Do High Doses of Multiple Antibiotics Loaded into Bone Cement Spacers Improve the Success Rate in Staphylococcal Periprosthetic Joint Infection When Rifampicin Cannot Be Employed?
Abstract
:1. Introduction
2. Results
2.1. Population Included
2.2. Patient Management
2.3. Outcomes
3. Materials and Methods
3.1. Study Design and Participants
3.2. Ethical Statement
3.3. Treatment Protocol
3.4. Outcome Assessment
3.5. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kapadia, B.H.; Berg, R.A.; Daley, J.A.; Fritz, J.; Bhave, A.; Mont, M.A. Periprosthetic joint infection. Lancet 2016, 387, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. 2007, 89, 780–785. [Google Scholar] [CrossRef]
- Aggarwal, V.K.; Bakhshi, H.; Ecker NU nte Parvizi, J.; Gehrke, T.; Kendoff, D. Organism profile in periprosthetic joint infection: Pathogens differ at two arthroplasty infection referral centers in Europe and in the United States. J. Knee Surg. 2014, 27, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Lister, J.L.; Horswill, A.R. Staphylococcus aureus biofilms: Recent developments in biofilm dispersal. Front. Cell Infect. Microbiol. 2014, 4, 178. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, W.; Sendi, P. Role of Rifampin against Staphylococcal Biofilm Infections. Antimicrob. Agents Chemother. 2019, 63, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, W.; Widmer, A.F.; Blatter, M.; Frei, R.; Ochsner, P.E. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: A randomized controlled trial. JAMA 1998, 279, 1537–1541. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, E.; Bramer, W.; Anas, A.A. Clinical outcomes of rifampicin combination therapy in implant-associated infections due to staphylococci and streptococci: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2024, 63, 107015. [Google Scholar] [CrossRef] [PubMed]
- Ascione, T.; Pagliano, P.; Balato, G.; Mariconda, M.; Rotondo, R.; Esposito, S. Oral Therapy, Microbiological Findings, and Comorbidity Influence the Outcome of Prosthetic Joint Infections Undergoing 2-Stage Exchange. J. Arthroplast. 2017, 32, 2239–2243. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, Ø.E.; Borgen, P.; Bragnes, B.; Figved, W.; Grøgaard, B.; Rydinge, J.; Sandberg, L.; Snorrason, F.; Wangen, H.; Witsøe, E.; et al. Rifampin combination therapy in staphylococcal prosthetic joint infections: A randomized controlled trial. J. Orthop. Surg. Res. 2020, 15, 365. [Google Scholar] [CrossRef]
- Hamad, C.; Chowdhry, M.; Sindeldecker, D.; Bernthal, N.M.; Stoodley, P.; McPherson, E.J. Adaptive antimicrobial resistance, a description of microbial variants, and their relevance to periprosthetic joint infection. Bone Jt. J. 2022, 104, 575–580. [Google Scholar] [CrossRef]
- Lamret, F.; Colin, M.; Mongaret, C.; Gangloff, S.C.; Reffuveille, F. Antibiotic tolerance of Staphylococcus aureus biofilm in periprosthetic joint infections and antibiofilm strategies. Antibiotics 2020, 9, 547. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Penfield, N.W.; Hewlett, A.L.; Kalil, A.C. Adjunctive Rifampin Following Debridement and Implant Retention for Staphylococcal Prosthetic Joint Infection: Is it Effective if not Combined With a Fluoroquinolone? In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2022; Volume 9, p. ofac582. [Google Scholar] [CrossRef]
- Renz, N.; Trampuz, A.; Zimmerli, W. Controversy about the role of Rifampin in biofilm infections: Is it justified? Antibiotics 2021, 10, 165. [Google Scholar] [CrossRef] [PubMed]
- Theil, C.; Schmidt-Braekling, T.; Gosheger, G.; Schwarze, J.; Dieckmann, R.; Schneider, K.N.; Möllenbeck, B. Clinical use of linezolid in periprosthetic joint infections-a systematic review. J. Bone Jt. Infect. 2020, 6, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Paz, E.; Sanz-Ruiz, P.; Abenojar, J.; Vaquero-Martín, J.; Forriol, F.; Del Real, J.C. Evaluation of Elution and Mechanical Properties of High-Dose Antibiotic-Loaded Bone Cement: Comparative “In Vitro” Study of the Influence of Vancomycin and Cefazolin. J. Arthroplast. 2015, 30, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- López-Torres, I.I.; Vaquero-Martín, J.; Torres-Suárez, A.I.; Navarro-García, F.; Fraguas-Sánchez, A.I.; León-Román, V.E.; Sanz-Ruíz, P. The tale of microencapsulated rifampicin: Is it useful for the treatment of periprosthetic joint infection? Int. Orthop. 2022, 46, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Lawrie, C.M.; Jo, S.; Barrack, T.; Roper, S.; Wright, R.W.; Nunley, R.M.; Barrack, R.L. Local delivery of tobramycin and vancomycin in primary total knee arthroplasty achieves minimum inhibitory concentrations for common bacteria causing acute prosthetic joint infection. Bone Jt. J. 2020, 102-B, 163–169. [Google Scholar]
- Tsukayama, D.; Estrada, R.; Gustilo, R. Infection after total hip arthroplasty. J. Bone Jt. Surg. 1996, 78, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Ruiz, P.; Matas-Diez, J.A.; Villanueva-Martínez, M.; Blanco, A.D.S.V.; Vaquero, J. Is Dual Antibiotic-Loaded Bone Cement More Effective and Cost-Efficient Than a Single Antibiotic-Loaded Bone Cement to Reduce the Risk of Prosthetic Joint Infection in Aseptic Revision Knee Arthroplasty? J. Arthroplast. 2020, 35, 3724–3729. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, J.; Tan, T.L.; Goswami, K.; Higuera, C.; Della Valle, C.; Chen, A.F.; Shohat, N. The 2018 Definition of Periprosthetic Hip and Knee Infection: An Evidence-Based and Validated Criteria. J Arthroplast. 2018, 33, 1309–1314.e2. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Ruiz, P.; Calvo-Haro, J.A.; Villanueva-Martinez, M.; Matas-Diez, J.A.; Vaquero-Martín, J. Biarticular total femur spacer for massive femoral bone loss: The mobile solution for a big problem. Arthroplast. Today 2018, 4, 58–64. [Google Scholar] [CrossRef]
- Izakovicova, P.; Borens, O.; Trampuz, A. Periprosthetic joint infection: Current concepts and outlook. EFORT Open Rev. 2019, 4, 482–494. [Google Scholar] [CrossRef]
- Berberich, C.; Sanz-Ruiz, P. Risk assessment of antibiotic resistance development by antibiotic-loaded bone cements: Is it a clinical concern? EFORT Open Rev. 2019, 4, 576–584. [Google Scholar] [CrossRef]
- Fraval, A.; Zhou, Y.; Parvizi, J. Antibiotic-loaded cement in total joint arthroplasty: A comprehensive review. Arch. Orthop. Trauma Surg. 2024, 0123456789. [Google Scholar] [CrossRef]
- Anagnostakos, K.; Becker, S.L.; Sahan, I. Antifungal-Loaded Acrylic Bone Cement in the Treatment of Periprosthetic Hip and Knee Joint Infections: A Review. Antibiotics 2022, 11, 879. [Google Scholar] [CrossRef]
- Steadman, W.; Chapman, P.R.; Schuetz, M.; Schmutz, B.; Trampuz, A.; Tetsworth, K. Local Antibiotic Delivery Options in Prosthetic Joint Infection. Antibiotics 2023, 12, 752. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Ledezma, C.; Higuera, C.A.; Parvizi, J. Success after treatment of periprosthetic joint infection: A delphi-based international multidisciplinary consensus infection. Clin. Orthop. Relat. Res. 2013, 471, 2374–2382. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Whitehouse, M.R.; Lenguerrand, E.; Blom, A.W.; Beswick, A.D.; Inform Team. Re-infection outcomes following one- and two-stage surgical revision of infected hip prosthesis: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0151537. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.H.; Hu, C.C.; Hsieh, P.H.; Shih, H.N.; Ueng, S.W.N.; Chang, Y. Vancomycin and ceftazidime in bone cement as a potentially effective treatment for knee periprosthetic joint infection. J. Bone Jt. Surg. Am. Vol. 2017, 99, 223–231. [Google Scholar] [CrossRef]
- Westrich, G.H.; Walcott-Sapp, S.; Bornstein, L.J.; Bostrom, M.P.; Windsor, R.E.; Brause, B.D. Modern treatment of infected total knee arthroplasty with a 2-stage reimplantation protocol. J. Arthroplast. 2010, 25, 1015–1021.e2. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.; Blackburn, B.; Archibeck, J. Similar Efficacy and Lower Cost Associated with Ceftazidime Compared to Tobramycin Coupled with Vancomycin in Antibiotic Spacers in the Treatment of Periprosthetic Joint Infection. J. Arthroplast. 2024, preprint. [Google Scholar] [CrossRef]
- Corró, S.; Vicente, M.; Rodríguez-Pardo, D.; Pigrau, C.; Lung, M.; Corona, P.S. Vancomycin-Gentamicin Prefabricated Spacers in 2-Stage Revision Arthroplasty for Chronic Hip and Knee Periprosthetic Joint Infection: Insights Into Reimplantation Microbiology and Outcomes. J. Arthroplast. 2020, 35, 247–254. [Google Scholar] [CrossRef]
- Drexler, M.; Dwyer, T.; Kuzyk, P.R.T.; Kosashvilli, Y.; Abolghasemian, M.; Regev, G.J.; Kadar, A.; Rutenberg, T.F.; Backstein, D. The results of two-stage revision TKA using Ceftazidime–Vancomycin-impregnated cement articulating spacers in Tsukayama Type II periprosthetic joint infections. Knee Surg. Sport Traumatol. Arthrosc. 2016, 24, 3122–3130. [Google Scholar] [CrossRef] [PubMed]
- Petis, S.M.; Perry, K.I.; Mabry, T.M.; Hanssen, A.D.; Berry, D.J.; Abdel, M.P. Two-stage exchange protocol for periprosthetic joint infection following total knee arthroplasty in 245 knees without prior treatment for infection. J. Bone Jt. Surg. Am. Vol. 2019, 101, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Corona, P.S.; Vicente, M.; Carrera, L.; Rodríguez-Pardo, D.; Corró, S. Current actual success rate of the two-stage exchange arthroplasty strategy in chronic hip and knee periprosthetic joint infection. Bone Jt. J. 2020, 102, 1682–1688. [Google Scholar] [CrossRef] [PubMed]
- Gomez, M.M.; Tan, T.L.; Manrique, J.; Deirmengian, G.K.; Parvizi, J. The fate of spacers in the treatment of periprosthetic joint infection. J. Bone Jt. Surg. Am. Vol. 2015, 97, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Goswami, K.; Kuo, F.C.; Xu, C.; Tan, T.L.; Parvizi, J. Two-Stage Exchange Arthroplasty for Periprosthetic Joint Infection: The Rate and Reason for the Attrition After the First Stage. J. Arthroplast. 2019, 34, 2749–2756. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, W.; Trampuz, A.; Ochsner, P.E. Prosthetic-Joint Infections. N. Engl. J. Med. 2024, 351, 1645–1654. [Google Scholar] [CrossRef]
- Beldman, M.; Löwik, C.; Soriano, A.; Albiach, L.; Zijlstra, W.P.; Knobben, B.A.S.; Jutte, P.; Sousa, R.; Carvalho, A.; Goswami, K.; et al. If, when, and how to use rifampin in acute staphylococcal periprosthetic joint infections, a multicentre observational study. Clin. Infect. Dis. 2021, 73, 1634–1641. [Google Scholar] [CrossRef]
- Kruse, C.C.; Ekhtiari, S.; Oral, I.; Selznick, A.; Mundi, R.; Chaudhry, H.; Pincus, D.; Wolfstadt, J.; Kandel, C.E. The Use of Rifampin in Total Joint Arthroplasty: A Systematic Review and Meta-Analysis of Comparative Studies. J. Arthroplast. 2022, 37, 1650–1657. [Google Scholar] [CrossRef]
- Riedel, D.J.; Weekes, E.; Forrest, G.N. Addition of rifampin to standard therapy for treatment of native valve infective endocarditis caused by Staphylococcus aureus. Antimicrob. Agents Chemother. 2008, 52, 2463–2467. [Google Scholar] [PubMed]
- Herry, Y.; Lesens, O.; Bourgeois, G.; Maillet, M.; Bricca, R.; Cazorla, C.; Karsenty, J.; Chroboczek, T.; Bouaziz, A.; Saison, J.; et al. Staphylococcus lugdunensis prosthetic joint infection: A multicentric cohort study. J. Infect. 2022, 85, 652–659. [Google Scholar] [CrossRef]
- Krizsan, G.; Sallai, I.; Veres, D.S.; Prinz, G.; Szeker, D.; Skaliczki, G. Rifampicin resistance and risk factors associated with significantly lower recovery rates after two-stage revision in patients with prosthetic joint infection. J. Glob. Antimicrob. Resist. 2022, 30, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, S.M.J.; Vegari, D.; Ho, A.; Zmistowski, B.; Parvizi, J. Two-stage exchange arthroplasty for infected total knee arthroplasty: Predictors of failure. Clin. Orthop. Relat. Res. 2011, 469, 3049–3054. [Google Scholar] [CrossRef] [PubMed]
- Puhto, A.P.; Puhto, T.M.; Niinimäki, T.T.; Leppilahti, J.I.; Syrjälä, H.P.T. Two-stage revision for prosthetic joint infection: Outcome and role of reimplantation microbiology in 107 cases. J. Arthroplast. 2014, 29, 1101–1104. [Google Scholar] [CrossRef] [PubMed]
- Faschingbauer, M.; Reichel, H.; Bieger, R.; Kappe, T. Mechanical complications with one hundred and thirty eight (antibiotic-laden) cement spacers in the treatment of periprosthetic infection after total hip arthroplasty. Int. Orthop. 2015, 39, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.W.; Selemon, N.; Nocon, A.; Bostrom, M.; Westrich, G.; Sculco, P.K. The Influence of Spacer Design on the Rate of Complications in Two-Stage Revision Hip Arthroplasty. J. Arthroplast. 2019, 34, 1201–1206. [Google Scholar] [CrossRef]
- Chang, M.W.; Wu, C.T.; Yen, S.H.; Tan, T.L.; Lin, P.C.; Kuo, F.C. Influence of the Type of Bone Cement Used in Two-Stage Exchange Arthroplasty for Chronic Periarticular Joint Infection on the Spacer Replacement and Reinfection Rate. J. Clin. Med. 2023, 12, 600. [Google Scholar] [CrossRef]
All | RFP Regimen | Non-RFP Regimen | p Value | |
---|---|---|---|---|
N patients | 43 | 19 (44%) | 24 (55%) | |
General characteristics | ||||
Male Sex (%) | 18 (42%) | 9 (47.5%) | 9 (37.5%) | 0.516 |
Age [years, SD 1] | 70 (±12.5) | 66.9 (±14.1) | 72.5 (±10.7) | 0.276 |
Time from implantation, [weeks, SD mean] | 142 (±235.1) | 85.7 (±140.5) | 187 (±284.2) | 0.167 |
Origin, another center | 15 (35%) | 5 (26.3%) | 10 (41.7%) | 0.294 |
Comorbidities | ||||
Diabetes | 7 (16%) | 3 (16%) | 4 (17%) | 0.911 |
Chronic kidney disease | 5 (11.5%) | 0 | 5 (21%) | 0.037 |
Immunosuppressants | 1 (2%) | 1 (5%) | 0 | 0.254 |
Ischemic cardiopathy | 6 (14%) | 3 (16%) | 3 (12.5%) | 0.751 |
Cardiac Insufficiency | 3 (7%) | 1 (5%) | 2 (8%) | 0.674 |
Oral anticoagulants | 7 (16%) | 2 (10.5%) | 5 (21%) | 0.631 |
Prosthesis | ||||
TKA 2 | 24 (55%) | 11 (58%) | 13 (54%) | 0.875 |
THA 3 | 17 (39.5%) | 7 (37%) | 10 (42%) | 0.714 |
Hemiarthroplasty | 2 (4.5%) | 1 (5%) | 1 (4%) | 0.857 |
Previous aseptic revision | 16 (37.2%) | 6 (31%) | 10 (41.7%) | 0.521 |
Previous DAIR | 7 (16.3%) | 2 (10.5%) | 5 (20.8%) | 0.636 |
Tumoral reconstruction | 6 (14%) | 3 (16%) | 3 (12.5%) | 0.751 |
Infection characteristics | ||||
Fistula | 11 (25.5%) | 4 (21%) | 7 (29%) | 0.563 |
Tsukayama classification | ||||
I–II | 15 (34.8%) | 6 (31.5%) | 9 (37.5%) | 0.913 |
III | 5 (11.5%) | 2 (10.5%) | 3 (12.5%) | 0.851 |
IV | 23 (53.5%) | 11 (58%) | 12 (50%) | 0.677 |
All | RFP Regimen | Non-RFP Regimen | p-Value | Other Resistances | Antibiotic Treatment | |
---|---|---|---|---|---|---|
Microorganism | 43 | 19 (44%) | 24 (55%) | |||
S. aureus | 12 (27.5%) | 6 (31.5%) | 6 (25%) | 0.622 | Aminoglycosides (n = 1), quinolones (n = 1) | |
Methicillin-resistant | 2 (4.8%) | 2 (10.5%) | 0 | 0.107 | ||
Methicillin-sensitive | 10 (23.8%) | 4 (21%) | 6 (25%) | 0.769 | ||
S. epidermidis | 18 (41.8%) | 10 (52%) | 8 (33.3%) | 0.321 | Aminoglycosides (n = 6), quinolones (n = 7), cotrimoxazole (n = 3), fosfomycin (1), erythromycin (n = 3) | |
Methicillin-resistant | 11 (25.5%) | 6 (31.5%) | 5 (20%) | 0.622 | ||
Vancomycin-resistant | 1 (2.3%) | 1 (5.2%) | 0 | |||
Rifampicin | 1 (2.3%) | 0 | 1 | |||
S. lugdunensis | 2 (4.8%) | 1 (5.2%) | 1 (4%) | 0.479 | Levofloxacin + amoxicillin | |
S. capitis | 1 | 1 (5.2%) | 0 | Ciprofloxacin + rifampicin | ||
Polymicrobial | 10 (23%) | 1 (5.2%) | 9 (37.5%) | 0.013 | ||
MRSA + S. agalactiae + Serratia | 1 | 1 (5.2%) | 0 | Cotrimoxazole, clindamycin, rifampicin | ||
MRSA + MSSE | 1 | 0 | 1 (4% | Cotrimoxazole | ||
MSSA+ E. cloacae | 1 | 0 | 1 (4%) | E. cloacae: amoxicillin and ampicillin | Levofloxacin + Fosfomycin | |
MRSE + C. albicans | 1 | 0 | 1 (4%) | MRSE: Quinolones | Daptomycin + fluconazole | |
MRSE + SL + P. mirabilis | 1 | 0 | 1 (4%) | Ciprofloxacin | ||
MRSE + E. feacalis + E. faecium | 1 | 0 | 1 (4%) | Enterococci: gentamicin, tobramycin, amikacyn, ciprofloxacin, cotrimoxazole | Ciprofloxacin + cotrimoxazole | |
MRSE + E. feacalis | 1 | 0 | 1 (4%) | Enterococci: aminoglycosides, cotrimoxazole and quinolones | Tedizolid | |
MRSE + MSSA | 1 | 0 | 1 (4%) | MRSE: aminoglycosides, erythromycin, clindamycin, cotrimoxazole, quinolones | Linezolid + Fosfomycin | |
MSSE + H. parainfluenzae | 1 | 0 | 1 (4%) | MSSE: clindamycin, erythromycin | Amoxicillin + Levofloxacin | |
SL + C. parapsilosis | 1 | 0 | 1(4%) | Caspofungin + Cotrimoxazole + Levofloxacin |
All | RFP Regimen | Non-RFP Regimen | p Value | |
---|---|---|---|---|
N patients | 43 | 19 | 24 | |
Duration of antibiotic treatment [weeks, SD 1] | 11.5 (±5.9) | 11.8 (±5.8) | 11.4 (±6.1) | 0.738 |
Surgical management | ||||
Articulated spacer | 31 (72%) | 15 (79%) | 16 (67%) | 0.373 |
Spacer exchange (%) | 9 (21%) | 5 (26%) | 4 (16%) | 0.440 |
Mechanical complication | 4 (9.3%) | 3 (16%) | 1 (4%) | 0.613 |
Infection persistence | 5 (11.6%) | 2 (10.5%) | 3 (12.5%) | 0.841 |
Time to reimplantation [weeks, SD] | 14.6 (±5) | 13 (±5.2) | 15.7 (±4.6) | 0.079 |
Time of hospitalization [days SD] | 58 (±61.2) | 37 (±28.2) | 76 (±75.5) | 0.219 |
Medical complication | 18 (42%) | 6 (32%) | 12 (50%) | 0.224 |
Surgical complication | 11 (25%) | 6 (31.5%) | 8 (33%) | 1.000 |
Second stage | ||||
Spacer sonication (+) | 3 (7%) | 1 (5%) | 2 (8.3%) | 0.695 |
Deep tissue cultures (+) | 8 (18.5%) | 4 (16.7%) | 4 (21%) | 0.714 |
Treatment failure 2 | 8 (18%) | 3 (16%) | 5 (21%) | 0.673 |
Death | 0 | 0 | 0 | |
Reintervention | 7 (16%) | 3 (16%) | 4 (16%) | |
Suppressive therapy | 1 (2%) | 0 | 1 (4%) | |
Responsible microorganism | ||||
Reinfection | 5 (11%) | 2 (10%) | 3 (12.5%) | 0.841 |
Superinfection | 3 (7%) | 1 (5.2%) | 2 (8.3%) | 0.721 |
Treatment failure excluding tumoral reconstructions | 5 (13.5%) | 2 (12.5%) | 3 (14%) | 0.875 |
Follow-up time, [months, SD] | 68 (±37.7) | 79 (±31.2) | 59.4 (±40.7) | 0.293 |
Covariables | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Patient characteristics | ||||||
Age | 0.188 1 | 1.02 | 0.91–1.13 | 0.736 | ||
Time from implantation | 0.095 1 | 1.01 | 0.99–1.04 | 0.071 | ||
TKA | 1.4 | 0.3–6.8 | 0.673 | Ref. | ||
THA | 0.4 | 0.07–2.5 | 0.351 | 1.98 | 0.20–18.7 | 0.551 |
Previous revision | 0.5 | 0.01–2.8 | 0.428 | |||
Previous DAIR | 2.6 | 0.3–19.7 | 0.459 | |||
Tumoral reconstruction | 6.4 | 0.9–41 | 0.033 | 1.23 | 0.33–45.5 | 0.911 |
Diabetes | 1.6 | 0.2–10.3 | 0.731 | |||
Oral anticoagulants | 0.7 | 0.01–6.7 | 0.587 | |||
Infection characteristics | ||||||
All pathogens | Ref. | Ref. | ||||
MSSA | 0.3 | 0.03–3.1 | 0.084 | 0.999 | ||
MRSA | 4.1 | 0.2–73.2 | 0.659 | |||
CNS | 2.5 | 0.5–12.1 | 0.248 | 1.64 | 0.18–14.98 | 0.661 |
Monomicrobial infection | Ref. | Ref. | ||||
Polymicrobial infection | 4.8 | 0.9–24.9 | 0.047 | 14.62 | 1.05–203.22 | 0.043 |
Treatment | ||||||
Rifampicin regimen | Ref. | Ref. | ||||
No rifampicin use | 1.3 | 0.3–7.8 | 0.673 | 1.99 | 0.10–36.71 | 0.693 |
Time to reimplantation | 0.208 1 | 1.13 | 0.89–1.43 | 0.299 | ||
Static spacer | Ref. | Ref. | ||||
Articulated spacer | 0.3 | 0.06–1.4 | 0.123 | 0.11 | 0.01–1.22 | 0.071 |
Septic spacer exchange | 9.9 | 1.3–74.7 | 0.011 | 14.25 | 1.42–142.1 | 0.024 |
All Spacers | Hip | Knee | p Value 1 | ||
---|---|---|---|---|---|
Static | Articulated | ||||
N patients | 43 | 19 (44.2%) | 7 (16.3%) | 17 (39.5%) | |
Mechanical major complication | 6 (14%) | 5 (26%) | 0 | 1 (5.8%) | 0.072 |
Spacer dislocation | 4 (9.3%) | 4 (21%) | 0 | 0 | |
Fracture of the spacer | 1 (2.3%) | 1 (5.2%) | 0 | 0 | |
Intraoperative fracture | 1 (2.3%) | 0 | 0 | 1 (5.8%) | |
Wound dehiscence | 5 (11.6%) | 1 (5.2%) | 2 (28.5%) | 2 (11.7%) | 0.618 |
Other non-septic reintervention 2 | 5 (11.6%) | 1 (5.2%) | 0 | 4 (23.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prats-Peinado, L.; Fernández-Fernández, T.; Márquez-Gómez, M.; Matas-Diaz, J.A.; Sánchez-Somolinos, M.; de la Villa-Martínez, S.; Vaquero-Martín, J.; Sanz-Ruiz, P. Do High Doses of Multiple Antibiotics Loaded into Bone Cement Spacers Improve the Success Rate in Staphylococcal Periprosthetic Joint Infection When Rifampicin Cannot Be Employed? Antibiotics 2024, 13, 538. https://doi.org/10.3390/antibiotics13060538
Prats-Peinado L, Fernández-Fernández T, Márquez-Gómez M, Matas-Diaz JA, Sánchez-Somolinos M, de la Villa-Martínez S, Vaquero-Martín J, Sanz-Ruiz P. Do High Doses of Multiple Antibiotics Loaded into Bone Cement Spacers Improve the Success Rate in Staphylococcal Periprosthetic Joint Infection When Rifampicin Cannot Be Employed? Antibiotics. 2024; 13(6):538. https://doi.org/10.3390/antibiotics13060538
Chicago/Turabian StylePrats-Peinado, Lourdes, Tanya Fernández-Fernández, Miguel Márquez-Gómez, José Antonio Matas-Diaz, Mar Sánchez-Somolinos, Sofía de la Villa-Martínez, Javier Vaquero-Martín, and Pablo Sanz-Ruiz. 2024. "Do High Doses of Multiple Antibiotics Loaded into Bone Cement Spacers Improve the Success Rate in Staphylococcal Periprosthetic Joint Infection When Rifampicin Cannot Be Employed?" Antibiotics 13, no. 6: 538. https://doi.org/10.3390/antibiotics13060538
APA StylePrats-Peinado, L., Fernández-Fernández, T., Márquez-Gómez, M., Matas-Diaz, J. A., Sánchez-Somolinos, M., de la Villa-Martínez, S., Vaquero-Martín, J., & Sanz-Ruiz, P. (2024). Do High Doses of Multiple Antibiotics Loaded into Bone Cement Spacers Improve the Success Rate in Staphylococcal Periprosthetic Joint Infection When Rifampicin Cannot Be Employed? Antibiotics, 13(6), 538. https://doi.org/10.3390/antibiotics13060538