–2467. [Google Scholar] [CrossRef]
  130. Laupland, K.B.; Kirkpatrick, A.W.; Church, D.L.; Ross, T.; Gregson, D.B. Intensive-care-unit-acquired bloodstream infections in a regional critically ill population. J. Hosp. Infect. 2004, 58, 137–145. [Google Scholar] [CrossRef] [PubMed]
  131. Leblebicioglu, H.; Ersoz, G.; Rosenthal, V.D.; Nevzat-Yalcin, A.; Akan, Ö.A.; Sirmatel, F.; Turgut, H.; Ozdemir, D.; Alp, E.; Uzun, C.; et al. Impact of a multidimensional infection control approach on catheter-associated urinary tract infection rates in adult intensive care units in 10 cities of Turkey: International Nosocomial Infection Control Consortium findings (INICC). Am. J. Infect. Control. 2013, 41, 885–891. [Google Scholar] [CrossRef] [PubMed]
  132. Lepelletier, D.; Roquilly, A.; Mahe, P.J.; Loutrel, O.; Champin, P.; Corvec, S.; Naux, E.; Pinaud, M.; Lejus, C.; Asehnoune, K. Retrospective analysis of the risk factors and pathogens associated with early-onset ventilator-associated pneumonia in surgical-ICU head-trauma patients. J. Neurosurg. Anesthesiol. 2010, 22, 32–37. [Google Scholar] [CrossRef] [PubMed]
  133. Lowy, F.D.; Carlisle, P.S.; Adams, A.; Feiner, C. The incidence of nosocomial pneumonia following urgent endotracheal intubation. Infect. Control Hosp. Epidemiol. 1987, 8, 245–248. [Google Scholar] [CrossRef] [PubMed]
  134. Luna, C.M.; Blanzaco, D.; Niederman, M.S.; Matarucco, W.; Baredes, N.C.; Desmery, P.; Palizas, F.; Menga, G.; Rios, F.; Apezteguia, C. Resolution of ventilator-associated pneumonia: Prospective evaluation of the clinical pulmonary infection score as an early clinical predictor of outcome. Crit. Care Med. 2003, 31, 676–682. [Google Scholar] [CrossRef] [PubMed]
  135. Luyt, C.E.; Guérin, V.; Combes, A.; Trouillet, J.L.; Ayed, S.B.; Bernard, M.; Gibert, C.; Chastre, J. Procalcitonin kinetics as a prognostic marker of ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 48–53. [Google Scholar] [CrossRef] [PubMed]
  136. Magnason, S.; Kristinsson, K.G.; Stefansson, T.; Erlendsdottir, H.; Jonsdottir, K.; Kristjansson, M.; Gudmundsson, S. Risk factors and outcome in ICU-acquired infections. Acta Anaesthesiol. Scand. 2008, 52, 1238–1245. [Google Scholar] [CrossRef] [PubMed]
  137. Magret, M.; Amaya-Villar, R.; Garnacho, J.; Lisboa, T.; Diaz, E.; DeWaele, J.; Deja, M.; Manno, E.; Rello, J. EU-VAP/CAP Study Group: Ventilator-associated pneumonia in trauma patients is associated with lower mortality: Results from EU-VAP study. J. Trauma Acute Care Surg. 2010, 69, 849–854. [Google Scholar] [CrossRef] [PubMed]
  138. Mahul, P.; Auboyer, C.; Jospe, R.; Ros, A.; Guerin, C.; el Khouri, Z.; Galliez, M.; Dumont, A.; Gaudin, O. Prevention of nosocomial pneumonia in intubated patients respective role of mechanical subglottic secretions drainage and stress ulcer prophylaxis. Intensive Care Med. 1992, 18, 20–25. [Google Scholar] [CrossRef] [PubMed]
  139. Makris, D.; Manoulakas, E.; Komnos, A.; Papakrivou, E.; Tzovaras, N.; Hovas, A.; Zintzaras, E.; Zakynthinos, E. Effect of pravastatin on the frequency of ventilator-associated pneumonia and on intensive care unit mortality: Open-label, randomized study. Crit. Care Med. 2011, 39, 2440–2446. [Google Scholar] [CrossRef] [PubMed]
  140. Markowicz, P.; Wolff, M.; Djedaini, K.; Cohen, Y.; Chastre, J.; Delclaux, C. Multicenter prospective study of ventilator-associated pneumonia during acute respiratory distress syndrome. Incidence, prognosis, and risk factors. ARDS Study Group. Am. J. Respir. Crit. Care Med. 2000, 161, 1942–1948. [Google Scholar] [CrossRef] [PubMed]
  141. Massart, N.; Wattecamps, G.; Moriconi, M.; Fillatre, P. Attributable mortality of ICU acquired bloodstream infections: A propensity-score matched analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1673–1680. [Google Scholar] [CrossRef]
  142. Meduri, G.U.; Reddy, R.C.; Stanley, T.; El-Zeky, F. Pneumonia in acute respiratory distress syndrome: A prospective evaluation of bilateral bronchoscopic sampling. Am. J. Respir. Crit. Care Med. 1998, 158, 870–875. [Google Scholar] [CrossRef] [PubMed]
  143. Memish, Z.A.; Cunningham, G.; Oni, G.A.; Djazmati, W. The incidence and risk factors of ventilator-associated pneumonia in a Riyadh hospital. Infect. Control Hosp. Epidemiol. 2000, 21, 271–273. [Google Scholar] [CrossRef] [PubMed]
  144. Michel, F.; Franceschini, B.; Berger, P.; Arnal, J.M.; Gainnier, M.; Sainty, J.M.; Papazian, L. Early antibiotic treatment for BAL-confirmed ventilator-associated pneumonia: A role for routine endotracheal aspirate cultures. Chest 2005, 127, 589–597. [Google Scholar] [CrossRef] [PubMed]
  145. Moine, P.; Timsit, J.F.; De Lassence, A.; Troché, G.; Fosse, J.P.; Alberti, C.; Cohen, Y. Mortality associated with late-onset pneumonia in the intensive care unit: Results of a multi-center cohort study. Intensive Care Med. 2002, 28, 154–163. [Google Scholar] [CrossRef] [PubMed]
  146. Myny, D.; Depuydt, P.; Colardyn, F.; Blot, S. Ventilator-associated pneumonia in a tertiary care ICU analysis of risk factors for acquisition and mortality. Acta Clin. Belg. 2005, 60, 114–121. [Google Scholar] [CrossRef] [PubMed]
  147. Nguile-Makao, M.; Zahar, J.R.; Français, A.; Tabah, A.; Garrouste-Orgeas, M.; Allaouchiche, B.; Goldgran-Toledano, D.; Azoulay, E.; Adrie, C.; Jamali, S.; et al. Attributable mortality of ventilator-associated pneumonia: Respective impact of main characteristics at ICU admission and VAP onset using conditional logistic regression and multi-state models. Intensive Care Med. 2010, 36, 781–789. [Google Scholar] [CrossRef] [PubMed]
  148. Nielsen, S.L.; Røder, B.; Magnussen, P.; Engquist, A.; Frimodt-møller, N. Nosocomial pneumonia in an intensive care unit in a Danish university hospital: Incidence, mortality and etiology. Scand. J. Infect. Dis. 1992, 24, 65–70. [Google Scholar] [CrossRef] [PubMed]
  149. Noor, A.; Hussain, S.F. Risk factors associated with development of ventilator associated pneumonia. J. Coll. Physicians Surg. Pak. 2005, 15, 92–95. [Google Scholar] [PubMed]
  150. Nseir, S.; Di Pompeo, C.; Soubrier, S.; Cavestri, B.; Jozefowicz, E.; Saulnier, F.; Durocher, A. Impact of ventilator-associated pneumonia on outcome in patients with COPD. Chest 2005, 128, 1650–1656. [Google Scholar] [CrossRef] [PubMed]
  151. Saied, W.I.; Mourvillier, B.; Cohen, Y.; Ruckly, S.; Reignier, J.; Marcotte, G.; Siami, S.; Bouadma, L.; Darmon, M.; Argaud, L.; et al. A comparison of the mortality risk associated with ventilator-acquired bacterial pneumonia and nonventilator ICU-acquired bacterial pneumonia. Crit. Care Med. 2019, 47, 345–352. [Google Scholar] [CrossRef] [PubMed]
  152. Papazian, L.; Bregeon, F.; Thirion, X.; Gregoire, R.; Saux, P.; Denis, J.P.; Perin, G.; Charrel, J.; Dumon, J.F.; Affray, J.P.; et al. Effect of ventilator-associated pneumonia on mortality and morbidity. Am. J. Respir. Crit. Care Med. 1996, 154, 91–97. [Google Scholar] [CrossRef]
  153. Pawar, M.; Mehta, Y.; Khurana, P.; Chaudhary, A.; Kulkarni, V.; Trehan, N. Ventilator-associated pneumonia: Incidence, risk factors, outcome, and microbiology. J. Cardiothorac. Vasc Anesth. 2003, 17, 22–28. [Google Scholar] [CrossRef] [PubMed]
  154. Plurad, D.S.; Kim, D.; Bricker, S.; Lemesurier, L.; Neville, A.; Bongard, F.; Putnam, B. Ventilator-associated pneumonia in severe traumatic brain injury: The clinical significance of admission Chest computed tomography findings. J. Surg. Res. 2013, 183, 371–376. [Google Scholar] [CrossRef] [PubMed]
  155. Pouwels, K.B.; Vansteelandt, S.; Batra, R.; Edgeworth, J.D.; Smieszek, T.; Robotham, J.V. Intensive care unit (ICU)-acquired bacteraemia and ICU mortality and discharge: Addressing time-varying confounding using appropriate methodology. J. Hosp. Infect. 2018, 99, 42–47. [Google Scholar] [CrossRef] [PubMed]
  156. Prowle, J.R.; Echeverri, J.E.; Ligabo, E.V.; Sherry, N.; Taori, G.C.; Crozier, T.M.; Bellomo, R. Acquired bloodstream infection in the intensive care unit: Incidence and attributable mortality. Crit. Care 2011, 15, R100. [Google Scholar] [CrossRef] [PubMed]
  157. Ramirez, P.; Lopez-Ferraz, C.; Gordon, M.; Gimeno, A.; Villarreal, E.; Ruiz, J.; Menendez, R.; Torres, A. From starting mechanical ventilation to ventilator-associated pneumonia, choosing the right moment to start antibiotic treatment. Crit. Care 2016, 20, 169. [Google Scholar] [CrossRef] [PubMed]
  158. Rello, J.; Quintana, E.; Ausina, V.; Castella, J.; Luquin, M.; Net, A.; Prats, G. Incidence, etiology, and outcome of nosocomial pneumonia in mechanically ventilated patients. Chest 1991, 100, 439–444. [Google Scholar] [CrossRef] [PubMed]
  159. Rello, J.; Ricart, M.; Mirelis, B.; Quintana, E.; Gurgui, M.; Net, A.; Prats, G. Nosocomial bacteremia in a medical-surgical intensive care unit: Epidemiologic characteristics and factors influencing mortality in 111 episodes. Intensive Care Med. 1994, 20, 94–98. [Google Scholar] [CrossRef] [PubMed]
  160. Rello, J.; Ollendorf, D.A.; Oster, G.; Vera-Llonch, M.; Bell, L.; Redman, R.; Kollef, M.H. Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Chest 2002, 122, 2115–2121. [Google Scholar] [CrossRef] [PubMed]
  161. Rello, J.; Lorente, C.; Diaz, E.; Bodi, M.; Boque, C.; Sandiumenge, A.; Santamaria, J.M. Incidence, etiology, and outcome of nosocomial pneumonia in ICU patients requiring percutaneous tracheotomy for mechanical ventilation. Chest 2003, 124, 2239–2243. [Google Scholar] [CrossRef] [PubMed]
  162. Resende, M.M.; Monteiro, S.G.; Callegari, B.; Figueiredo, P.M.; Monteiro, C.R.; Monteiro-Neto, V. Epidemiology and outcomes of ventilator-associated pneumonia in northern Brazil: An analytical descriptive prospective cohort study. BMC Infect. Dis. 2013, 13, 119. [Google Scholar] [CrossRef] [PubMed]
  163. Reusser, P.; Zimmerli, W.; Scheidegger, D.; Marbet, G.A.; Buser, M.; Gyr, K. Role of gastric colonization in nosocomial infections and endotoxemia: A prospective study in neurosurgical patients on mechanical ventilation. J. Infect. Dis. 1989, 160, 414–421. [Google Scholar] [CrossRef] [PubMed]
  164. Rezai, M.S.; Bagheri–Nesami, M.; Nikkhah, A.; Bayg, A.H. Incidence, risk factors, and outcome of ventilator-associated Pneumonia in 18 hospitals of Iran. Running title: Ventilator-associated pneumonia in Iran. Int. J. Adv. Biotech. Res. 2016, 7, 936–946. [Google Scholar]
  165. Rincón-Ferrari, M.D.; Flores-Cordero, J.M.; Leal-Noval, S.R.; Murillo-Cabezas, F.; Cayuelas, A.; Muñoz-Sánchez, M.A.; Sánchez-Olmedo, J.I. Impact of ventilator-associated pneumonia in patients with severe head injury. J. Trauma Acute Care Surg. 2004, 57, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
  166. Rodrigues, P.M.; Neto, C.; Santos, L.R.; Knibel, M.F. Ventilator-associated pneumonia: Epidemiology and impact on the clinical evolution of ICU patients. J. Bras. De Pneumol. 2009, 35, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
  167. Rodriguez, J.L.; Gibbons, K.J.; Bitzer, L.G.; Dechert, R.E.; Steinberg, S.M.; Flint, L.M. Pneumonia: Incidence, risk factors, and outcome in injured patients. J. Trauma Acute Care Surg. 1991, 31, 907–912. [Google Scholar] [CrossRef]
  168. Rosenthal, V.D.; Maki, D.G.; Salomao, R.; Moreno, C.A.; Mehta, Y.; Higuera, F.; Cuellar, L.E.; Arikan, Ö.A.; Abouqal, R.; Leblebicioglu, H. International Nosocomial Infection Control Consortium*. Device-associated nosocomial infections in 55 intensive care units of 8 developing countries. Ann. Intern. Med. 2006, 145, 582–591. [Google Scholar] [CrossRef] [PubMed]
  169. Rosenthal, V.D.; Rodrigues, C.; Madani, N.; Mitrev, Z.; Ye, G.; Salomao, R.; Ulger, F.; Guanche-Garcell, H.; Kanj, S.S.; Cuéllar, L.E.; et al. Effectiveness of a multidimensional approach for prevention of ventilator-associated pneumonia in adult intensive care units from 14 developing countries of four continents: Findings of the International Nosocomial Infection Control Consortium. Crit. Care Med. 2012, 40, 3121–3128. [Google Scholar] [CrossRef] [PubMed]
  170. Ruiz-Santana, S.; Garcia Jimenez, A.; Esteban, A.; Guerra, L.; Alvarez, B.; Corcia, S.; Gudin, J.; Martinez, A.; Quintana, E.; Armengol, S.; et al. ICU pneumonias: A multi-institutional study. Crit. Care Med. 1987, 15, 930–932. [Google Scholar] [CrossRef]
  171. Salata, R.A.; Lederman, M.M.; Shlaes, D.M.; Jacobs, M.R.; Eckstein, E.; Tweardy, D.; Toossi, Z.; Chmielewski, R.; Marino, J.; King, C.H. Diagnosis of nosocomial pneumonia in intubated, intensive care unit patients. Am. Rev. Respir. Dis. 1987, 135, 426–432. [Google Scholar] [PubMed]
  172. Shahin, J.; Bielinski, M.; Guichon, C.; Flemming, C.; Kristof, A.S. Suspected ventilator-associated respiratory infection in severely ill patients: A prospective observational study. Crit. Care 2013, 17, R251. [Google Scholar] [CrossRef] [PubMed]
  173. Sofianou, D.C.; Constandinidis, T.C.; Yannacou, M.; Anastasiou, H.; Sofianos, E. Analysis of risk factors for ventilator-associated pneumonia in a multidisciplinary intensive care unit. Eur. J. Clin. Microbiol. Infect. Dis. 2000, 19, 460–463. [Google Scholar] [CrossRef] [PubMed]
  174. Stéphan, F.; Mabrouk, N.; Decailliot, F.; Delclaux, C.; Legrand, P. Ventilator-associated pneumonia leading to acute lung injury after trauma: Importance of Haemophilus influenzae. Anesthesiology 2006, 104, 235–241. [Google Scholar] [CrossRef] [PubMed]
  175. Stoclin, A.; Rotolo, F.; Hicheri, Y.; Mons, M.; Chachaty, E.; Gachot, B.; Pignon, J.P.; Wartelle, M.; Blot, F. Ventilator-associated pneumonia and bloodstream infections in intensive care unit cancer patients: A retrospective 12-year study on 3388 prospectively monitored patients. Support. Care Cancer 2020, 28, 193–200. [Google Scholar] [CrossRef] [PubMed]
  176. Sutherland, K.R.; Steinberg, K.P.; Maunder, R.J.; Milberg, J.A.; Allen, D.L.; Hudson, L.D. Pulmonary infection during the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1995, 152, 550–556. [Google Scholar] [CrossRef] [PubMed]
  177. Tan, X.; Zhu, S.; Yan, D.; Chen, W.; Chen, R.; Zou, J.; Yan, J.; Zhang, X.; Farmakiotis, D.; Mylonakis, E. Candida spp. airway colonization: A potential risk factor for Acinetobacter baumannii ventilator-associated pneumonia. Med. Mycol. 2016, 54, myw009. [Google Scholar] [CrossRef] [PubMed]
  178. Tejada Artigas, A.T.; Dronda, S.B.; Vallés, E.C.; Marco, J.M.; Usón, M.C.; Figueras, P.; Suarez, F.J.; Hernandez, A. Risk factors for nosocomial pneumonia in critically ill trauma patients. Crit. Care Med. 2001, 29, 304–309. [Google Scholar] [CrossRef] [PubMed]
  179. Thompson, D.S. Estimates of the rate of acquisition of bacteraemia and associated excess mortality in a general intensive care unit: A 10 year study. J. Hosp. Infect. 2008, 69, 56–61. [Google Scholar] [CrossRef] [PubMed]
  180. Timsit, J.F.; Chevret, S.; Valcke, J.; Misset, B.; Renaud, B.; Goldstein, F.W.; Vaury, P.; Carlet, J. Mortality of nosocomial pneumonia in ventilated patients: Influence of diagnostic tools. Am. J. Respir. Crit. Care Med. 1996, 154, 116–123. [Google Scholar] [CrossRef] [PubMed]
  181. Timsit, J.F.; Schwebel, C.; Styfalova, L.; Cornet, M.; Poirier, P.; Forrestier, C.; Ruckly, S.; Jacob, M.C.; Souweine, B. Impact of bronchial colonization with Candida spp. on the risk of bacterial ventilator-associated pneumonia in the ICU: The FUNGIBACT prospective cohort study. Intensive Care Med. 2019, 45, 834–843. [Google Scholar] [CrossRef] [PubMed]
  182. Torres, A.; Aznar, R.; Gatell, J.M.; Jiménez, P.; González, J.; Ferrer, A.; Celis, R.; Rodriguez-Roisin, R. Incidence, risk, and prognosis factors of nosocomial pneumonia in mechanically ventilated patients. Am. Rev. Respir. Dis. 1990, 142, 523–528. [Google Scholar] [CrossRef] [PubMed]
  183. Trouillet, J.L.; Chastre, J.; Vuagnat, A.; Joly-Guillou, M.L.; Combaux, D.; Dombret, M.C.; Gibert, C. Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. Am. J. Respir. Crit. Care Med. 1998, 157, 531–539. [Google Scholar] [CrossRef] [PubMed]
  184. Urli, T.; Perone, G.; Acquarolo, A.; Zappa, S.; Antonini, B.; Ciani, A. Surveillance of infections acquired in intensive care: Usefulness in clinical practice. J. Hosp. Infect. 2002, 52, 130–135. [Google Scholar] [CrossRef] [PubMed]
  185. Valles, J.; Pobo, A.; Garcia-Esquirol, O.; Mariscal, D.; Real, J.; Fernández, R. Excess ICU mortality attributable to ventilator-associated pneumonia: The role of early vs late onset. Intensive Care Med. 2007, 33, 1363–1368. [Google Scholar] [CrossRef] [PubMed]
  186. Vanhems, P.; Bénet, T.; Voirin, N.; Januel, J.M.; Lepape, A.; Allaouchiche, B.; Argaud, L.; Chassard, D.; Guérin, C. Early-onset ventilator-associated pneumonia incidence in intensive care units: A surveillance-based study. BMC Infect. Dis. 2011, 11, 236. [Google Scholar] [CrossRef] [PubMed]
  187. Verhamme, K.M.; De Coster, W.; De Roo, L.; De Beenhouwer, H.; Nollet, G.; Verbeke, J.; Demeyer, I.; Jordens, P. Pathogens in early-onset and late-onset intensive care unit–acquired pneumonia. Infect. Control Hosp. Epidemiol. 2007, 28, 389–397. [Google Scholar] [CrossRef] [PubMed]
  188. Violan, J.S.; Sanchez-Ramirez, C.; Mujica, A.P.; Cendrero, J.C.; Fernandez, J.A.; de Castro, F.R. Impact of nosocomial pneumonia on the outcome of mechanically-ventilated patients. Crit. Care 1998, 2, 19–23. [Google Scholar] [CrossRef] [PubMed]
  189. Warren, D.K.; Zack, J.E.; Elward, A.M.; Cox, M.J.; Fraser, V.J. Nosocomial primary bloodstream infections in intensive care unit patients in a nonteaching community medical center: A 21-month prospective study. Clin. Infect. Dis. 2001, 33, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
  190. Woske, H.J.; Röding, T.; Schulz, I.; Lode, H. Ventilator-associated pneumonia in a surgical intensive care unit Epidemiology, etiology and comparison of three bronchoscopic methods for microbiological specimen sampling. Crit. Care 2001, 5, 167–173. [Google Scholar] [CrossRef] [PubMed]
  191. Xie, D.S.; Xiong, W.; Lai, R.P.; Liu, L.; Gan, X.M.; Wang, X.H.; Wang, M.; Lou, Y.X.; Fu, X.Y.; Wang, H.F.; et al. Ventilator-associated pneumonia in intensive care units in Hubei Province, China: A multicentre prospective cohort survey. J. Hosp. Infect. 2011, 78, 284–288. [Google Scholar] [CrossRef] [PubMed]
  192. Zahar, J.R.; Nguile-Makao, M.; Français, A.; Schwebel, C.; Garrouste-Orgeas, M.; Goldgran-Toledano, D.; Azoulay, E.; Thuong, M.; Jamali, S.; Cohen, Y.; et al. Predicting the risk of documented ventilator-associated pneumonia for benchmarking: Construction and validation of a score. Crit. Care Med. 2009, 37, 2545–2551. [Google Scholar] [CrossRef] [PubMed]
  193. Apisarnthanarak, A.; Pinitchai, U.; Thongphubeth, K.; Yuekyen, C.; Warren, D.K.; Zack, J.E.; Warachan, B.; Fraser, V.J. Effectiveness of an educational program to reduce ventilator-associated pneumonia in a tertiary care center in Thailand: A 4-year study. Clin. Infect. Dis. 2007, 45, 704–711. [Google Scholar] [CrossRef] [PubMed]
  194. Acosta-Escribano, J.; Fernández-Vivas, M.; Carmona, T.G.; Caturla-Such, J.; Garcia-Martinez, M.; Menendez-Mainer, A.; Sanchez-Payá, J. Gastric versus transpyloric feeding in severe traumatic brain injury: A prospective, randomized trial. Intensive Care Med. 2010, 36, 1532–1539. [Google Scholar] [CrossRef] [PubMed]
  195. Bonten, M.J.; Gaillard, C.A.; Van der Geest, S.; Van Tiel, F.H.; Beysens, A.J.; Smeets, H.G.; Stobberingh, E.E. The role of intragastric acidity and stress ulcer prophylaxis on colonization and infection in mechanically ventilated ICU patients. A stratified, randomized, double-blind study of sucralfate versus antacids. Am. J. Respir. Crit. Care Med. 1995, 152, 1825–1834. [Google Scholar] [CrossRef] [PubMed]
  196. Cook, D.; Guyatt, G.; Marshall, J.; Leasa, D.; Fuller, H.; Hall, R.; Peters, S.; Rutledge, F.; Griffith, L.; McLellan, A.; et al. A comparison of sucralfate and ranitidine for the prevention of upper gastrointestinal bleeding in patients requiring mechanical ventilation. Canadian Critical Care Trials Group. N. Engl. J. Med. 1998, 338, 791–797. [Google Scholar] [CrossRef] [PubMed]
  197. Driks, M.R.; Craven, D.E.; Celli, B.R.; Manning, M.; Burke, R.A.; Garvin, G.M.; Kunches, L.M.; Farber, H.W.; Wedel, S.A.; McCabe, W.R. Nosocomial pneumonia in intubated patients given sucralfate as compared with antacids or histamine type 2 blockers. The role of gastric colonization. N. Engl. J. Med. 1987, 317, 1376–1382. [Google Scholar] [CrossRef] [PubMed]
  198. Forestier, C.; Guelon, D.; Cluytens, V.; Guillart, T.; Sirot, J.; De champs, C. Oral probiotic and prevention of Pseudomonas aeruginosa infections: A randomized, double-blind, placebocontrolled pilot study in intensive care unit patients. Crit. Care 2008, 12, R69. [Google Scholar] [CrossRef] [PubMed]
  199. Giamarellos-Bourboulis, E.J.; Bengmark, S.; Kanellakopoulou, K.; Kotzampassi, K. Pro-and synbiotics to control inflammation and infection in patients with multiple injuries. J. Trauma Acute Care Surg. 2009, 67, 815–821. [Google Scholar] [CrossRef] [PubMed]
  200. Heyland, D.K.; Cook, D.J.; Schoenfeld, P.S.; Frietag, A.; Varon, J.; Wood, G. The effect of acidified enteral feeds on gastric colonization in critically ill patients: Results of a multicenter randomized trial. Canadian Critical Care Trials Group. Crit. Care Med. 1999, 27, 2399–2406.201. [Google Scholar] [CrossRef] [PubMed]
  201. Knight, D.J.; Gardiner, D.; Banks, A.; Snape, S.E.; Weston, V.C.; Bengmark, S.; Girling, K.J. Effect of synbiotic therapy on the incidence of ventilator associated pneumonia in critically ill patients: A randomised, double-blind, placebo-controlled trial. Intensive Care Med. 2009, 35, 854–861. [Google Scholar] [CrossRef] [PubMed]
  202. Kostadima, E.; Kaditis, A.G.; Alexopoulos, E.I.; Zakynthinos, E.; Sfyras, D. Early gastrostomy reduces the rate of ventilator-associated pneumonia in stroke or head injury patients. Eur. Respir. J. 2005, 26, 106–111. [Google Scholar] [CrossRef] [PubMed]
  203. Laggner, A.N.; Lenz, K.; Base, W.; Druml, W.; Schneeweiss, B.; Grimm, G. Prevention of upper gastrointestinal bleeding in long-term ventilated patients: Sucralfate versus ranitidine. Am. J. Med. 1989, 86, 81–84. [Google Scholar] [CrossRef] [PubMed]
  204. Martin, C.; Perrin, G.; Gevaudan, M.J.; Saux, P.; Gouin, F. Heat and moisture exchangers and vaporizing humidifiers in the intensive care unit. Chest 1990, 97, 144–149. [Google Scholar] [CrossRef] [PubMed]
  205. Miano, T.A.; Reichert, M.G.; Houle, T.T.; MacGregor, D.A.; Kincaid, E.H.; Bowton, D.L. Nosocomial pneumonia risk and stress ulcer prophylaxis: A comparison of pantoprazole vs ranitidine in cardiothoracic surgery patients. Chest 2009, 136, 440–447. [Google Scholar] [CrossRef] [PubMed]
  206. Montecalvo, M.A.; Steger, K.A.; Farber, H.W.; Smith, B.F.; Dennis, R.C.; Fitzpatrick, G.F.; Pollack, S.D.; Korsberg, T.Z.; Birkett, D.H.; Hirsch, E.F. Nutritional outcome and pneumonia in critical care patients randomized to gastric versus jejunal tube feedings. The Critical Care Research Team. Crit. Care Med. 1992, 20, 1377–1387. [Google Scholar] [CrossRef] [PubMed]
  207. Morrow, L.E.; Kollef, M.H.; Casale, T.B. Probiotic prophylaxis of ventilator-associated pneumonia: A blinded, randomized, controlled trial. Am. J. Respir. Crit. Care Med. 2010, 182, 1058–1064. [Google Scholar] [CrossRef] [PubMed]
  208. Pickworth, K.K.; Falcone, R.E.; Hoogeboom, J.E.; Santanello, S.A. Occurrence of nosocomial pneumonia in mechanically ventilated trauma patients: A comparison of sucralfate and ranitidine. Crit. Care Med. 1993, 21, 1856–1862. [Google Scholar] [CrossRef] [PubMed]
  209. Prod’hom, G.; Leuenberger, P.; Koerfer, J.; Blum, A.; Chiolero, R.; Schaller, M.D.; Perret, C.; Spinnler, O.; Blondel, J.; Siegrist, H.; et al. Nosocomial pneumonia in mechanically ventilated patients receiving antacid, ranitidine, or sucralfate as prophylaxis for stress ulcer. A randomized controlled trial. Ann. Intern. Med. 1994, 120, 653–662. [Google Scholar] [CrossRef]
  210. Reignier, J.; Mercier, E.; Le Gouge, A.; Boulain, T.; Desachy, A.; Bellec, F.; Lascarrou, J.B. Effect of Not Monitoring Residual Gastric Volume on Risk of Ventilator-Associated Pneumonia in Adults Receiving Mechanical Ventilation and Early Enteral Feeding. A Randomized Controlled Trial. JAMA 2013, 309, 249–256. [Google Scholar] [CrossRef] [PubMed]
  211. Ryan, P.; Dawson, J.; Teres, D.; Celoria, G.; Navab, F. Nosocomial pneumonia during stress ulcer prophylaxis with cimetidine and sucralfate. Arch. Surg. 1993, 128, 1353–1357. [Google Scholar] [CrossRef] [PubMed]
  212. Zeng, J.; Wang, C.T.; Zhang, F.S.; Qi, F.; Wang, S.F.; Ma, S.; Wu, T.J.; Tian, H.; Tian, Z.T.; Zhang, S.L.; et al. Effect of probiotics on the incidence of ventilator-associated pneumonia in critically ill patients: A randomized controlled multicenter trial. Intensive Care Med. 2016, 42, 1018–1028. [Google Scholar] [CrossRef] [PubMed]
  213. Damas, P.; Legrain, C.; Lambermont, B.; Dardenne, N.; Guntz, J.; Kisoka, G.; Demaret, P.; Rousseau, A.F.; Jadot, L.; Piret, S.; et al. Prevention of ventilator-associated pneumonia by noble metal coating of endotracheal tubes: A multi-center, randomized, double-blind study. Ann. Intensive Care 2022, 12, 1. [Google Scholar] [CrossRef] [PubMed]
  214. Dat, V.Q.; Minh Yen, L.; Thi Loan, H.; Dinh Phu, V.; Thien Binh, N.; Geskus, R.B.; Khanh Trinh, D.H.; Hoang Mai, N.T.; Hoan Phu, N.; Huong Lan, N.P.; et al. Effectiveness of continuous endotracheal cuff pressure control for the prevention of ventilator-associated respiratory infections: An open-label randomized, controlled trial. Clin. Infect. Dis. 2022, 74, 1795–1803. [Google Scholar] [CrossRef] [PubMed]
  215. Djedaini, K.; Billiard, M.; Mier, L.; Le Bourdelles, G.; Brun, P.; Markowicz, P.; Estagnasie, P.; Coste, F.; Boussougant, Y.; Dreyfuss, D. Changing heat and moisture exchangers every 48 hours rather than 24 hours does not affect their efficacy and the incidence of nosocomial pneumonia. Am. J. Respir. Crit. Care Med. 1995, 152, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
  216. Drakulovic, M.B.; Torres, A.; Bauer, T.T.; Nicolas, J.M.; Nogué, S.; Ferrer, M. Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: A randomised trial. Lancet 1999, 354, 1851–1858. [Google Scholar] [CrossRef] [PubMed]
  217. Dreyfuss, D.; Djedaini, K.; Weber, P.; Brun, P.; Lanore, J.J.; Rahmani, J.; Coste, F. Prospective study of nosocomial pneumonia and of patient and circuit colonization during mechanical ventilation with circuit changes every 48 hours versus no change. Am. Rev. Respir. Dis. 1991, 143 Pt 1, 738–743. [Google Scholar] [CrossRef] [PubMed]
  218. Dreyfuss, D.; Djedaïni, K.; Gros, I.; Mier, L.; Le Bourdellés, G.; Cohen, Y.; Estagnasié, P.; Coste, F.; Boussougant, Y. Mechanical ventilation with heated humidifiers or heat and moisture exchangers: Effects on patient colonization and incidence of nosocomial pneumonia. Am. J. Respir. Crit. Care Med. 1995, 151, 986–992. [Google Scholar] [PubMed]
  219. Holzapfel, L.; Chastang, C.; Demingeon, G.; Bohe, J.; Piralla, B.; Coupry, A. A randomized study assessing the systematic search for maxillary sinusitis in nasotracheally mechanically ventilated patients. Influence of nosocomial maxillary sinusitis on the occurrence of ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 1999, 159, 695–701. [Google Scholar] [CrossRef] [PubMed]
  220. Kirton, O.C.; DeHaven, B.; Morgan, J.; Civetta, J.A. A prospective, randomized comparison of an in-line heat moisture exchange filter and heated wire humidifiers: Rates of ventilator-associated early-onset (community-acquired) or late-onset (hospital-acquired) pneumonia and incidence of endotracheal tube occlusion. Chest 1997, 112, 1055–1059. [Google Scholar] [PubMed]
  221. Kollef, M.H.; Vlasnik, J.O.; Sharpless, L.; Pasque, C.; Murphy, D.; Fraser, V. Scheduled change of antibiotic classes: A strategy to decrease the incidence of ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 1997, 156, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
  222. Kollef, M.H.; Afessa, B.; Anzueto, A.; Veremakis, C.; Kerr, K.M.; Margolis, B.D.; Schinner, R. Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: The NASCENT randomized trial. JAMA 2008, 300, 805–813. [Google Scholar] [CrossRef] [PubMed]
  223. Lacherade, J.C.; Auburtin, M.; Cerf, C.; Van de Louw, A.; Soufir, L.; Rebufat, Y.; Rezaiguia, S.; Ricard, J.D.; Lellouche, F.; Brun-Buisson, C.; et al. Impact of humidification systems on ventilator-associated pneumonia: A randomized multicenter trial. Am. J. Respir. Crit. Care Med. 2005, 172, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
  224. Lacherade, J.C.; De Jonghe, B.; Guezennec, P.; Debbat, K.; Hayon, J.; Monsel, A.; Bastuji-Garin, S. Intermittent subglottic secretion drainage and ventilator-associated pneumonia A multicenter trial. Am. J. Respir. Crit. Care Med. 2010, 182, 910–917. [Google Scholar] [CrossRef] [PubMed]
  225. Launey, Y.; Nesseler, N.; Le Cousin, A.; Feuillet, F.; Garlantezec, R.; Mallédant, Y.; Seguin, P. Effect of a fever control protocol-based strategy on ventilator-associated pneumonia in severely brain-injured patients. Crit. Care 2014, 18, 1. [Google Scholar] [CrossRef] [PubMed]
  226. Lorente, L.; Lecuona, M.; Málaga, J.; Revert, C.; Mora, M.L.; Sierra, A. Bacterial filters in respiratory circuits: An unnecessary cost? Crit. Care Med. 2003, 31, 2126–2130. [Google Scholar] [CrossRef] [PubMed]
  227. Lorente, L.; Lecuona, M.; Galván, R.; Ramos, M.J.; Mora, M.L.; Sierra, A. Periodically changing ventilator circuits is not necessary to prevent ventilator-associated pneumonia when a heat and moisture exchanger is used. Infect. Control Hosp. Epidemiol. 2004, 25, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
  228. Lorente, L.; Lecuona, M.; Martín, M.M.; García, C.; Mora, M.L.; Sierra, A. Ventilator-associated pneumonia using a closed versus an open tracheal suction system. Crit. Care Med. 2005, 33, 115–119. [Google Scholar] [CrossRef] [PubMed]
  229. Lorente, L.; Lecuona, M.; Jiménez, A.; Mora, M.L.; Sierra, A. Tracheal suction by closed system without daily change versus open system. Intensive Care Med. 2006, 32, 538–544. [Google Scholar] [CrossRef] [PubMed]
  230. Lorente, L.; Lecuona, M.; Jimenez, A.; Mora, M.L.; Sierra, A. Ventilator-associated pneumonia using a heated humidifier or a heat and moisture exchanger: A randomized controlled trial. Crit. Care 2006, 10, R116. [Google Scholar] [CrossRef] [PubMed]
  231. Lorente, L.; Lecuona, M.; Jimenez, A.; Mora, M.L. Sierra: Influence of an endotracheal tube with polyurethane cuff and subglottic secretion drainage on pneumonia. Am. J. Respir. Crit. Care Med. 2007, 176, 1079–1083. [Google Scholar] [CrossRef]
  232. Lorente, L.; Lecuona, M.; Jiménez, A.; Lorenzo, L.; Roca, I.; Cabrera, J.; Llanos, C.; Mora, M.L. Continuous endotracheal tube cuff pressure control system protects against ventilator-associated pneumonia. Crit. Care 2014, 18, 1. [Google Scholar] [CrossRef] [PubMed]
  233. Mahmoodpoor, A.; Hamishehkar, H.; Hamidi, M.; Shadvar, K.; Sanaie, S.; Golzari, S.E.; Khan, Z.H.; Nader, N.D. A prospective randomized trial of tapered-cuff endotracheal tubes with intermittent subglottic suctioning in preventing ventilator-associated pneumonia in critically ill patients. J. Crit. Care 2017, 38, 152–156. [Google Scholar] [CrossRef] [PubMed]
  234. Manzano, F.; Fernandez-Mondejar, E.; Colmenero, M.; Poyatos, M.E.; Rivera, R.; Machado, J.; Catalan, I.; Artigas, A. Positive-end expiratory pressure reduces incidence of ventilator-associated pneumonia in nonhypoxemic patients. Crit. Care Med. 2008, 36, 2225–2231. [Google Scholar] [CrossRef] [PubMed]
  235. Marjanovic, N.; Boisson, M.; Asehnoune, K.; Foucrier, A.; Lasocki, S.; Ichai, C.; Leone, M.; Pottecher, J.; Lefrant, J.Y.; Falcon, D.; et al. Continuous pneumatic regulation of tracheal cuff pressure to decrease ventilator-associated pneumonia in trauma patients who were mechanically ventilated: The AGATE multicenter randomized controlled study. Chest 2021, 160, 499–508. [Google Scholar] [CrossRef] [PubMed]
  236. Nseir, S.; Zerimech, F.; Fournier, C.; Lubret, R.; Ramon, P.; Durocher, A.; Balduyck, M. Continuous control of tracheal cuff pressure and microaspiration of gastric contents in critically ill patients. Am. J. Respir. Crit. Care Med. 2011, 184, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
  237. Pneumatikos, I.; Konstantonis, D.; Tsagaris, I.; Theodorou, V.; Vretzakis, G.; Danielides, V.; Bouros, D. Prevention of nosocomial maxillary sinusitis in the ICU: The effects of topically applied alpha-adrenergic agonists and corticosteroids. Intensive Care Med. 2006, 32, 532–537. [Google Scholar] [CrossRef] [PubMed]
  238. Rumbak, M.J.; Truncale, T.; Newton, M.N.; Adams, B.; Hazard, P. A Prospective, Randomized Study Comparing Early Versus Delayed Percutaneous Tracheostomy In Critically Ill Medical Patients Requiring Prolonged Mechanical Ventilation. Chest 2000, 118, 97S–98S. [Google Scholar]
  239. Smulders, K.; van der Hoeven, H.; Weers-Pothoff, I.; Vandenbroucke-Grauls, C. A randomized clinical trial of intermittent subglottic secretion drainage in patients receiving mechanical ventilation. Chest 2002, 121, 858–862. [Google Scholar] [CrossRef] [PubMed]
  240. Staudinger, T.; Bojic, A.; Holzinger, U.; Meyer, B.; Rohwer, M.; Mallner, F.; Locker, G.J. Continuous lateral rotation therapy to prevent ventilator-associated pneumonia. Crit. Care Med. 2010, 38, 486–490. [Google Scholar] [CrossRef] [PubMed]
  241. Thomachot, L.; Viviand, X.; Arnaud, S.; Boisson, C.; Martin, C.D. Comparing two heat and moisture exchangers, one hydrophobic and one hygroscopic, on humidifying efficacy and the rate of nosocomial pneumonia. Chest 1998, 114, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
  242. Thomachot, L.; Leone, M.; Razzouk, K.; Antonini, F.; Vialet, R.; Martin, C. Do the components of heat and moisture exchanger filters affect humidifying efficacy and the incidence of nosocomial pneumonia? Crit. Care Med. 1999, 27, 923–928. [Google Scholar] [CrossRef] [PubMed]
  243. Thomachot, L.; Leone, M.; Razzouk, K.; Antonini, F.; Vialet, R.; Martin, C. Randomized Clinical Trial of Extended Use of a Hydrophobic Condenser Humidifier: 1 vs. 7 Days. Crit. Care Med. 2002, 30, 232–237. [Google Scholar] [CrossRef] [PubMed]
  244. Valencia, M.; Ferrer, M.; Farre, R.; Navajas, D.; Badia, J.R.; Nicolas, J.M.; Torres, A. Automatic control of tracheal tube cuff pressure in ventilated patients in semirecumbent position: A randomized trial. Crit. Care Med. 2007, 35, 1543–1549. [Google Scholar] [CrossRef] [PubMed]
  245. Walaszek, M.; Gniadek, A.; Kolpa, M.; Wolak, Z.; Kosiarska, A. The effect of subglottic secretion drainage on the incidence of ventilator associated pneumonia. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2017, 161, 374–380. [Google Scholar] [CrossRef] [PubMed]
  246. Bleasdale, S.C.; Trick, W.E.; Gonzalez, I.M.; Lyles, R.D.; Hayden, M.K.; Weinstein, R.A. Effectiveness of chlorhexidine bathing to reduce catheter-associated bloodstream infections in medical intensive care unit patients. Arch. Intern. Med. 2007, 167, 2073–2079. [Google Scholar] [CrossRef] [PubMed]
  247. Ćabov, T.; Macan, D.; Husedžinović, I.; Škrlin-Šubić, J.; Bošnjak, D.; Šestan-Crnek, S.; Perić, B.; Kovač, Z.; Golubović, V. The impact of oral health and 0.2% chlorhexidine oral gel on the prevalence of nosocomial infections in surgical intensive-care patients: A randomized placebo-controlled study. Wien. Klin. Wochenschr. 2010, 122, 397–404. [Google Scholar] [CrossRef] [PubMed]
  248. Caruso, P.; Denari, S.; Ruiz, S.A.; Demarzo, S.E.; Deheinzelin, D. Saline instillation before tracheal suctioning decreases the incidence of ventilator-associated pneumonia. Crit. Care Med. 2009, 37, 32–38. [Google Scholar] [CrossRef] [PubMed]
  249. Climo, M.W.; Yokoe, D.S.; Warren, D.K.; Perl, T.M.; Bolon, M.; Herwaldt, L.A.; Weinstein, R.A.; Sepkowitz, K.A.; Jernigan, J.A.; Sanogo, K.; et al. Effect of daily chlorhexidine bathing on hospital-acquired infection. N. Engl. J. Med. 2013, 368, 533–542. [Google Scholar] [CrossRef] [PubMed]
  250. Fourrier, F.E.; Cau-Pottier, H.; Boutigny, M.; Roussel-Delvallez, M.; Jourdain Chopin, C. Effects of dental plaque antiseptic decontamination on bacterial colonization and nosocomial infections in critically ill patients. Intensive Care Med. 2000, 26, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
  251. Fourrier, F.; Dubois, D.; Pronnier, P.; Herbecq, P.; Leroy, O.; Desmettre, T.; Roussel-Delvallez, M. Effect of gingival and dental plaque antiseptic decontamination on nosocomial infections acquired in the intensive care unit a double-blind placebo-controlled multicenter study. Crit. Care Med. 2005, 33, 1728–1735. [Google Scholar] [CrossRef] [PubMed]
  252. Gacouin, A.; Barbarot, N.; Camus, C.; Salomon, S.; Isslame, S.; Marque, S.; Lavoué, S.; Donnio, P.Y.; Thomas, R.; Le Tulzo, Y. Late-onset ventilator-associated pneumonia in nontrauma intensive care unit patients. Anesth. Analg. 2009, 109, 1584–1590. [Google Scholar] [CrossRef] [PubMed]
  253. Genuit, T.; Bochicchio, G.; Napolitano, L.M.; McCarter, R.J.; Roghman, M.C. Prophylactic chlorhexidine oral rinse decreases ventilator-associated pneumonia in surgical ICU patients. Surg. Infect. 2001, 2, 5–18. [Google Scholar] [CrossRef] [PubMed]
  254. Huang, S.S.; Septimus, E.; Kleinman, K.; Moody, J.; Hickok, J.; Avery, T.R.; Lankiewicz, J.; Gombosev, A.; Terpstra, L.; Hartford, F.; et al. Targeted versus universal de- colonization to prevent ICU infection. N. Engl. J. Med. 2013, 368, 2255–2265. [Google Scholar] [CrossRef] [PubMed]
  255. Koeman, M.; van der Ven, A.J.; Hak, E.; Joore, H.C.; Kaasjager, K.; de Smet, A.G.; Ramsay, G.; Dormans, T.P.; Aarts, L.P.; de Bel, E.E.; et al. Oral decontamination with chlorhexidine reduces the incidence of ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 2006, 173, 1348–1355. [Google Scholar] [CrossRef] [PubMed]
  256. Kollef, M.; Pittet, D.; Sanchez Garcia, M.; Chastre, J.; Fagon, J.Y.; Bonten, M.; Hyzy, R.; Fleming, T.R.; Fuchs, H.; Bellm, L.; et al. A randomized double-blind trial of iseganan in prevention of ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 2006, 173, 91–97. [Google Scholar] [CrossRef] [PubMed]
  257. Lorente, L.; Lecuona, M.; Jiménez, A.; Palmero, S.; Pastor, E.; Lafuente, N.; Ramos, M.J.; Mora, M.L.; Sierra, A. Ventilator-associated pneumonia with or without toothbrushing a randomized controlled trial. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1–9. [Google Scholar] [CrossRef] [PubMed]
  258. Milstone, A.M.; Elward, A.; Song, X.; Zerr, D.M.; Orscheln, R.; Speck, K.; Obeng, D.; Reich, N.G.; Coffin, S.E.; Perl, T.M. Daily chlorhexidine bathing to reduce bacteraemia in critically ill children: A multicentre, cluster-randomised, crossover trial. Lancet 2013, 381, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
  259. Mori, H.; Hirasawa, H.; Oda, S.; Shiga, H.; Matsuda, K.; Nakamura, M. Oral care reduces incidence of ventilator-associated pneumonia in ICU populations. Intensive Care Med. 2006, 32, 230–236. [Google Scholar] [CrossRef] [PubMed]
  260. Morris, A.C.; Hay, A.W.; Swann, D.G.; Everingham, K.; McCulloch, C.; McNulty, J.; Brooks, O.; Laurenson, I.F.; Cook, B.; Walsh, T.S. Reducing ventilator-associated pneumonia in intensive care: Impact of implementing a care bundle. Crit. Care Med. 2011, 39, 2218–2224. [Google Scholar] [CrossRef] [PubMed]
  261. Noto, M.J.; Domenico, H.J.; Byrne, D.W.; Talbot, T.; Rice, T.W.; Bernard, G.R.; Wheeler, A.P. Chlorhexidine bathing and health care-associated infections: A randomized clinical trial. JAMA 2015, 313, 369–378. [Google Scholar] [CrossRef] [PubMed]
  262. Pobo, A.; Lisboa, T.; Rodriguez, A.; Sole, R.; Magret, M.; Trefler, S.; Gómez, F.; Rello, J. A randomized trial of dental brushing for preventing ventilator-associated pneumonia. Chest 2009, 136, 433–439. [Google Scholar] [CrossRef] [PubMed]
  263. Roquilly, A.; Mahe, P.J.; Seguin, P.; Guitton, C.; Floch, H.; Tellier, A.C.; Merson, L.; Renard, B.; Malledant, Y.; Flet, L.; et al. Hydrocortisone therapy for patients with multiple trauma: The randomized controlled HYPOLYTE study. JAMA 2011, 305, 1201–1209. [Google Scholar] [CrossRef]
  264. Sebastian, M.R.; Lodha, R.; Kapil, A.; Kabra, S.K. Oral mucosal decontamination with chlorhexidine for the prevention of ventilator-associated pneumonia in children—A randomized, controlled trial. Pediatr. Crit. Care Med. 2012, 13, e305–e310. [Google Scholar] [CrossRef]
  265. Segers, P.; Speekenbrink, R.G.; Ubbink, D.T.; van Ogtrop, M.L.; de Mol, B.A. Prevention of nosocomial infection in cardiac surgery by decontamination of the nasopharynx and oropharynx with chlorhexidine gluconate: A randomized controlled trial. JAMA 2006, 296, 2460–2466. [Google Scholar] [CrossRef] [PubMed]
  266. Seguin, P.; Tanguy, M.; Laviolle, B.; Tirel, O.; Mallédant, Y. Effect of oropharyngeal decontamination by povidone-iodine on ventilator-associated pneumonia in patients with head trauma. Crit. Care Med. 2006, 34, 1514–1519. [Google Scholar] [CrossRef] [PubMed]
  267. Seguin, P.; Laviolle, B.; Dahyot-Fizelier, C.; Dumont, R.; Veber, B.; Gergaud, S.; Asehnoune, K.; Mimoz, O.; Donnio, P.Y.; Bellissant, E.; et al. Effect of oropharyngeal povidone-iodine preventive oral care on ventilator-associated pneumonia in severely brain-injured or cerebral hemorrhage patients: A multicenter, randomized controlled trial. Crit. Care Med. 2014, 42, 1–8. [Google Scholar] [CrossRef] [PubMed]
  268. Beovic, B.; Matos, B.; Bošnjak, R.; Seme, K.; Mueller-Premru, M.; Hergouth-Krizan, V.; Cizman, M. Prevention of nosocomial lower respiratory tract infections in patients after intracranial artery aneurysm surgery with a short course of antimicrobials. Intern. J. Antimicrob. Agents 2003, 22, 60–66. [Google Scholar] [CrossRef] [PubMed]
  269. Bergmans, D.C.; Bonten, M.J.; Gaillard, C.A.; Paling, J.C.; van der Geeest, S.I.; van Tiel, F.H.; Beysens, A.J.; de Leeuw, P.W.; Stobberingh, E.E. Prevention of ventilator-associated pneumonia by oral decontamination: A prospective, randomized, double-blind, placebo-controlled study. Am. J. Respir. Crit. Care Med. 2001, 164, 382–388. [Google Scholar] [CrossRef]
  270. Biagioni, E.; Ferrari, E.; Gatto, I.; Serio, L.; Farinelli, C.; Coloretti, I.; Talamonti, M.; Tosi, M.; Meschiari, M.; Tonelli, R.; et al. Role of Selective Digestive Decontamination in the Prevention of Ventilator-Associated Pneumonia in COVID-19 Patients: A Pre-Post Observational Study. J. Clin. Med. 2023, 12, 1432. [Google Scholar] [CrossRef] [PubMed]
  271. Bonten, M.J.; Gaillard, C.A.; Johanson, W.G., Jr.; Van Tiel, F.H.; Smeets, H.G.; Van Der Geest, S.; Stobberingh, E.E. Colonization in patients receiving and not receiving topical antimicrobial prophylaxis. Am. J. Respir. Crit. Care Med. 1994, 150, 1332–1340. [Google Scholar] [CrossRef] [PubMed]
  272. Bos, L.D.; Stips, C.; Schouten, L.R.; van Vught, L.A.; Wiewel, M.A.; Wieske, L.; van Hooijdonk, R.T.; Straat, M.; de Beer, F.M.; Glas, G.J.; et al. Selective decontamination of the digestive tract halves the prevalence of ventilator-associated pneumonia compared to selective oral decontamination. Intensive Care Med. 2017, 43, 1535–1537. [Google Scholar] [CrossRef] [PubMed]
  273. Camus, C.; Salomon, S.; Bouchigny, C.; Gacouin, A.; Lavoué, S.; Donnio, P.Y.; Bellissant, E. Short-Term Decline in All-Cause Acquired Infections with the Routine Use of a Decontamination Regimen Combining Topical Polymyxin, Tobramycin, and Amphotericin B With Mupirocin and Chlorhexidine in the ICU: A Single-Center Experience. Crit. Care Med. 2014, 42, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
  274. David, A. Infektionen und Keimspektrum nach einer Dekade der Selektiven Darmdekontamination (SDD) in der Operativen Intensivmedizin. Ph.D. Dissertation, Münster (Westfalen) University, Münster, Germany, 2007. [Google Scholar]
  275. De la court Jara, R.; Sigaloff, K.C.; Groot, T.; van der Spoel, J.I.; Schade, R.P. Reducing the dosing frequency of selective digestive tract decontamination to three times daily provides effective decontamination of Gram-negative bacteria. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 1, 1–8. [Google Scholar] [CrossRef] [PubMed]
  276. Garbino, J.; Lew, D.P.; Romand, J.A.; Hugonnet, S.; Auckenthaler, R.; Pittet, D. Prevention of severe Candida infections in nonneutropenic, high-risk, critically ill patients: A randomized, double-blind, placebo-controlled trial in patients treated by selective digestive decontamination. Intensive Care Med. 2002, 28, 1708–1717. [Google Scholar] [CrossRef] [PubMed]
  277. Hartenauer, U.B.; Thülig, B.; Lawin, P.; Fegeler, W. Infection surveillance and selective decontamination of the digestive tract (SDD) in critically ill patients—Results of a controlled study. Infection 1990, 18, S22–S30. [Google Scholar] [CrossRef] [PubMed]
  278. Hjortrup, A.; Rasmussen, A.; Hansen, B.A.; Hoiby, N.; Heslet, L.; Moesgaard, F.; Kirkegaard, P. Early bacterial and fungal infections in liver transplantation after oral selective bowel decontamination. Transplant. Proc. 1997, 29, 3106–3110. [Google Scholar] [CrossRef] [PubMed]
  279. Landelle, C.; Boyer, V.N.; Abbas, M.; Genevois, E.; Abidi, N.; Naimo, S.; Raulais, R.; Bouchoud, L.; Boroli, F.; Terrisse, H.; et al. Impact of a multifaceted prevention program on ventilator-associated pneumonia including selective oropharyngeal decontamination. Intensive Care Med. 2018, 44, 1777–1786. [Google Scholar] [CrossRef] [PubMed]
  280. Leone, M.; Bourgoin, A.; Giuly, E.; Antonini, F.; Dubuc, M.; Viviand, X.; Albanèse, J.; Martin, C. Influence on outcome of ventilator-associated pneumonia in multiple trauma patients with head trauma treated with selected digestive decontamination. Crit. Care Med. 2002, 30, 1741–1746. [Google Scholar] [CrossRef] [PubMed]
  281. Massart, N.; Reizine, F.; Dupin, C.; Legay, F.; Legris, E.; Cady, A.; Rieul, G.; Barbarot, N.; Magahlaes, E.; Fillatre, P. Prevention of acquired invasive fungal infection with decontamination regimen in mechanically ventilated ICU patients: A pre/post observational study. Infect. Dis. 2023, 55, 263–271. [Google Scholar] [CrossRef] [PubMed]
  282. Nardi, G.; Valentinis, U.; Bartaletti, R.; Bello, A.; De, A.M.; Muzzi, R.; Giordano, F.; Troncon, M.G. Effectiveness of topical selective decontamination, without systemic antibiotic prophylaxis, in prevention of pulmonary infection in intensive care. Minerva Anestesiol. 1990, 56, 19–26. [Google Scholar] [PubMed]
  283. Nardi, G.; Di Silvestre, A.; De Monte, A.; Massarutti, D.; Proietti, A.; Troncon, M.G.; Zussino, M. Reduction in gram-positive pneumonia and antibiotic consumption following the use of a SDD protocol including nasal and oral mupirocin. Eur. J. Emerg. Med. 2001, 8, 203–214. [Google Scholar] [CrossRef] [PubMed]
  284. Ong, D.S.; Bonten, M.J.; Safdari, K.; Spitoni, C.; Frencken, J.F.; Witteveen, E.; Horn, J.; Klein Klouwenberg, P.M.; Cremer, O.L.; MARS consortium. Epidemiology, management, and risk-adjusted mortality of ICU-acquired enterococcal bacteremia. Clin. Infect. Dis. 2015, 61, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
  285. Oostdijk, E.A.N.; Kesecioglu, J.; Schultz, M.J.; Visser, C.E.; De Jonge, E.; van Essen, E.H.; Bernards, A.T.; Purmer, I.; Brimicombe, R.; Bergmans, D.; et al. Notice of Retraction and Replacement: Oostdijk et al. Effects of Decontamination of the Oropharynx and Intestinal Tract on Antibiotic Resistance in ICUs: A Randomized Clinical Trial. JAMA 2014, 312, 1429–1437. [Google Scholar] [CrossRef] [PubMed]
  286. Rouby, J.J.; Poete, P.; de Lassale, E.M.; Nicolas, M.H.; Bodin, L.; Jarlier, V.; Korinek, A.M.; Viars, P. Prevention of Gram negative noscomial bronchopneumonia by intratracheal colistin in critically ill patients. Intensive Care Med. 1994, 20, 187–192. [Google Scholar] [CrossRef] [PubMed]
  287. Silvestri, L.; Bragadin, C.M.; Milanese, M.; Gregori, D.; Consales, C.; Gullo, A.; Van Saene, H.K. Are most ICU infections really nosocomial? A prospective observational cohort study in mechanically ventilated patients. J. Hosp. Infect. 1999, 42, 125–133. [Google Scholar] [CrossRef] [PubMed]
  288. Silvestri, L.; Milanese, M.; Oblach, L.; Fontana, F.; Gregori, D.; Guerra, R.; van Saene, H.K. Enteral vancomycin to control methicillin-resistant Staphylococcus aureus outbreak in mechanically ventilated patients. Am. J. Infect. Control 2002, 30, 391–399. [Google Scholar] [CrossRef] [PubMed]
  289. Silvestri, L.; Van Saene, H.K.; Milanese, M.; Fontana, F.; Gregori, D.; Oblach, L.; Piacente, N.; Blazic, M. Prevention of MRSA pneumonia by oral vancomycin decontamination: A randomised trial. Eur. Respir. J. 2004, 23, 921–926. [Google Scholar] [CrossRef] [PubMed]
  290. Steffen, R.; Reinhartz, O.; Blumhardt, G.; Bechstein, W.O.; Raakow, R.; Langrehr, J.M.; Rossaint, R.; Slama, K.; Neuhaus, P. Bacterial and fungal colonization and infections using oral selective bowel decontamination in orthotopic liver transplantations. Transpl. Int. 1994, 7, 101–108. [Google Scholar] [CrossRef]
  291. Stoutenbeek, C.P.; van Saene, H.K.; Miranda, D.R.; Zandstra, D.F.; Langrehr, D. The effect of oropharyngeal decontamination using topical nonabsorbable antibiotics on the incidence of nosocomial respiratory tract infections in multiple trauma patients. J. Trauma 1987, 27, 357–364. [Google Scholar] [CrossRef] [PubMed]
  292. Veelo, D.P.; Bulut, T.; Dongelmans, D.A.; Korevaar, J.C.; Spronk, P.E.; Schultz, M.J. The incidence and microbial spectrum of ventilator-associated pneumonia after tracheotomy in a selective decontamination of the digestive tract-setting. J. Infect. 2008, 56, 20–26. [Google Scholar] [CrossRef] [PubMed]
  293. Winter, R.; Humphreys, H.; Pick, A.; MacGowan, A.P.; Willatts, S.M.; Speller, D.C. A controlled trial of selective decontamination of the digestive tract in intensive care and its effect on nosocomial infection. J. Antimicrob. Chemother. 1992, 30, 73–87. [Google Scholar] [CrossRef] [PubMed]
  294. Abele-Horn, M.; Dauber, A.; Bauernfeind, A.; Russwurm, W.; Seyfarth-Metzger, I.; Gleich, P.; Ruckdeschel, G. Decrease in nosocomial pneumonia in ventilated patients by selective oropharyngeal decontamination (SOD). Intensive Care Med. 1997, 23, 187–195. [Google Scholar] [CrossRef] [PubMed]
  295. Aerdts, S.J.; van Dalen, R.; Clasener, H.A.; Festen, J.; van Lier, H.J.; Vollaard, E.J. Antibiotic prophylaxis of respiratory tract infection in mechanically ventilated patients. A prospective, blinded, randomized trial of the effect of a novel regimen. Chest 1991, 100, 783–791. [Google Scholar] [CrossRef] [PubMed]
  296. Blair, P.; Rowlands, B.J.; Lowry, K.; Webb, H.; Armstrong, P.; Smilie, J. Selective decontamination of the digestive tract: A stratified, randomized, prospective study in a mixed intensive care unit. Surgery 1991, 110, 303–309. [Google Scholar] [PubMed]
  297. Camus, C.; Bellissant, E.; Sebille, V.; Perrotin, D.; Garo, B.; Legras, A.; Renault, A.; Le Corre, P.; Donnio, P.Y.; Gacouin, A. Prevention of acquired infections in intubated patients with the combination of two decontamination regimens. Crit. Care Med. 2005, 33, 307–314. [Google Scholar] [CrossRef] [PubMed]
  298. Cerra, F.B.; Maddaus, M.A.; Dunn, D.L.; Wells, C.L.; Konstantinides, N.N.; Lehmann, S.L.; Mann, H.J. Selective gut decontamination reduces nosocomial infections and length of stay but not mortality or organ failure in surgical intensive care unit patients. Arch. Surg. 1992, 127, 163–167. [Google Scholar] [CrossRef] [PubMed]
  299. de La Cal, M.A.; Cerdá, E.; Garcıa-Hierro, P.; Van Saene HKG ómez-Santos, D.; Negro, E.; Lorente, J.A. Survival benefit in critically ill burned patients receiving selective decontamination of the digestive tract: A randomized, placebocontrolled, double-blind trial. Ann. Surg. 2005, 241, 424–430. [Google Scholar] [CrossRef] [PubMed]
  300. de Latorre, F.J.; Pont, T.; Ferrer, A.; Rosselló, J.; Palomar, M.; Planas, M. Pattern of tracheal colonization during mechanical ventilation. Am. J. Respir. Crit. Care Med. 1995, 152, 1028–1033. [Google Scholar] [CrossRef]
  301. Ferrer, M.; Torres, A.; Gonzalez, J.; Puig de la Bellacasa, J.; el-Ebiary, M.; Roca, M.; Gatell, J.M.; Rodriguez-Roisin, R. Utility of selective digestive decontamination in mechanically ventilated patients. Ann. Intern. Med. 1994, 120, 389–395. [Google Scholar] [CrossRef] [PubMed]
  302. Gastinne, H.M.; Wolff, M.; Delatour, F.; Faurisson, F.; Chevret, S. A controlled trial in intensive care units of selective decontamination of the digestive tract with nonabsorbable antibiotics. N. Engl. J. Med. 1992, 326, 594–599. [Google Scholar] [CrossRef] [PubMed]
  303. Gaussorgues, P.; Salord, M.; Sirodot, S.; Tigaud, S.; Cagnin, S.; Gerard, M.; Robert, D. Efficiency of selective decontamination of the digestive tract on the occurrence of nosocomial bacteremia in patients on mechanical ventilation receiving betamimetic therapy. Réanimation Soins Intensifs Médecin D’Urgence 1991, 7, 169–174. [Google Scholar]
  304. Georges, B.; Mazerolles, M.; Decun, J.-F.; Rouge, P.; Pomies, S.; Cougot, P.; Andrieu, P. Décontamination digestive sélective résultats d’une étude chez le polytraumatisé. Réanimation Soins Intensifs Médecin D’Urgence 1994, 3, 621–627. [Google Scholar] [CrossRef]
  305. Hammond, J.M.; Potgieter, P.D.; Saunders, L.G. Selective decontamination of the digestive tract in multiple trauma patients-Is there a role? Results of a prospective, double-blind, randomized trial. Crit. Care Med. 1994, 22, 33–39. [Google Scholar] [CrossRef] [PubMed]
  306. Jacobs, S.; Foweraker, J.E.; Roberts, S.E. Effectiveness of selective decontamination of the digestive tract (SDD) in an ICU with a policy encouraging a low gastric pH. Clin. Intensive Med. 1992, 3, 52–58. [Google Scholar]
  307. Karvouniaris, M.; Makris, D.; Zygoulis, P.; Triantaris, A.; Xitsas, S.; Mantzarlis, K.; Petinaki, E.; Zakynthinos, E. Nebulised colistin for ventilator-associated pneumonia prevention. Eur. Resp. J. 2015, 46, 1544–1547. [Google Scholar] [CrossRef] [PubMed]
  308. Korinek, A.M.; Laisne, M.J.; Nicolas, M.H.; Raskine, L.; Deroin, V.; Sanson-lepors, M.J. Selective decontamination of the digestive tract in neurosurgical intensive care unit patients: A double-blind, randomized, placebo-controlled study. Crit. Care Med. 1993, 21, 1466–1473. [Google Scholar] [CrossRef]
  309. Laggner, A.N.; Tryba, M.; Georgopoulos, A.; Lenz, K.; Grimm, G.; Graninger, W.; Schneeweiss, B.; Druml, W. Oropharyngeal decontamination with gentamicin for long-term ventilated patients on stress ulcer prophylaxis with sucralfate? Wien. Klin. Wochenschr. 1994, 106, 15–19. [Google Scholar] [PubMed]
  310. Langlois-Karaga, A.; Bues-Charbit, M.; Davignon, A.; Albanese, J.; Durbec, O.; Martin, C.; Morati, N.; Balansard, G. Selective digestive decontamination in multiple trauma patients: Cost and efficacy. Pharm. World Sci. 1995, 17, 12–16. [Google Scholar] [CrossRef] [PubMed]
  311. Palomar, M.; Alvarez-Lerma, F.; Jorda, R.; Bermejo, B.; Catalan Study Group of Nosocomial Pneumonia Prevention. Prevention of nosocomial infection in mechanically ventilated patients: Selective digestive decontamination versus sucralfate. Clin. Intensive Care 1997, 8, 228–235. [Google Scholar] [CrossRef]
  312. Quinio, B.; Albanese, J.; Bues-Charbit, M.; Viviand, X.; Martin, C. Selective decontamination of the digestive tract in multiple trauma patients. A prospective double-blind, randomized, placebo-controlled study. Chest 1996, 109, 765–772. [Google Scholar] [CrossRef] [PubMed]
  313. Reizine, F.; Asehnoune, K.; Roquilly, A.; Laviolle, B.; Rousseau, C.; Arnouat, M.; Dahyot-Fizelier, C.; Seguin, P. Effects of antibiotic prophylaxis on ventilator-associated pneumonia in severe traumatic brain injury. A post hoc analysis of two trials. J. Crit. Care 2019, 50, 221–226. [Google Scholar] [PubMed]
  314. Rimola, A.; Bory, F.; Teres, J.; Perez-Ayuso, R.M.; Arroyo, V.; Rodes, J. Oral, nonabsorbable antibiotics prevent infection in cirrhotics with gastrointestinal hemorrhage. Hepatology 1985, 5, 463–467. [Google Scholar] [CrossRef] [PubMed]
  315. Rocha, L.A.; Martin, M.J.; Pita, S.; Paz, J.; Seco, C.; Margusino, L.; Villanueva, R.; Duran, M.T. Prevention of nosocomial infection in critically ill patients by selective decontamination of the digestive tract. A randomized, double blind, placebo-controlled study. Intensive Care Med. 1992, 18, 398–404. [Google Scholar] [CrossRef] [PubMed]
  316. Rodríguez-Roldán, J.M.; Altuna-Cuesta, A.; López, A.; Carrillo, A.; Garcia, J.; León, J.; Martínez-Pellús, A.J. Prevention of nosocomial lung infection in ventilated patients: Use of an antimicrobial pharyngeal nonabsorbable paste. Crit. Care Med. 1990, 18, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
  317. Rolando, N.; Gimson, A.; Wade, J.; Philpott-Howard, J.; Casewell, M.; Williams, R. Prospective controlled trial of selective parenteral and enteral antimicrobial regimen in fulminant liver failure. Hepatology 1993, 17, 196–201. [Google Scholar] [CrossRef] [PubMed]
  318. Sanchez-Garcia, M.; Cambronero, J.A.; Lopez-Diaz, J.; Gomez Aguinaga, M.A.; Onoro Canaveral, J.J.; Sacristan del Castillo, J. Effectiveness and cost of selective decontamination of the digestive tract in critically ill intubated patients. A randomized, double-blind, placebo-controlled multicenter trial. Am. Rev. Respir. Dis. 1998, 158, 908–916. [Google Scholar] [CrossRef] [PubMed]
  319. Stoutenbeek, C.P.; van Saene, H.K.F.; Little, R.A.; Whitehead, A. The effect of selective decontamination of the digestive tract on mortality in multiple trauma patients: A multicenter randomized controlled trial. Intensive Care Med. 2007, 33, 261–270. [Google Scholar] [CrossRef] [PubMed]
  320. Ulrich, C.; Harinck-deWeerd, J.E.; Bakker, N.C.; Jacz, K.; Doornbos, L.; De Ridder, V.A. Selective decontamination of the digestive tract with norfloxacin in the prevention of ICU-acquired infections: A prospective randomized study. Intensive Care Med. 1989, 15, 424–431. [Google Scholar] [CrossRef] [PubMed]
  321. Unertl, K.; Ruckdeschel, G.; Selbmann, H.K.; Jensen, U.; Forst, H.; Lenhart, F.P.; Peter, K. Prevention of colonization and respiratory infections in long-term ventilated patients by local antimicrobial prophylaxis. Intensive Care Med. 1987, 13, 106–113. [Google Scholar] [CrossRef] [PubMed]
  322. Verwaest, C.; Verhaegen, J.; Ferdinande, P.; Schetz, M.; Van den Berghe, G.; Verbist, L.; Lauwers, P. Randomized, controlled trial of selective digestive decontamination in 600 mechanically ventilated patients in a multidisciplinary intensive care unit. Crit. Care Med. 1997, 25, 63–71. [Google Scholar] [CrossRef] [PubMed]
  323. Wiener, J.; Itokazu, G.; Nathan, C.; Kabins, S.A.; Weinstein, R.A. A randomized, double-blind, placebo-controlled trial of selective digestive decontamination in a medical-surgical intensive care unit. Clin. Infect. Dis. 1995, 20, 861–867. [Google Scholar] [CrossRef] [PubMed]
  324. Huang, S.S.; Septimus, E.J.; Kleinman, K.; Heim, L.T.; Moody, J.A.; Avery, T.R.; McLean, L.; Rashid, S.; Haffenreffer, K.; Shimelman, L.; et al. Nasal Iodophor Antiseptic vs Nasal Mupirocin Antibiotic in the Setting of Chlorhexidine Bathing to Prevent Infections in Adult ICUs: A Randomized Clinical Trial. JAMA 2023, 330, 1337–1347. [Google Scholar] [CrossRef] [PubMed]
  325. Verhaegen, J. Randomized Study of Selective Digestive Decontamination on Colonization and Prevention of Infection in Mechanically Ventilated Patients in the ICU. Ph.D. Thesis, University Hospital, Leuven, Belgium, 1992. [Google Scholar]
  326. Camus, C.; Sébille, V.; Legras, A.; Garo, B.; Renault, A.; Le Corre, P.; Donnio, P.Y.; Gacouin, A.; Perrotin, D.; Le Tulzo, Y.; et al. Mupirocin/chlorexidine to prevent methicillin-resistant Staphylococcus aureus infections: Post hoc analysis of a placebo-controlled, randomized trial using mupirocin/chlorhexidine and polymyxin/tobramycin for the prevention of acquired infections in intubated patients. Infection 2014, 42, 493–502. [Google Scholar] [PubMed]
Figure 1. Meta-regression (red line with shaded 95% confidence intervals) of effect size (as log odds ratio, with individual studies appearing as blue circles with size proportional to the inverse variance) of antiseptic-BDI (a) and antibiotic-BDI (b) in preventing S. aureus BSI versus group mean LOS (logarithmic scale). Meta-regression plots for non-decontamination category of interventions in preventing S. aureus BSI (Figure S5) and all three intervention categories in preventing S. aureus VAP are presented in the online supplement as figures (Figures S4, S6 and S8) and as a summary table (Table S5).
Figure 1. Meta-regression (red line with shaded 95% confidence intervals) of effect size (as log odds ratio, with individual studies appearing as blue circles with size proportional to the inverse variance) of antiseptic-BDI (a) and antibiotic-BDI (b) in preventing S. aureus BSI versus group mean LOS (logarithmic scale). Meta-regression plots for non-decontamination category of interventions in preventing S. aureus BSI (Figure S5) and all three intervention categories in preventing S. aureus VAP are presented in the online supplement as figures (Figures S4, S6 and S8) and as a summary table (Table S5).
Antibiotics 13 00316 g001
Figure 2. Meta-regression of S. aureus VAP (○, broken regression line) and BSI (▲, solid regression line) incidence among groups of ICU patients within studies of various prevention interventions versus group mean LOS (logarithmic scale). The dotted horizontal lines at 1 and 3 percent are the day 7 and day 20 intercepts for the S. aureus BSI (as derived in Figure S11) and the dotted horizontal lines at 3 and 7.6 percent are the day 7 and day 20 intercepts for the S. aureus VAP (as derived in Figure S10), each as derived in the meta-regression model for observational groups. The regression model coefficients are presented in Table S6. The NCC (non-concurrent control) category includes control groups that, being non-concurrent to antibiotic-BDI or antiseptic-BDI groups, were not exposed to spillover effects from these interventions. Note that the y-axis is a logit scale and the x-axis is the group mean LOS transformed to a logarithmic scale after dividing by 7 such that the model intercept values correspond to group mean day 7 estimates as derived in the meta-regression models.
Figure 2. Meta-regression of S. aureus VAP (○, broken regression line) and BSI (▲, solid regression line) incidence among groups of ICU patients within studies of various prevention interventions versus group mean LOS (logarithmic scale). The dotted horizontal lines at 1 and 3 percent are the day 7 and day 20 intercepts for the S. aureus BSI (as derived in Figure S11) and the dotted horizontal lines at 3 and 7.6 percent are the day 7 and day 20 intercepts for the S. aureus VAP (as derived in Figure S10), each as derived in the meta-regression model for observational groups. The regression model coefficients are presented in Table S6. The NCC (non-concurrent control) category includes control groups that, being non-concurrent to antibiotic-BDI or antiseptic-BDI groups, were not exposed to spillover effects from these interventions. Note that the y-axis is a logit scale and the x-axis is the group mean LOS transformed to a logarithmic scale after dividing by 7 such that the model intercept values correspond to group mean day 7 estimates as derived in the meta-regression models.
Antibiotics 13 00316 g002
Figure 3. GSEM of Staphylococcus colonization. Staphylococcus col (oval) is a latent variable representing Staphylococcus colonization. The variables in rectangles are binary predictor variables representing the group-level exposure to the following: trauma ICU setting (trauma50), mean or median length of ICU stay transformed by dividing by 7 and logarithmic transformation (lnLOS7), exposure to a topical antiseptic-BDI (a_S), exposure to an antibiotic-BDI (tap being topical antibiotic prophylaxis as a component of antibiotic-BDI), exposure to a non-decontamination-based prevention method (non-D), exposure to protocolized parenteral antibiotic prophylaxis (ppap) and more than 90% of the cohort receiving mechanical ventilation (mvp90). In this model, the effect of spillover equates to the effect of concurrency of a control group with an antiseptic or antibiotic-based BDI intervention group (CC), and the effect of rebound equates to the interaction term between LOS and exposure to antibiotic- (1.tap#c.lnlos7) or antiseptic-BDI (1.a_S#c.lnlos7). Note that the model factorizes exposures from compound regimens (e.g., SDD and SOD, which combine topical antibiotic prophylaxis [TAP] with or without PPAP as an antibiotic-BDI) into singleton TAP and PPAP exposures. The circle represents the model error term. The three-part boxes represent the binomial proportion data for Staphylococcus VAP (v_sr_n) and BSI (b_sr_n) counts with the number of patients as the denominator which is logit transformed using the logit link function in the generalized model.
Figure 3. GSEM of Staphylococcus colonization. Staphylococcus col (oval) is a latent variable representing Staphylococcus colonization. The variables in rectangles are binary predictor variables representing the group-level exposure to the following: trauma ICU setting (trauma50), mean or median length of ICU stay transformed by dividing by 7 and logarithmic transformation (lnLOS7), exposure to a topical antiseptic-BDI (a_S), exposure to an antibiotic-BDI (tap being topical antibiotic prophylaxis as a component of antibiotic-BDI), exposure to a non-decontamination-based prevention method (non-D), exposure to protocolized parenteral antibiotic prophylaxis (ppap) and more than 90% of the cohort receiving mechanical ventilation (mvp90). In this model, the effect of spillover equates to the effect of concurrency of a control group with an antiseptic or antibiotic-based BDI intervention group (CC), and the effect of rebound equates to the interaction term between LOS and exposure to antibiotic- (1.tap#c.lnlos7) or antiseptic-BDI (1.a_S#c.lnlos7). Note that the model factorizes exposures from compound regimens (e.g., SDD and SOD, which combine topical antibiotic prophylaxis [TAP] with or without PPAP as an antibiotic-BDI) into singleton TAP and PPAP exposures. The circle represents the model error term. The three-part boxes represent the binomial proportion data for Staphylococcus VAP (v_sr_n) and BSI (b_sr_n) counts with the number of patients as the denominator which is logit transformed using the logit link function in the generalized model.
Antibiotics 13 00316 g003
Table 1. Characteristics of studies a.
Table 1. Characteristics of studies a.
Observational StudiesInfection Prevention Studies
(No Intervention)Non-DecontaminationAntiseptic-BDIAntibiotic-BDI
Study characteristics
ListingTable S1Table S2Table S3Table S4
Number of studies145532660
Origin from systematic review b46201427
North American ICU’s c331282
MV for >48 h for <90% d24094
Control group PPAP e2002
Group mean age;
(mean, 95% CI)
56.1
54.4–57.5
55.4
52.3–58.4
48.5
42.0–54.5
50.1
46.2–54.0
Study publication year (range)1986–20231987–20222000–20151985–2022
Group characteristics
Types of groups
  • Observational
165
  • NCC
NA f01622
  • CC
NA531130
  • Intervention
NA5475152
Numbers of patients per group;
(median; IQR) g
300
135–936
81
61–155
72
31–347
54
34–84
Group mean LOS;
(mean, 95% CI)
10.8
9.9–11.6
12.9
11.3–14.4
11.4
8.3–14.5
15.9
14.0–17.9
Overall prevention effect size; h
Total VAP
(odds ratio; 95% CI; number of studies)
NA0.69;
0.59–0.82
(54)
0.65;
0.48–0.89
(17)
0.34;
0.27–0.42
(46)
Total bacteremia
(odds ratio; 95% CI; number of studies)
NA0.96;
0.64–1.44
(8)
0.73;
0.61–0.87
(13)
0.62;
0.52–0.74
(39)
S. aureus prevention effect size;
S. aureus VAP
(odds ratio; 95% CI; number of studies)
NA0.76;
0.65–0.90
(51)
(see Figure S1)
0.44;
0.30–0.64
(13)
(see Figure S2)
0.57;
0.46–0.7
(40)
(see Figure S2)
S. aureus bacteremia
(odds ratio; 95% CI; number of studies)
NA0.66;
0.31–1.4
(5)
(see Figure S3)
0.98;
0.74–1.3
(10)
(see Figure S3)
0.92;
0.65–1.29
(25)
(see Figure S3)
a. Note that several studies had more than one control and/or intervention group. Hence, the number of groups does not equal the number of studies; b. Studies that were sourced from 16 systematic reviews (references in web-only supplementary); c. Study originating from an ICU in Canada of the United States of America; d. Studies for which less than 90% of patients were reported to receive >48 h of MV; e. Use of protocolized parenteral antibiotic prophylaxis (PPAP) for control group patients; f. NA—not applicable; g. Data are median and inter-quartile range (IQR); h. Effect sizes for total VAP and BSI prevention includes data from all studies for which this effect size could be calculated whether or not S. aureus VAP or BSI data were available.
Table 2. Predicted S. aureus infection incidence per 100 patients from meta-regression models versus LOS a.
Table 2. Predicted S. aureus infection incidence per 100 patients from meta-regression models versus LOS a.
Day 7Day 20
Prediction95% CIPrediction95% CI
S. aureus VAP
Observational (Benchmark)3.02.5–3.67.65.9–9.1
Non-concurrent control3.62.1–6.38.33.6–18.2
Non-decontamination control3.22.2–4.79.16.3–11.9
Non-decontamination intervention2.41.6–3.67.65.1–10.9
Antiseptic-BDI control2.91.2–6.313.06.2–25.0
Antiseptic-BDI intervention1.30.7–2.49.14.8–16.8
Antibiotic-BDI control6.93.4–13.011.98.5–16.8
Antibiotic-BDI intervention1.61.1–2.710.07.1–14.2
S. aureus BSI
Observational (benchmark)1.10.9–1.53.21.9–4.7
Non concurrent control0.70.5–1.23.91.6–9.9
Non-decontamination control2.00.9–4.72.40.9–5.7
Non-decontamination intervention1.10.3–3.62.41.0–6.3
Antiseptic-BDI control1.10.5–2.43.90.6–19.8
Antiseptic-BDI intervention0.70.4–1.22.70.5–11.9
Antibiotic-BDI Control1.60.5–5.73.62.0–6.3
Antibiotic-BDI intervention0.60.4–1.06.34.0–9.1
a. Predicted S. aureus VAP and S. aureus BSI incidences derived from meta regression models as presented in Figure 2 [as the broken and solid regression lines, respectively]. Table S6 contains the slope and intercept coefficients of these models.
Table 3. GSEM model a,b.
Table 3. GSEM model a,b.
Model 2
(Figure S12)
Model 1
(Figure 3)
Factor
(Label Abbreviations as in Figure 3 and Figure S12)
CoefficientCoefficient95% CI
b_Sr_n c
Staphylococcal colonization0.88 ***0.88 ***0.75 to 1.01
ppap d0.33 *0.36−0.15 to 0.86
_ Constant−4.75 ***−4.72 ***−4.9 to −4.54
v_Sr_n c
Staphylococcal colonization11(constrained)
mvp90 d0.180.12−0.23 to 0.47
non_D d−0.25−0.24−0.53 to 0.05
_ Constant−4.1 ***−4.0 ***−4.64 to −3.3
Staphylococcal colonization c
CC (Concurrency to TAP use) e0.36 *0.39 *0.05 to 0.73
TAP d−0.25 *−0.62 **−1.07 to −0.18
  • TAP * LnLOS7 (interaction) f
0.69 *0.09 to 1.29
Antiseptic−0.39 *−0.40 **−0.69 to −0.11
  • Antiseptic * LnLOS7 (interaction) f
0.09−0.41 to 0.60
LnLOS7 g1.07 ***1.00 ***0.15 to 0.73
Trauma50 h0.97 ***0.95 ***0.72 to 1.18
Variance (e. Staph col)0.59 ***0.58 ***0.46 to 0.73
Groups (n)442442
Clusters (n)277277
Factors1315
Akaike Information Criteria (AIC)32403238
a. Legend: * p < 0.05; ** p < 0.01; *** p < 0.001. b. Shown in this table are the models corresponding to Figure 3 and Figure S12. c. v_sr_n is the count of Staphylococcal VAP; b_sr_n is the count of Staphylococcal bacteremia; and Staph col is Staphylococcal colonization (Staphylococcal col; which is a latent variable). d. PPAP is the group-wide use of protocolized parenteral antibiotic prophylaxis; non-D is a non-decontamination intervention; MVP90 is use of mechanical ventilation by more than 90% of the group for >24 h; TAP is topical antibiotic prophylaxis; e. The effect of concurrency to TAP use equates to spillover. f. Rebound equates to the interaction term between LOS and exposure to antibiotic- (1.tap#c.lnlos7) or antiseptic-BDI (1.a_S#c.lnlos7). g. LnLOS7 is Length of stay transformed by dividing by 7 and logarithmic transformation. h. Trauma50 is an indicator variable for those groups with a majority of patients admitted for trauma.
Table 4. Comparison with previous prevention effect size estimates.
Table 4. Comparison with previous prevention effect size estimates.
Antiseptic-BDIAntibiotic-BDI
Coefficient95% CIn aRef.Coefficient95% CI;n aRef.
VAP or RTI (Overall)
RTIRR: 0.760.62 to 0.9118[27,28]OR: 0.280.2 to 0.3816[24]
VAPOR: 0.680.53 to 0.8721[9]RR: 0.430.35 to 0.5317[25]
NP/RTIOR: 0.660.51 to 0.8522[9]RR: 0.440.36 to 0.5422[26]
NP/RTIRR: 0.730.58 to 0.9216[13]
VAPOR: 0.650.48 to 0.8917This studyOR: 0.340.27 to 0.4246This study
BSI (Overall)
BSIOR: 0.740.37 to 1.55[12]RR: 0.680.58 to 0.8021[26]
BSI OR: 0.730.59 to 0.9031[11]
BSIOR: 0.730.61 to 0.8713This studyOR: 0.620.52 to 0.7439This study
Gram-positive VAP or RTI
Gram-positive RTIOR: 0.410.19 to 0.859[9]OR: 0.520.34 to 0.7814[10]
MSSA RTIOR: 0.480.2 to 1.1621[9]
S. aureusOR: 0.440.3 to 0.6413Figure S2; this studyOR: 0.570.46 to 0.740Figure S2; this study
Gram-positive BSI
Gram-positive BSIOR: 0.720.23 to 2.223[12]OR: 1.030.75 to 1.4119[10]
Gram-positive BSI OR: 1.060.77 to 1.4716[11]
S. aureusOR: 0.980.74 to 1.310Figure S3; this studyOR: 0.920.65 to 1.2925Figure S3; this study
Abbreviations: OR, odds ratio; RR, risk ratio; 95% CI, 95% confidence interval; RTI = respiratory tract infection; NP = nosocomial pneumonia; VAP = ventilator-associated pneumonia; BSI = blood stream infection; MSSA = methicillin susceptible S. aureus. a. n = number of studies
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Hurley, J. Rebound Inverts the Staphylococcus aureus Bacteremia Prevention Effect of Antibiotic Based Decontamination Interventions in ICU Cohorts with Prolonged Length of Stay. Antibiotics 2024, 13, 316. https://doi.org/10.3390/antibiotics13040316

AMA Style

Hurley J. Rebound Inverts the Staphylococcus aureus Bacteremia Prevention Effect of Antibiotic Based Decontamination Interventions in ICU Cohorts with Prolonged Length of Stay. Antibiotics. 2024; 13(4):316. https://doi.org/10.3390/antibiotics13040316

Chicago/Turabian Style

Hurley, James. 2024. "Rebound Inverts the Staphylococcus aureus Bacteremia Prevention Effect of Antibiotic Based Decontamination Interventions in ICU Cohorts with Prolonged Length of Stay" Antibiotics 13, no. 4: 316. https://doi.org/10.3390/antibiotics13040316

APA Style

Hurley, J. (2024). Rebound Inverts the Staphylococcus aureus Bacteremia Prevention Effect of Antibiotic Based Decontamination Interventions in ICU Cohorts with Prolonged Length of Stay. Antibiotics, 13(4), 316. https://doi.org/10.3390/antibiotics13040316

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop