Efficient Absorbance-Based Assay for Rapid Antibiotic Susceptibility Testing of Enterobacterales
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Antibiotic Susceptibility Analyses Using Disc Diffusion or E-Strip Tests
4.3. Bacterial Preparation
4.4. Incubation Time and Antibiotic Concentration
4.5. Assay Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Antimicrobial Resistance; Fact Sheet No.194; World Health Organization: Geneva, Switzerland, 2023; Available online: https://www.who.int (accessed on 15 May 2024).
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef]
- Yamin, D.; Uskoković, V.; Wakil, A.M.; Goni, M.D.; Shamsuddin, S.H.; Mustafa, F.H.; Alfouzan, W.A.; Alissa, M.; Alshengeti, A.; Almaghrabi, R.H.; et al. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics 2023, 13, 3246. [Google Scholar] [CrossRef] [PubMed]
- Woodford, N.; Eastaway, A.T.; Ford, M.; Leanord, A.; Keane, C.; Quayle, R.M.; Steer, J.A.; Zhang, J.; Livermore, D.M. Comparison of BD Phoenix, Vitek 2, and MicroScan automated systems for detection and inference of mechanisms responsible for carbapenem resistance in Enterobacteriaceae. J. Clin. Microbiol. 2010, 48, 2999–3002. [Google Scholar] [CrossRef]
- Shanmugakani, R.K.; Srinivasan, B.; Glesby, M.J.; Westblade, L.F.; Cárdenas, W.B.; Raj, T.; Erickson, D.; Mehta, S. Current state of the art in rapid diagnostics for antimicrobial resistance. Lab Chip 2020, 20, 2607–2625. [Google Scholar] [CrossRef]
- Novikov, A.; Sayfutdinova, A.; Botchkova, E.; Kopitsyn, D.; Fakhrullin, R. Antibiotic Susceptibility Testing with Raman Biosensing. Antibiotics 2022, 11, 1812. [Google Scholar] [CrossRef] [PubMed]
- Postek, W.; Garstecki, P. Droplet Microfluidics for High-Throughput Analysis of Antibiotic Susceptibility in Bacterial Cells and Populations. Acc. Chem. Res. 2022, 55, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Thiermann, R.; Sandler, M.; Ahir, G.; Sauls, J.T.; Schroeder, J.; Brown, S.; Le Treut, G.; Si, F.; Li, D.; Wang, J.D.; et al. Tools and methods for high-throughput single-cell imaging with the mother machine. eLife 2024, 12, RP88463. [Google Scholar] [CrossRef]
- Baltekin, Ö.; Boucharin, A.; Tano, E.; Andersson, D.I.; Elf, J. Antibiotic Susceptibility Testing in Less than 30 min Using Direct Single-Cell Imaging. Proc. Natl. Acad. Sci. USA 2017, 114, 9170–9175. [Google Scholar] [CrossRef] [PubMed]
- Fande, S.; Amreen, K.; Sriram, D.; Mateev, V.; Goel, S. Electromicrofluidic Device for Interference-Free Rapid Antibiotic Susceptibility Testing of Escherichia coli from Real Samples. Sensors 2023, 23, 9314. [Google Scholar] [CrossRef]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC-Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef]
- Anjum, M.F.; Zankari, E.; Hasman, H. Molecular Methods for Detection of Antimicrobial Resistance. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, A.A.; Abdelaziz, N.A.; Amin, M.A.; Aziz, R.K. Novel blaCTX-M variants and genotype-phenotype correlations among clinical isolates of extended spectrum beta lactamase-producing Escherichia coli. Sci. Rep. 2019, 9, 4224. [Google Scholar] [CrossRef] [PubMed]
- Frickmann, H.; Masanta, W.O.; Zautner, A.E. Emerging rapid resistance testing methods for clinical microbiology laboratories and their potential impact on patient management. BioMed Res. Int. 2014, 2014, 375681. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance—The need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [PubMed]
- van Belkum, A.; Durand, G.; Peyret, M.; Chatellier, S.; Zambardi, G.; Schrenzel, J.; Shortridge, D.; Engelhardt, A.; Dunne, W.M., Jr. Rapid clinical bacteriology and its future impact. Ann. Lab. Med. 2013, 33, 14–27. [Google Scholar] [CrossRef]
- Sorlózano, A.; Gutiérrez, J.; Piédrola, G.; Soto, M.J. Acceptable performance of VITEK 2 system to detect extended-spectrum β-lactamases in clinical isolates of Escherichia coli: A comparative study of phenotypic commercial methods and NCCLS guidelines. Diagn. Microbiol. Infect. Dis. 2005, 51, 191–193. [Google Scholar] [CrossRef]
- Young, A.L.; Nicol, M.P.; Moodley, C.; Bamford, C.M. The accuracy of extended-spectrum beta-lactamase detection in Escherichia coli and Klebsiella pneumoniae in South African laboratories using the Vitek 2 Gram-negative susceptibility card AST-N255. S. Afr. J. Infect. Dis. 2019, 34, 114. [Google Scholar] [CrossRef]
- Duggal, S.; Gaind, R.; Tandon, N.; Deb, M.; Chugh, T.D. Comparison of an automated system with conventional identification and antimicrobial susceptibility testing. ISRN Microbiol. 2012, 2012, 107203. [Google Scholar] [CrossRef]
- Menozzi, M.G.; Eigner, U.; Covan, S.; Rossi, S.; Somenzi, P.; Dettori, G.; Chezzi, C.; Fahr, A.M. Two-center collaborative evaluation of performance of the BD phoenix automated microbiology system for identification and antimicrobial susceptibility testing of gram-negative bacteria. J. Clin. Microbiol. 2006, 44, 4085–4094. [Google Scholar] [CrossRef]
- Axelsson, C.; Rehnstam-Holm, A.S.; Nilson, B. Rapid detection of antibiotic resistance in positive blood cultures by MALDI-TOF MS and an automated and optimized MBT-ASTRA protocol for Escherichia coli and Klebsiella pneumoniae. Infect. Dis. 2020, 52, 45–53. [Google Scholar] [CrossRef]
- Sparbier, K.; Schubert, S.; Kostrzewa, M. MBT-ASTRA: A suitable tool for fast antibiotic susceptibility testing? Methods 2016, 104, 48–54. [Google Scholar] [CrossRef]
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 14: The European Committee on Antimicrobial Susceptibility Testing. 2024. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_14.0_Breakpoint_Tables.pdf (accessed on 1 June 2024).
- Laxminarayan SKKCBBCHKTVB. State of the World’s Antibiotics 2021: A Global Analysis of Antimicrobial Resistance and Its Drivers; Center of Disease Dynamics, Ecoomics and Policy: Washington, DC, USA, 2021. [Google Scholar]
- Brogan, D.M.; Mossialos, E. A critical analysis of the review on antimicrobial resistance report and the infectious disease financing facility. Glob. Health 2016, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Lansang, M.A.; Lucas-Aquino, R.; Tupasi, T.E.; Mina, V.S.; Salazar, L.S.; Juban, N.; Limjoco, T.T.; Nisperos, L.E.; Kunin, C.M. Purchase of antibiotics without prescription in Manila, the Philippines. Inappropriate choices and doses. J. Clin. Epidemiol. 1990, 43, 61–67. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Antimicrobial Resistance Surveillance System (GLASS) Report; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Jung, J.S.; Hamacher, C.; Gross, B.; Sparbier, K.; Lange, C.; Kostrzewa, M.; Schubert, S. Evaluation of a Semiquantitative Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Method for Rapid Antimicrobial Susceptibility Testing of Positive Blood Cultures. J. Clin. Microbiol. 2016, 54, 2820–2824. [Google Scholar] [CrossRef] [PubMed]
- Lange, C.; Schubert, S.; Jung, J.; Kostrzewa, M.; Sparbier, K. Quantitative Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Rapid Resistance Detection. J. Clin. Microbiol. 2014, 52, 4155–4162. [Google Scholar] [CrossRef]
- Maxson, T.; Taylor-Howell, C.L.; Minogue, T.D. Semi-quantitative MALDI-TOF for antimicrobial susceptibility testing in Staphylococcus aureus. PLoS ONE 2017, 12, e0183899. [Google Scholar] [CrossRef]
Antibiotic | Isolate Resistant by Routine Test | Isolates Susceptible by Routine Test | Total Analysis | Very Major Error Rate (%) | Major Error Rate (%) | Sensitivity (%) | Specificity (%) | Overall Accuracy (%) | ||
---|---|---|---|---|---|---|---|---|---|---|
Susceptible by ABS | Resistant by ABS | Susceptible by ABS | Resistant by ABS | |||||||
Cefotaxim | 4 | 638 | 353 | 9 | 1004 | 0.4 | 0.9 | 98.6 | 98.9 | 98.7 |
Meropenem | 0 | 206 | 783 | 4 | 993 | 0.0 | 0.4 | 98.1 | 100.0 | 99.6 |
Ciprofloxacin | 3 | 349 | 631 | 16 | 999 | 0.3 | 1.6 | 95.6 | 99.5 | 98.1 |
Overall | 7 | 1193 | 1767 | 29 | 2996 | 0.2 | 1.0 | 97.6 | 99.6 | 98.8 |
Environmental and Clinical Isolates | ||||||||||
Antibiotic | Isolate Resistant by Routine Test | Isolates Susceptible by Routine Test | Total Analysis | Very Major Error Rate (%) | Major Error Rate (%) | Sensitivity (%) | Specificity (%) | Overall Accuracy (%) | ||
Susceptible by ABS | Resistant by ABS | Susceptible by ABS | Resistant by ABS | |||||||
Cefotaxime | 4 | 514 | 261 | 7 | 786 | 0.5 | 0.9 | 98.7 | 98.5 | 98.6 |
Meropenem | 0 | 95 | 678 | 3 | 776 | 0.0 | 0.4 | 96.9 | 100.0 | 99.6 |
Ciprofloxacin | 3 | 236 | 529 | 14 | 782 | 0.4 | 1.8 | 94.4 | 99.4 | 97.8 |
Overall | 7 | 845 | 1468 | 24 | 2344 | 0.3 | 1.0 | 97.2 | 99.5 | 98.7 |
Control Strains | ||||||||||
Antibiotic | Isolate Resistant by Routine Test | Isolates Susceptible by Routine Test | Total Analysis | Very Major Error rate (%) | Major Error Rate (%) | Sensitivity (%) | Specificity (%) | Overall Accuracy (%) | ||
Susceptible by ABS | Resistant by ABS | Susceptible by ABS | Resistant by ABS | |||||||
Cefotaxime | 0 | 124 | 92 | 2 | 218 | 0.0 | 0.9 | 98.4 | 100.0 | 99.1 |
Meropenem | 0 | 111 | 105 | 1 | 217 | 0.0 | 0.5 | 99.1 | 100.0 | 99.5 |
Ciprofloxacin | 0 | 113 | 102 | 2 | 217 | 0.0 | 0.9 | 98.3 | 100.0 | 99.1 |
Overall | 0 | 348 | 299 | 5 | 652 | 0.0 | 0.8 | 98.6 | 100.0 | 99.2 |
Source | Number | Species | Resistance Genes | MIC by Etest | ||
---|---|---|---|---|---|---|
CTX (mg/L) | MER (mg/L) | CIP (mg/L) | ||||
CCUG | 10785 | K. pneumoniae | --- | 0.015 | 0.015 | 0.002 |
CCUG | 8619400 | E. coli | --- | 0.06 | 0.03 | 0.015 |
CCUG | 17620 | E. coli | --- | 0.094 | 0.012 | 0.015 |
CCUG | 58538 | E. coli | MOX | 128 | 0.06 | 0.03 |
CCUG | 58543 | E. coli | CMY-2 | 64 | 0.03 | 0.06 |
CCUG | 58547 | K. pneumoniae | VIM | >256 | >32 | >32 |
CCUG | 59351 | E. coli | CTX-M 15 | >256 | 0.015 | >32 |
CCUG | 59357 | E. coli | SHV12/5A | 3 | 0.008 | 0.03 |
CCUG | 59360 | K. pneumoniae | SHV12/5A | 2 | 0.015 | 0.03 |
CMRS | 100978 | E. coli | SHV | 2 | 0.008 | 0.015 |
CMRS | 100979 | K. pneumoniae | NDM, CTX-M1(15) | 32 | 4 | >32 |
CMRS | 100980 | E. coli | DHA | 2 | 0.015 | 0.12 |
CMRS | 100981 | K. pneumoniae | DHA, CTX-M1(15) | >256 | 0.015 | 0.5 |
CMRS | 100982 | K. pneumoniae | KPC | >256 | >32 | >32 |
CMRS | 100983 | K. pneumoniae | KPC, CTX-M1(15), CMY-2 | >256 | >32 | >32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Axelsson, C.; Nilson, B.; Rehnstam-Holm, A.-S. Efficient Absorbance-Based Assay for Rapid Antibiotic Susceptibility Testing of Enterobacterales. Antibiotics 2024, 13, 852. https://doi.org/10.3390/antibiotics13090852
Axelsson C, Nilson B, Rehnstam-Holm A-S. Efficient Absorbance-Based Assay for Rapid Antibiotic Susceptibility Testing of Enterobacterales. Antibiotics. 2024; 13(9):852. https://doi.org/10.3390/antibiotics13090852
Chicago/Turabian StyleAxelsson, Carolina, Bo Nilson, and Ann-Sofi Rehnstam-Holm. 2024. "Efficient Absorbance-Based Assay for Rapid Antibiotic Susceptibility Testing of Enterobacterales" Antibiotics 13, no. 9: 852. https://doi.org/10.3390/antibiotics13090852
APA StyleAxelsson, C., Nilson, B., & Rehnstam-Holm, A. -S. (2024). Efficient Absorbance-Based Assay for Rapid Antibiotic Susceptibility Testing of Enterobacterales. Antibiotics, 13(9), 852. https://doi.org/10.3390/antibiotics13090852