Detection of Pharmaceutical Contamination in Amphipods of Lake Baikal by the HPLC-MS Method
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rathi, B.S.; Kumar, P.S.; Vo, D.V.N. Critical Review on Hazardous Pollutants in Water Environment: Occurrence, Monitoring, Fate, Removal Technologies and Risk Assessment. Sci. Total Environ. 2021, 797, 149134. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Naushad, M.; Govarthanan, M.; Iqbal, J.; Alfadul, S.M. Emerging Contaminants of High Concern for the Environment: Current Trends and Future Research. Environ. Res. 2022, 207, 112609. [Google Scholar] [CrossRef] [PubMed]
- Vaudin, P.; Augé, C.; Just, N.; Mhaouty-Kodja, S.; Mortaud, S.; Pillon, D. When Pharmaceutical Drugs Become Environmental Pollutants: Potential Neural Effects and Underlying Mechanisms. Environ. Res. 2022, 205, 112495. [Google Scholar] [CrossRef] [PubMed]
- Grela, A.; Kuc, J.; Bajda, T. A Review on the Application of Zeolites and Mesoporous Silica Materials in the Removal of Non-Steroidal Anti-Inflammatory Drugs and Antibiotics from Water. Materials 2021, 14, 4994. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Mehmood, S.; Rasheed, T.; Iqbal, H.M.N. Antibiotics Traces in the Aquatic Environment: Persistence and Adverse Environmental Impact. Curr. Opin. Environ. Sustain. 2020, 13, 68–74. [Google Scholar] [CrossRef]
- Johnson, A.C.; Keller, V.; Dumont, E.; Sumpter, J.P. Assessing the Concentrations and Risks of Toxicity from the Antibiotics Ciprofloxacin, Sulfamethoxazole, Trimethoprim and Erythromycin in European Rivers. Sci. Total Environ. 2015, 511, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, C.; Lian, K.; Ke, D.; Xie, T.; Liu, C. River Restoration Changes Distributions of Antibiotics, Antibiotic Resistance Genes, and Microbial Community. Sci. Total Environ. 2021, 788, 147873. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Song, W.; Lin, H.; Wang, W.; Du, L.; Xing, W. Antibiotics and Antibiotic Resistance Genes in Global Lakes: A Review and Meta-Analysis. Environ. Int. 2018, 116, 60–73. [Google Scholar] [CrossRef]
- Tran, N.H.; Hoang, L.; Nghiem, L.D.; Nguyen, N.M.H.; Ngo, H.H.; Guo, W.; Trinh, Q.T.; Mai, N.H.; Chen, H.; Nguyen, D.D.; et al. Occurrence and Risk Assessment of Multiple Classes of Antibiotics in Urban Canals and Lakes in Hanoi, Vietnam. Sci. Total Environ. 2019, 692, 157–174. [Google Scholar] [CrossRef]
- Wu, S.; Hua, P.; Gui, D.; Zhang, J.; Ying, G.; Krebs, P. Occurrences, Transport Drivers, and Risk Assessments of Antibiotics in Typical Oasis Surface and Groundwater. Water Res. 2022, 225, 119138. [Google Scholar] [CrossRef]
- Liu, L.; Wu, W.; Zhang, J.; Lv, P.; Xu, L.; Yan, Y. Progress of Research on the Toxicology of Antibiotic Pollution in Aquatic Organisms. Acta Ecol. Sin. 2018, 38, 36–41. [Google Scholar] [CrossRef]
- Martinez, J.L. Environmental Pollution by Antibiotics and by Antibiotic Resistance Determinants. Environ. Pollut. 2009, 157, 2893–2902. [Google Scholar] [CrossRef] [PubMed]
- Kotwani, A.; Joshi, J.; Kaloni, D. Pharmaceutical Effluent: A Critical Link in the Interconnected Ecosystem Promoting Antimicrobial Resistance. Environ. Sci. Pollut. Res. 2021, 28, 32111–32124. [Google Scholar] [CrossRef]
- Park, S.; Choi, K. Hazard Assessment of Commonly Used Agricultural Antibiotics on Aquatic Ecosystems. Ecotoxicology 2008, 17, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, A.; Tiwari, M.K.; Ghangrekar, M.M. A Review on Environmental Occurrence, Toxicity and Microbial Degradation of Non-Steroidal Anti-Inflammatory Drugs (Nsaids). J. Environ. Manag. 2021, 300, 113694. [Google Scholar] [CrossRef] [PubMed]
- da Silva, T.L.; Costa, C.S.D.; da Silva, M.G.C.; Vieira, M.G.A. Overview of Non-Steroidal Anti-Inflammatory Drugs Degradation by Advanced Oxidation Processes. J. Clean. Prod. 2022, 346, 131226. [Google Scholar] [CrossRef]
- Aydin, S.; Aydin, M.E.; Ulvi, A. Monitoring the Release of Anti-Inflammatory and Analgesic Pharmaceuticals in the Receiving Environment. Environ. Sci. Pollut. Res. 2019, 26, 36887–36902. [Google Scholar] [CrossRef] [PubMed]
- Castro-Pastrana, L.I.; Palacios-Rosas, E.; Toledo-Wall, M.L.; Cerro-López, M. Worldwide Occurrence, Detection, and Fate of Nonsteroidal Anti-Inflammatory Drugs in Water. In Non-Steroidal Anti-Inflammatory Drugs in Water: Emerging Contaminants and Ecological Impact; Gómez-Oliván, L.M., Ed.; Springer International Publishing: Geneva, Switzerland, 2020; pp. 55–82. ISBN 978-3-030-56294-6. [Google Scholar]
- Ternes, T.A. Occurrence of Drugs in German Sewage Treatment Plants and Rivers. Water Res. 1998, 32, 3245–3260. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999–2000: A National Reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef]
- Gómez-Oliván, L.M.; Galar-Martínez, M.; García-Medina, S.; Valdés-Alanís, A.; Islas-Flores, H.; Neri-Cruz, N. Genotoxic Response and Oxidative Stress Induced by Diclofenac, Ibuprofen and Naproxen in Daphnia magna. Drug Chem. Toxicol. 2014, 37, 391–399. [Google Scholar] [CrossRef]
- Ginebreda, A.; Muñoz, I.; de Alda, M.L.; Brix, R.; López-Doval, J.; Barceló, D. Environmental Risk Assessment of Pharmaceuticals in Rivers: Relationships between Hazard Indexes and Aquatic Macroinvertebrate Diversity Indexes in the Llobregat River (NE Spain). Environ. Int. 2010, 36, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.L.; Ying, G.G.; Liu, Y.S.; Chen, F.; Yang, J.F.; Wang, L.; Yang, X.B.; Stauber, J.L.; Warne, M.S.J. Occurrence and a Screening-Level Risk Assessment of Human Pharmaceuticals in the Pearl River System, South China. Environ. Toxicol. Chem. 2010, 29, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Néstor, M.C.; Mariana, C. Impact of Pharmaceutical Waste on Biodiversity. In Ecopharmacovigilance: Multidisciplinary Approaches to Environmental Safety of Medicines; Gómez-Oliván, L.M., Ed.; Springer International Publishing: Geneva, Switzerland, 2019; pp. 235–253. ISBN 978-3-319-73476-7. [Google Scholar]
- Matz, V.D.; Efimova, I.M. Geological History of Baikal. Nature 2017, 3, 13–27. (In Russian) [Google Scholar]
- Rusinek, O.T.; Takhteev, V.V.; Gladkochub, D.P.; Khodzher, T.V.; Budnev, N.M. Baikal Science; Nauka Publishers: Moscow, Russia, 2012; pp. 641–1019. (In Russian) [Google Scholar]
- Moore, M.V.; Hampton, S.E.; Izmest’eva, L.R.; Silow, E.A.; Peshkova, E.V.; Pavlov, B.K. Climate change and the world’s “sacred sea”—Lake Baikal, Siberia. BioScience 2009, 59, 405–417. [Google Scholar] [CrossRef]
- Moore, M.V.; De Stasio, B.T., Jr.; Huizenga, K.N.; Silow, E.A. Trophic coupling of the microbial and the classical food web in Lake Baikal, Siberia. Freshw. Biol. 2019, 64, 138–151. [Google Scholar] [CrossRef]
- Timoshkin, O.A.; Samsonov, D.P.; Yamamuro, M.; Moore, M.V.; Belykh, O.I.; Malnik, V.V.; Sakirko, M.V.; Shirokaya, A.A.; Bondarenko, N.A.; Domysheva, V.M.; et al. Rapid Ecological Change in the Coastal Zone of Lake Baikal (East Siberia): Is the Site of the World’s Greatest Freshwater Biodiversity in Danger? J. Great Lakes Res. 2016, 42, 487–497. [Google Scholar] [CrossRef]
- Meyer, M.F.; Ozersky, T.; Woo, K.H.; Shchapov, K.; Galloway, A.W.; Schram, J.B.; Snow, D.D.; Timofeyev, M.A.; Karnaukhov, D.Y.; Brousil, M.R.; et al. A unified dataset of co-located sewage pollution, periphyton, and benthic macroinvertebrate community and food web structure from Lake Baikal (Siberia). Limnol. Oceanogr. Lett. 2021, 7, 62–79. [Google Scholar] [CrossRef]
- Meyer, M.; Ozersky, T.; Woo, K.; Shchapov, K.; Galloway, A.; Schram, J.; Rosi, E.; Snow, D.; Timofeyev, M.; Karnaukhov, D.; et al. Effects of Spatially Heterogeneous Lakeside Development on Nearshore Biotic Communities in a Large, Deep, Oligotrophic Lake. Limnol. Oceanogr. 2022, 67, 2649–2664. [Google Scholar] [CrossRef]
- Timoshkin, O.A.; Moore, M.V.; Kulikova, N.N.; Tomberg, I.V.; Malnik, V.V.; Shimaraev, M.N.; Troitskaya, E.S.; Shirokaya, A.A.; Sinyukovich, V.N.; Zaitseva, E.P.; et al. Groundwater Contamination by Sewage Causes Benthic Algal Outbreaks in the Littoral Zone of Lake Baikal (East Siberia). J. Great Lakes Res. 2018, 44, 230–244. [Google Scholar] [CrossRef]
- Freo, U.; Ruocco, C.; Valerio, A.; Scagnol, I.; Nisoli, E. Paracetamol: A Review of Guideline Recommendations. J. Clin. Med. 2021, 10, 3420. [Google Scholar] [CrossRef]
- Oliver, M.E.; Hinks, T.S.C. Azithromycin in Viral Infections. Rev. Med. Virol. 2021, 31, e2163. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.M.; Dye, C. Current Perceptions and Use of Paracetamol in Dogs among Veterinary Surgeons Working in the United Kingdom. J. Vet. Med. Sci. 2023, 9, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Chalifoux, N.V.; Butty, E.M.; Mauro, K.D.; Moyle, R.B.; Ehrhardt, C.M.; Robertson, J.B.; Labato, M.A.; Culler, C.A.; Londoño, L.A.; Vigani, A.; et al. Outcomes of 434 Dogs with Non-Steroidal Anti-Inflammatory Drug Toxicosis Treated with Fluid Therapy, Lipid Emulsion, or Therapeutic Plasma Exchange. J. Vet. Intern. Med. 2023, 37, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Stephens, L.R.; Slee, K.J. Metronidazole for the Treatment of Bovine Pyometra. Aust. Vet. J. 1987, 64, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Granja, R.H.M.M.; Nino, A.M.M.; Reche, K.V.G.; Giannotti, F.M.; de Lima, A.C.; Wanschel, A.C.B.A.; Salerno, A.G. Determination and Confirmation of Metronidazole, Dimetridazole, Ronidazole and Their Metabolites in Bovine Muscle by LC-MS/MS. Food Addit. Contam. Part. A 2013, 30, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Motos, A.; Yang, H.; Li Bassi, G.; Yang, M.; Meli, A.; Battaglini, D.; Cabrera, R.; Bobi, J.; Pagliara, F.; Frigola, G.; et al. Inhaled Amikacin for Pneumonia Treatment and Dissemination Prevention: An Experimental Model of Severe Monolateral Pseudomonas Aeruginosa Pneumonia. Crit. Care 2023, 27, 60. [Google Scholar] [CrossRef] [PubMed]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial Activity of Some Flavonoids and Organic Acids Widely Distributed in Plants. J. Clin. Med. 2020, 9, 109. [Google Scholar] [CrossRef] [PubMed]
- Jeffreys, D. Aspirin: The Remarkable Story of a Wonder Drug; Bloomsbury: New York, NY, USA, 2004; ISBN 978-1-58234-386-0. [Google Scholar]
- Takhteev, V. On the current state of taxonomy of the Baikal Lake amphipods (Crustacea: Amphipoda) and the typological ways of constructing their system. Arthropoda Sel. 2019, 28, 374–402. [Google Scholar] [CrossRef]
- Axenov-Gribanov, D.; Rebets, Y.; Tokovenko, B.; Voytsekhovskaya, I.; Timofeyev, M.; Luzhetskyy, A. The Isolation and Characterization of Actinobacteria from Dominant Benthic Macroinvertebrates Endemic to Lake Baikal. Folia Microbiol. 2016, 61, 159–168. [Google Scholar] [CrossRef]
- Protasov, E.S.; Axenov-Gribanov, D.V.; Rebets, Y.V.; Voytsekhovskaya, I.V.; Tokovenko, B.T.; Shatilina, Z.M.; Luzhetskyy, A.; Timofeyev, M.A. The diversity and antibiotic properties of actinobacteria associated with endemic deepwater amphipods of Lake Baikal. Anton Leeuw. Int. J. 2017, 110, 1593–1611. [Google Scholar] [CrossRef]
- Olano, C.; Rodríguez, M. Actinomycetes Associated with Arthropods as a Source of New Bioactive Compounds. CIMB 2024, 46, 3822–3838. [Google Scholar] [CrossRef] [PubMed]
- Quinn, G.A.; Banat, A.M.; Abdelhameed, A.M.; Banat, I.M. Streptomyces from traditional medicine: Sources of new innovations in antibiotic discovery. J. Med. Microbiol. 2020, 69, 1040–1048. [Google Scholar] [CrossRef]
- Risdian, C.; Mozef, T.; Wink, J. Biosynthesis of Polyketides in Streptomyces. Microorganisms 2019, 7, 124. [Google Scholar] [CrossRef]
- Jakob, L.; Bedulina, D.S.; Axenov-Gribanov, D.V.; Ginzburg, M.; Shatilina, Z.M.; Lubyaga, Y.A.; Madyarova, E.V.; Gurkov, A.N.; Timofeyev, M.A.; Pörtner, H.-O.; et al. Uptake Kinetics and Subcellular Compartmentalization Explain Lethal but Not Sublethal Effects of Cadmium in Two Closely Related Amphipod Species. Available online: https://pubs.acs.org/doi/abs/10.1021/acs.est.6b06613 (accessed on 19 July 2024).
- Pavlichenko, V.V.; Protopopova, M.V.; Timofeyev, M.; Luckenbach, T. Identification of a Putatively Multixenobiotic Resistance Related Abcb1 Transporter in Amphipod Species Endemic to the Highly Pristine Lake Baikal. Environ. Sci. Pollut. Res. 2015, 22, 5453–5468. [Google Scholar] [CrossRef] [PubMed]
- Timofeyev, M.A.; Steinberg, C.E.W. Antioxidant Response to Natural Organic Matter (NOM) Exposure in Three Baikalean Amphipod Species from Contrasting Habitats. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2006, 145, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Shatilina, Z.; Drozdova, P.; Bedulina, D.; Rivarola-Duarte, L.; Schreiber, S.; Otto, C.; Jühling, F.; Aulhorn, S.; Busch, W.; Lubyaga, Y.; et al. Transcriptome-Level Effects of the Model Organic Pollutant Phenanthrene and Its Solvent Acetone in Three Amphipod Species. Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 33, 100630. [Google Scholar] [CrossRef]
- Mohd Zanuri, N.B.; Bentley, M.G.; Caldwell, G.S. Assessing the Impact of Diclofenac, Ibuprofen and Sildenafil Citrate (Viagra®) on the Fertilisation Biology of Broadcast Spawning Marine Invertebrates. Mar. Environ. Res. 2017, 127, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Grzesiuk, M.; Wacker, A.; Spijkerman, E. Photosynthetic Sensitivity of Phytoplankton to Commonly Used Pharmaceuticals and Its Dependence on Cellular Phosphorus Status. Ecotoxicology 2016, 25, 697–707. [Google Scholar] [CrossRef]
- Du, J.; Mei, C.; Ying, G.; Xu, M. Toxicity Thresholds for Diclofenac, Acetaminophen and Ibuprofen in the Water Flea Daphnia Magna. Bull. Environ. Contam. Toxicol. 2016, 97, 84–90. [Google Scholar] [CrossRef]
- Sun, C.; Dudley, S.; Trumble, J.; Gan, J. Pharmaceutical and Personal Care Products-Induced Stress Symptoms and Detoxification Mechanisms in Cucumber Plants. Environ. Pollut. 2018, 234, 39–47. [Google Scholar] [CrossRef]
- Bouzidi, I.; Fkiri, A.; Saidani, W.; Khazri, A.; Mezni, A.; Mougin, K.; Beyrem, H.; Sellami, B. The Pharmaceutical Triclosan Induced Oxidative Stress and Physiological Disorder in Marine Organism and Nanoparticles as a Potential Mitigating Tool. Mar. Environ. Res. 2024, 196, 106424. [Google Scholar] [CrossRef] [PubMed]
- Farkas, R.; Mireisz, T.; Toumi, M.; Abbaszade, G.; Sztráda, N.; Tóth, E. The Impact of Anti-Inflammatory Drugs on the Prokaryotic Community Composition and Selected Bacterial Strains Based on Microcosm Experiments. Microorganisms 2023, 11, 1447. [Google Scholar] [CrossRef]
- Bashyal, S. Ibuprofen and its different analytical and manufacturing methods: A review. Asian J. Pharm. Clin. Res. 2018, 11, 25–29. [Google Scholar] [CrossRef]
- Bragança, I.; Plácido, A.; Paíga, P.; Domingues, V.F.; Delerue-Matos, C. QuEChERS: A New Sample Preparation Approach for the Determination of Ibuprofen and Its Metabolites in Soils. Sci. Total Environ. 2012, 433, 281–289. [Google Scholar] [CrossRef]
- Dowling, G.; Gallo, P.; Fabbrocino, S.; Serpe, L.; Regan, L. Determination of Ibuprofen, Ketoprofen, Diclofenac and Phenylbutazone in Bovine Milk by Gas Chromatography-Tandem Mass Spectrometry. Food Addit. Contam. Part A 2008, 25, 1497–1508. [Google Scholar] [CrossRef] [PubMed]
- USP-NF. Available online: https://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/errata467Ibuprofen.pdf (accessed on 28 June 2024).
- Eraga, S.O.; Arhewoh, M.I.; Chibuogwu, R.N.; Iwuagwu, M.A. A Comparative UV−HPLC Analysis of Ten Brands of Ibuprofen Tablets. Asian Pac. J. Trop. Biomed. 2015, 5, 880–884. [Google Scholar] [CrossRef]
- ICH Harmonised Tripartite Guideline. Q2(R1) Validation of Analytical Procedures: Text and Methodology; ICH: London, UK, 2005; pp. 1–13. [Google Scholar]
- Riley, C.M.; Rosanske, T.W.; Reid, G.L. Specification of Drug Substances and Products: Development and Validation of Analytical Methods, 2nd ed.; Elsevier: New York, NY, USA, 2020; pp. 10–495. ISBN 9780081028247. [Google Scholar]
- Wang, C.; Wang, Y.; Xie, H.; Zhan, C.; He, X.; Liu, R.; Hu, R.; Shen, J.; Jia, Y. Establishment and Validation of an SIL-IS LC–MS/MS Method for the Determination of Ibuprofen in Human Plasma and Its Pharmacokinetic Study. Biomed. Chromatogr. 2022, 36, e5287. [Google Scholar] [CrossRef]
- Borges, K.B.; de Oliveira, A.R.M.; Barth, T.; Jabor, V.A.P.; Pupo, M.T.; Bonato, P.S. LC–MS–MS Determination of Ibuprofen, 2-Hydroxyibuprofen Enantiomers, and Carboxyibuprofen Stereoisomers for Application in Biotransformation Studies Employing Endophytic Fungi. Anal. Bioanal. Chem. 2011, 399, 915–925. [Google Scholar] [CrossRef]
- Puangpetch, A.; Limrungsikul, A.; Prommas, S.; Rukthong, P.; Sukasem, C. Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry Method for Determination of Ibuprofen in Human Plasma. Clin. Mass Spectrom. 2020, 15, 6–12. [Google Scholar] [CrossRef]
- Martignac, M.; Oliveros, E.; Maurette, M.-T.; Claparols, C.; Benoit-Marquié, F. Mechanistic Pathways of the Photolysis of Paracetamol in Aqueous Solution: An Example of Photo-Fries Rearrangement. Photochem. Photobiol. Sci. 2013, 12, 527–535. [Google Scholar] [CrossRef]
- GOST 32798-2014; Food Products, Food Raw Materials. Method for Determination of the Aminoglycosides Content by High Performance Liquid Chromatography with Mass Spectrometry Detector. Rosstandart: Moscow, Russia, 2016. (In Russian)
- GOST 34533-2019; Food Products, Food Raw Materials. Method for Determination of Sulfonamides, Nitroimidazoles, Penicillins, Amphenicols by High Performance Liquid Chromatography-Mass Spectrometry. Rosstandart: Moscow, Russia, 2020. (In Russian)
- Polagani, S.R.; Pilli, N.R.; Gandu, V. High Performance Liquid Chromatography Mass Spectrometric Method for the Simultaneous Quantification of Pravastatin and Aspirin in Human Plasma: Pharmacokinetic Application. J. Pharm. Anal. 2012, 2, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Qin, F.; Ma, Y.; Li, F. Quantitative Determination of Azithromycin in Human Plasma by Ultra Performance Liquid Chromatography–Electrospray Ionization Mass Spectrometry and Its Application in a Pharmacokinetic Study. J. Chromatogr. B. 2007, 855, 255–261. [Google Scholar] [CrossRef] [PubMed]
- GOST 31694-2012; Food Products, Food Raw Materials. Method of Determination of the Antibiotic Residues of Tetracycline Group by High Performance Liquid Chromatography—Mass Spectrometry. Rosstandart: Moscow, Russia, 2013. (In Russian)
- GOST 34136-2017; Food Products, Food Raw Materials. Method for Determination of the Residual Content of Macrolides, Lincosamides and Pleuromutilins by High Performance Liquid Chromatography—Mass spectrometry. Rosstandart: Moscow, Russia, 2018. (In Russian)
- GOST 32881-2014; Food Products, Food Raw Materials. Method for Determination of the Non-Steroidal Anti-Inflammatory Drug Residue Content by High Performance Liquid Chromatography—Mass Spectrometry. Rosstandart: Moscow, Russia, 2016. (In Russian)
Azithromycin | Tetracycline | Acetaminophen | Ibuprofen | Aspirin | |
---|---|---|---|---|---|
1 | − | − | − | + | + |
2 | − | − | − | − | − |
3 | + | + | + | + | + |
4 | + | + | + | + | + |
5 | − | − | − | − | − |
6 | − | + | + | − | − |
7 | − | − | − | − | − |
8 | + | + | + | − | − |
9 | + | + | + | + | + |
10 | + | + | + | + | + |
11 | + | + | + | + | + |
12 | + | + | + | + | + |
13 | + | + | + | + | + |
14 | + | + | + | + | + |
15 | + | + | + | + | − |
16 | + | + | + | + | + |
Uncontaminated samples, % | |||||
Total | 31 | 25 | 25 | 31 | 37 |
Contaminated samples, % | |||||
Total | 69 | 75 | 75 | 69 | 63 |
Amikacin | Chlortetracycline | Doxycycline | Oxytetracycline | Dimetridazole | Metronidazole | Spiramycin | |
---|---|---|---|---|---|---|---|
1 | + | + | + | + | + | + | − |
2 | − | + | + | + | + | + | − |
3 | + | + | + | + | + | + | − |
4 | + | + | + | + | + | + | − |
5 | + | + | + | + | + | + | − |
6 | + | + | + | + | + | + | − |
7 | + | + | + | + | + | + | − |
8 | + | + | + | + | + | + | − |
9 | + | + | + | + | + | + | − |
10 | + | + | + | + | + | + | − |
11 | + | + | + | + | + | + | − |
12 | + | + | + | + | − | + | + |
13 | + | + | + | + | − | + | + |
14 | + | + | + | + | − | + | − |
15 | + | + | + | + | − | + | + |
16 | + | + | + | + | − | + | + |
Uncontaminated samples, % | |||||||
Total | 6 | 0 | 0 | 0 | 31 | 0 | 75 |
Contaminated samples, % | |||||||
Total | 94 | 100 | 100 | 100 | 69 | 100 | 25 |
Active Pharmaceutical Ingredient | Precursor Ions (m/z) | Product Ions (m/z) | Reference | |
---|---|---|---|---|
1 | Acetaminophen | 152.0 | 110.0 | [68] |
2 | Amikacin | 586.3 | 425.2 | [69] |
3 | Amoxicillin | 366.1 | 114.1; 208 | [70] |
4 | Ampicillin | 350.1 | 192,1; 106.1 | [70] |
5 | Apramycin | 540.3 | 217.1 | [69] |
6 | Aspirin | 179.0 | 136.8 | [71] |
7 | Azithromycin | 749.6 | 591.6 | [72] |
8 | Chlortetracycline | 479.1 | 462.1 | [73] |
9 | Clarithromycin | 748.5 | 590.3; 158.0 | [74] |
10 | Demeclocycline | 465.1 | 430.1 | [73] |
11 | Dimetridazole | 142.1 | 81.1; 96.1 | [70] |
12 | Doxycycline | 445.1 | 410.0 | [73] |
13 | Erythromycin | 734.5 | 158.0; 576.3 | [74] |
14 | Florfenicol | 356.1 | 185.1; 119.1 | [70] |
15 | Gentamicin | 478.3 | 157.1 | [69] |
16 | Hygromycin B | 528.3 | 352.1 | [69] |
17 | Ibuprofen | 205.1 | 161.1 | [75] |
18 | Lincomycin | 407.2 | 359.2; 126.0 | [74] |
19 | Metronidazole | 172.1 | 128.1; 82.1 | [70] |
20 | Oxytetracycline | 461.1 | 444.2 | [73] |
21 | Spiramycin | 422.2 | 100.9; 174.1 | [74] |
22 | Sulfamethazine | 279.1 | 186.1; 124.1 | [70] |
23 | Sulfapyridine | 250.1 | 184.1; 156.1 | [70] |
24 | Tetracycline | 445.0 | 410.0 | [73] |
25 | Thiamphenicol | 353.9 | 290.0; 184.9 | [70] |
26 | Tylosin | 916.5 | 772.1;174.0 | [74] |
Time, min | Solution A 100% Milli-Q Water, % | Solution B 100% Acetonitrile, % | Flow Rate, mL/min |
---|---|---|---|
0.5 | 95 | 5 | 0.4 |
1.0 | 85 | 15 | 0.4 |
6.0 | 20 | 80 | 0.4 |
8.0 | 20 | 80 | 0.4 |
9.0 | 95 | 5 | 0.4 |
Time, min | Solution A 0.1% Acetic Acid Solution, % | Solution B 100% Acetonitrile, % | Flow Rate, mL/min |
---|---|---|---|
0.5 | 60 | 40 | 0.4 |
4.0 | 2 | 98 | 0.4 |
6.0 | 2 | 98 | 0.4 |
7.0 | 60 | 40 | 0.4 |
7.5 | 60 | 40 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telnova, T.Y.; Morgunova, M.M.; Shashkina, S.S.; Vlasova, A.A.; Dmitrieva, M.E.; Shelkovnikova, V.N.; Malygina, E.V.; Imidoeva, N.A.; Belyshenko, A.Y.; Konovalov, A.S.; et al. Detection of Pharmaceutical Contamination in Amphipods of Lake Baikal by the HPLC-MS Method. Antibiotics 2024, 13, 738. https://doi.org/10.3390/antibiotics13080738
Telnova TY, Morgunova MM, Shashkina SS, Vlasova AA, Dmitrieva ME, Shelkovnikova VN, Malygina EV, Imidoeva NA, Belyshenko AY, Konovalov AS, et al. Detection of Pharmaceutical Contamination in Amphipods of Lake Baikal by the HPLC-MS Method. Antibiotics. 2024; 13(8):738. https://doi.org/10.3390/antibiotics13080738
Chicago/Turabian StyleTelnova, Tamara Y., Maria M. Morgunova, Sophie S. Shashkina, Anfisa A. Vlasova, Maria E. Dmitrieva, Victoria N. Shelkovnikova, Ekaterina V. Malygina, Natalia A. Imidoeva, Alexander Y. Belyshenko, Alexander S. Konovalov, and et al. 2024. "Detection of Pharmaceutical Contamination in Amphipods of Lake Baikal by the HPLC-MS Method" Antibiotics 13, no. 8: 738. https://doi.org/10.3390/antibiotics13080738
APA StyleTelnova, T. Y., Morgunova, M. M., Shashkina, S. S., Vlasova, A. A., Dmitrieva, M. E., Shelkovnikova, V. N., Malygina, E. V., Imidoeva, N. A., Belyshenko, A. Y., Konovalov, A. S., Misharina, E. A., & Axenov-Gribanov, D. V. (2024). Detection of Pharmaceutical Contamination in Amphipods of Lake Baikal by the HPLC-MS Method. Antibiotics, 13(8), 738. https://doi.org/10.3390/antibiotics13080738