Effectiveness of a Novel Liposomal Methylglyoxal–Tobramycin Formulation in Reducing Biofilm Formation and Bacterial Adhesion
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Lip-MGO-TOB Formulation
2.1.1. Size, Polydispersity Index (PDI), Encapsulation Efficacy (EE), and Drug Loading Capacity (DLC) of Lip-MGO-TOB
2.1.2. Morphology of the Lip-MGO-TOB Formula
2.1.3. Stability of the Lip-MGO-TOB Formulation Under Different Biological Conditions
2.2. Biological Assays
2.2.1. Bacterial Clinical Isolates and Susceptibility Tests
2.2.2. Biological Activity of TOB and the Lip-MGO-TOB Formulation
Checkerboard Assay for Free TOB and MGO
MIC, MBC, and Antibiofilm Activity
2.2.3. Bacterial Cell Adhesion Inhibition by the Lip-MGO-TOB Formula
2.3. WGS and Bioinformatics Analysis
Multilocus Sequence Typing (MLST)
3. Discussion
4. Materials and Methods
4.1. Preparation of Lip-MGO-TOB
4.2. Characterization of Lip-MGO-TOB
4.2.1. Size and Zeta Potential Determination of the Liposomal Formulation
4.2.2. Assessment of the EE and DLC of Lip-MGO-TOB
4.2.3. Morphology Assay of Lip-MGO-TOB
4.2.4. Stability of Lip-MGO-TOB Under Different Biological Conditions
4.3. Biological Assays
4.3.1. Bacterial Isolates and Susceptibility Tests
4.3.2. Determination of TOB MIC Using the Microbroth Dilution Method
Inoculum Preparation
Determination of MICs of TOB, MGO, and Lip-MGO-TOB
Determination of Synergism Between TOB and MGO via Checkerboard Assay
4.3.3. Antibiofilm Assays
4.3.4. Lip-MGO-TOB Activity Against Bacterial Adhesion to Human Cell Assays
4.4. WGS
4.5. MLST and Detection of Resistance and Virulence Genes
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Thy, M.; Timsit, J.F.; de Montmollin, E. Aminoglycosides for the treatment of severe infection due to resistant gram-negative pathogens. Antibiotics 2023, 12, 860. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial resistance: A growing serious threat for global public health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Baptista, P.V.; McCusker, M.P.; Carvalho, A.; Ferreira, D.A.; Mohan, N.M.; Martins, M.; Fernandes, A.R. Nano-strategies to fight multidrug-resistant bacteria: “A battle of the titans”. Front. Microbiol. 2018, 9, 1441. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.; Ogren, M.; Dias, J.N.R.; Silva, M.; Gil, S.; Tavares, L.; Aires-Da-Silva, F.; Gaspar, M.M.; Aguiar, S.I. Liposomes as antibiotic delivery systems: A promising nanotechnological strategy against antimicrobial resistance. Molecules 2021, 26, 2047. [Google Scholar] [CrossRef]
- Rukavina, Z.; Vanić, Ž. Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics 2016, 8, 18. [Google Scholar] [CrossRef]
- Drulis-Kawa, Z.; Dorotkiewicz-Jach, A. Liposomes as delivery systems for antibiotics. Int. J. Pharm. 2010, 387, 187–198. [Google Scholar] [CrossRef]
- Lakshminarayanan, R.; Ye, E.; Young, D.J.; Li, Z.; Loh, X.J. Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv. Healthc. Mater. 2018, 7, 1701400. [Google Scholar] [CrossRef]
- Underwood, C.; van Eps, A.W. Nanomedicine and veterinary science: The reality and the practicality. Vet. J. 2012, 193, 12–23. [Google Scholar] [CrossRef]
- Bahari, N.; Hashim, N.; Md Akim, A.; Maringgal, B. Recent advances in honey-based nanoparticles for wound dressing: A review. Nanomaterials 2022, 12, 2560. [Google Scholar] [CrossRef]
- Johnston, M.; McBride, M.; Dahiya, D.; Owusu-Apenten, R. Antibacterial activity of Manuka honey and its components: An overview. AIMS Microbiol. 2018, 4, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernández, T.Y.; Mazzoni, L.; Giampieri, F. The composition and biological activity of honey: A focus on manuka honey. Foods 2014, 3, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Brudzynski, K. Honey as an ecological reservoir of antibacterial compounds produced by antagonistic microbial interactions in plant nectars, honey and honey bee. Antibiotics 2021, 10, 551. [Google Scholar] [CrossRef] [PubMed]
- Atrott, J.; Henle, T. Methylglyoxal in Manuka honey: Correlation with antibacterial properties. Czech J. Food Sci. 2009, 27, 163–165. [Google Scholar] [CrossRef]
- Booth, I.R.; Ferguson, G.P.; Miller, S.; Li, C.; Gunasekera, B.; Kinghorn, S. Bacterial production of methylglyoxal: A survival strategy or death by misadventure? Biochem. Soc. Trans. 2003, 31, 1406–1408. [Google Scholar] [CrossRef]
- Atrott, J.; Haberlau, S.; Henle, T. Studies on the formation of methylglyoxal from dihydroxyacetone in Manuka (Leptospermum scoparium) honey. Carbohydr. Res. 2012, 361, 7–11. [Google Scholar] [CrossRef]
- Wallace, A.; Eady, S.; Miles, M.; Martin, H.; McLachlan, A.; Rodier, M.; Willis, J.; Scott, R.; Sutherland, J. Demonstrating the safety of manuka honey UMF 20+ in a human clinical trial with healthy individuals. Br. J. Nutr. 2010, 103, 1023–1028. [Google Scholar] [CrossRef]
- Samarghandian, S.; Farkhondeh, T.; Samini, F. Honey and health: A review of recent clinical research. Pharmacogn. Res. 2017, 9, 121–127. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar Arya, D.; Dua, M.; Chhatwal, G.S.; Johri, A.K. Nanotechnology for targeted drug delivery to combat antibiotic resistance. Expert Opin. Drug Deliv. 2012, 9, 1325–1332. [Google Scholar] [CrossRef]
- Zylberberg, C.; Matosevic, S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016, 23, 3319–3329. [Google Scholar] [CrossRef]
- Bahari, L.A.S.; Hamishehkar, H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers: A comparative literature review. Adv. Pharm. Bull. 2016, 6, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Low, W.; Gupta, A.; Amin, M.; Radecka, I.; Britland, S.; Raj, P.; Kenward, K. Strategies for antimicrobial drug delivery to biofilm. Curr. Pharm. Des. 2014, 21, 43–66. [Google Scholar] [CrossRef] [PubMed]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.T.; Xu, Y.Q.; Shi, J.; Li, J.; Ding, J. Liposome combined porous β-TCP scaffold: Preparation, characterization, and anti-biofilm activity. Drug Deliv. 2010, 17, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Leong, E.W.X.; Ge, R. Lipid nanoparticles as delivery vehicles for inhaled therapeutics. Biomedicines 2022, 10, 2179. [Google Scholar] [CrossRef]
- Deng, Z.; Kalin, G.T.; Shi, D.; Kalinichenko, V.V. Nanoparticle delivery systems with cell-specific targeting for pulmonary diseases. Am. J. Respir. Cell Mol. Biol. 2021, 64, 292–307. [Google Scholar] [CrossRef]
- Serrano-Lotina, A.; Portela, R.; Baeza, P.; Alcolea-Rodriguez, V.; Villarroel, M.; Ávila, P. Zeta potential as a tool for functional materials development. Catal. Today 2023, 423, 113862. [Google Scholar] [CrossRef]
- Zhou, D.; Li, M.; Li, Q.; Geng, F.; Li, S.; Wu, D. Enhancement of liposomal properties of thyme essential oil using lysozyme modification: Physicochemical, storage, and antibacterial properties. Food Chem. X 2023, 20, 101057. [Google Scholar] [CrossRef]
- Anderson, M.; Omri, A. The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug Deliv. 2004, 11, 33–39. [Google Scholar] [CrossRef]
- Messiaen, A.S.; Forier, K.; Nelis, H.; Braeckmans, K.; Coenye, T. Transport of nanoparticles and tobramycin-loaded liposomes in Burkholderia cepacia complex biofilms. PLoS ONE 2013, 8, e79220. [Google Scholar] [CrossRef]
- Li, X.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, S.; Zwama, M.; Yoneda, T.; Hayashi-Nishino, M.; Nishino, K. Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa. Microbiology 2023, 169, 1322. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, H. Role, structure, and function of multidrug efflux pumps in gram-negative bacteria. In Frontiers in Antimicrobial Resistance; ASM Press: Washington, DC, USA, 2014; pp. 261–274. [Google Scholar] [CrossRef]
- Avakh, A.; Grant, G.D.; Cheesman, M.J.; Kalkundri, T.; Hall, S. The art of war with Pseudomonas aeruginosa: Targeting Mex efflux pumps directly to strategically enhance antipseudomonal drug efficacy. Antibiotics 2023, 12, 1304. [Google Scholar] [CrossRef]
- Martinez, J.L.; Sánchez, M.B.; Martínez-Solano, L.; Hernandez, A.; Garmendia, L.; Fajardo, A.; Alvarez-Ortega, C. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol. Rev. 2009, 33, 430–449. [Google Scholar] [CrossRef]
- Swedan, S.; Alabdallah, E.A.; Ababneh, Q. Resistance to aminoglycoside and quinolone drugs among Klebsiella pneumoniae clinical isolates from northern Jordan. Heliyon 2024, 10, e23368. [Google Scholar] [CrossRef]
- Nolan, V.C.; Harrison, J.; Cox, J.A.G. In vitro synergy between manuka honey and amikacin against Mycobacterium abscessus complex shows potential for nebulisation therapy. Microbiology 2022, 168, 1237. [Google Scholar] [CrossRef]
- Hayashi, K.; Fukushima, A.; Hayashi-Nishino, M.; Nishino, K. Effect of methylglyoxal on multidrug-resistant Pseudomonas aeruginosa. Front. Microbiol. 2014, 5, 180. [Google Scholar] [CrossRef]
- Rabie, E.; Serem, J.C.; Oberholzer, H.M.; Gaspar, A.R.M.; Bester, M.J. How methylglyoxal kills bacteria: An ultrastructural study. Ultrastruct. Pathol. 2016, 40, 107–111. [Google Scholar] [CrossRef]
- Bakker-Woudenberg, I.A.J.M.; Ten Kate, M.T.; Guo, L.; Working, P.; Mouton, J.W. Improved efficacy of ciprofloxacin administered in polyethylene glycol-coated liposomes for treatment of Klebsiella pneumoniae pneumonia in rats. Antimicrob. Agents Chemother. 2001, 45, 1487–1492. [Google Scholar] [CrossRef]
- Drulis-Kawa, Z.; Gubernator, J.; Dorotkiewicz-Jach, A.; Doroszkiewicz, W.; Kozubek, A. A comparison of the in vitro antimicrobial activity of liposomes containing meropenem and gentamicin. Cell. Mol. Biol. Lett. 2006, 11, 360–375. [Google Scholar] [CrossRef]
- Liu, P.; Chen, G.; Zhang, J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.; De, M. Liposome-based antibacterial delivery: An emergent approach to combat bacterial infections. ACS Omega 2023, 8, 35442–35451. [Google Scholar] [CrossRef] [PubMed]
- Kunyanee, C.; Kamjumphol, W.; Taweechaisupapong, S.; Kanthawong, S.; Wongwajana, S.; Wongratanacheewin, S.; Hahnvajanawong, C.; Chareonsudjai, S. Burkholderia pseudomallei biofilm promotes adhesion, internalization, and stimulates proinflammatory cytokines in human epithelial A549 cells. PLoS ONE 2016, 11, e0160741. [Google Scholar] [CrossRef]
- Garcia-Medina, R.; Dunne, W.M.; Singh, P.K.; Brody, S.L. Pseudomonas aeruginosa acquires biofilm-like properties within airway epithelial cells. Infect. Immun. 2005, 73, 8298–8305. [Google Scholar] [CrossRef]
- Mugabe, C.; Azghani, A.O.; Omri, A. Preparation and characterization of dehydration–rehydration vesicles loaded with aminoglycoside and macrolide antibiotics. Int. J. Pharm. 2006, 307, 244–250. [Google Scholar] [CrossRef]
- Solleti, V.S.; Alhariri, M.; Halwani, M.; Omri, A. Antimicrobial properties of liposomal azithromycin for Pseudomonas infections in cystic fibrosis patients. J. Antimicrob. Chemother. 2015, 70, 784–796. [Google Scholar] [CrossRef]
- Alhariri, M.; Majrashi, M.A.; Bahkali, A.H.; Almajed, F.S.; Azghani, A.O.; A Khiyami, M.; Alyamani, E.J.; Aljohani, S.M.; Halwani, M. Efficacy of neutral and negatively charged liposome-loaded gentamicin on planktonic bacteria and biofilm communities. Int. J. Nanomed. 2017, 12, 6949–6967. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, S.; Kazi, M.; Alshehri, S.M.; Shahid, M.; Khan, S.U.; Hussain, Z.; Sohail, M.; Shafique, M.; Hamid, H.A.; et al. Norfloxacin-loaded lipid polymer hybrid nanoparticles for oral administration: Fabrication, characterization, in silico modeling, and toxicity evaluation. Pharmaceutics 2021, 13, 1632. [Google Scholar] [CrossRef]
- Ruozi, B.; Belletti, D.; Tombesi, A.; Tosi, G.; Bondioli, L. AFM, ESEM, TEM, and CLSM in liposomal characterization: A comparative study. Int. J. Nanomed. 2011, 6, 557–563. [Google Scholar] [CrossRef]
- Alarfaj, R.E.; Alkhulaifi, M.M.; Al-Fahad, A.J.; Aljihani, S.; Yassin, A.E.B.; Alghoribi, M.F.; Halwani, M.A. Antibacterial efficacy of liposomal formulations containing tobramycin and N-acetylcysteine against tobramycin-resistant Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii. Pharmaceutics 2022, 14, 130. [Google Scholar] [CrossRef]
- Eduardo, L.G.; Ramirez, B.S.; Maribel, C.F.; Pescador, G.N.; Javier, F.; Cruz, M. Low accuracy of the McFarland method for estimation of bacterial populations. Afr. J. Microbiol. Res. 2018, 12, 736–740. [Google Scholar] [CrossRef]
- EUCAST/ESCMID. EUCAST discussion document E. Dis 5.1 March 2003: Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003, 9, 1–7. [Google Scholar]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Guideline M07, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Duarte, A.; Ferreira, S.; Silva, F.; Domingues, F.C. Synergistic activity of coriander oil and conventional antibiotics against Acinetobacter baumannii. Phytomedicine 2012, 19, 236–238. [Google Scholar] [CrossRef] [PubMed]
- Al-Kafaween, M.A.; Bakar, A.; Hilmi, M.; Jaffar, N.; Al-Jamal, H.A.N. Determination of optimum incubation time for formation of Pseudomonas aeruginosa and Streptococcus pyogenes biofilms in microtiter plate. Bull. Natl. Res. Cent. 2019, 43, 100. [Google Scholar] [CrossRef]
- Burns, J.L.; Jonas, M.; Chi, E.Y.; Clark, D.K.; Berger, A. Invasion of respiratory epithelial cells by Burkholderia (Pseudomonas) cepacia. Infect. Immun. 1996, 64, 4054–4059. [Google Scholar] [CrossRef]
- Urwin, R.; Maiden, M.C.J. Multi-locus sequence typing: A tool for global epidemiology. Trends Microbiol. 2003, 11, 479–487. [Google Scholar] [CrossRef]
- Doster, E.; Lakin, S.M.; Dean, C.J.; Wolfe, C.; Young, J.G.; Boucher, C.; Belk, K.E.; Noyes, N.R.; Morley, P.S. MEGARes 2.0: A database for classification of antimicrobial drug, biocide, and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res. 2020, 48, D561–D569. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Rosenberg, E.Y.; Ma, D.; Nikaido, H. AcrD of Escherichia coli is an aminoglycoside efflux pump. J. Bacteriol. 2000, 182, 1754–1756. [Google Scholar] [CrossRef]
Size (nm ± SD) | 582.2 ± 44.80 |
PDI | 0.52 |
Zeta potential of empty liposomes (mV ± SD) | −20.9 ± 1.39 |
Zeta potential of Lip-MGO-TOB liposomes (mV ± SD) | +26.1 ± 0.80 |
Entrapped concentration (mg/mL) | 0.83 |
Encapsulation efficiency (%) | 83.4 |
Drug loading capacity (%) | 6.3 |
Antibiotic | Isolate ID (Source) | |||||
---|---|---|---|---|---|---|
PA85 (Respiratory) | KP57 (Urine) | KP45 (Tissue) | ||||
MIC | ASTR | MIC | ASTR | MIC | ASTR | |
TIM | ≥128 | R | NA | NA | NA | NA |
CAZ | ≥64 | R | ≥64 | R | ≥64 | R |
FEP | ≥64 | R | ≥64 | R | ≥64 | R |
IMP | ≥16 | R | ≥16 | R | ≥16 | R |
MEM | 8 | R | ≥16 | R | ≥16 | R |
AMK | ≥64 | R | ≥64 | R | ≥64 | R |
GEN | ≥16 | R | 8 | I | ≥16 | R |
TOB | ≥16 | R | NA | NA | NA | NA |
CIP | ≥4 | R | ≥4 | R | ≥4 | R |
LVX | ≥8 | R | NA | NA | NA | NA |
TGC | ≥8 | R | ≥8 | R | ≥8 | R |
CST | ≥0.5 | S | NA | NA | NA | NA |
AMP | NA | NA | ≥32 | R | ≥32 | R |
AMC | NA | NA | ≥32 | R | ≥32 | R |
PIP/TAZ | ≥128 | R | ≥128 | R | ≥128 | R |
CF | NA | NA | ≥64 | R | ≥64 | R |
FOX | NA | NA | ≥64 | R | ≥64 | R |
CRO | NA | NA | ≥64 | R | ≥64 | R |
NIT | NA | NA | 256 | R | 256 | R |
TMP | NA | NA | NA | R | NA | R |
TMP-SMX | NA | NA | ≥320 | R | ≥320 | R |
Resistance score | 26 | 30 | 32 |
Bacteria | TOB (µg/mL) | Lip-MGO-TOB (µg/mL) | ||
---|---|---|---|---|
MIC | MBC | MIC | MBC | |
KP45 | 1024 | 2048 | 512 | 1024 |
KP57 | 1024 | 2048 | 512 | 1024 |
PA85 | 64 | 128 | 32 | 64 |
Escherichia coli ATCC 25922 | 2 | 2 | - | - |
Isolate ID (Accession No.) | gapA | infB | mdh | pgi | phoE | rpoB | tonB | ST |
---|---|---|---|---|---|---|---|---|
KP45 (SAMN45105960) | 1 | 6 | 1 | 1 | 1 | 1 | 1 | 14 |
KP57 (SAMN45105961) | 1 | 6 | 1 | 1 | 1 | 1 | 1 | 14 |
Isolate ID | acsA | aroE | guaA | mutL | nuoD | ppsA | trpE | ST |
PA85 (SAMN20514487) | 16 | 5 | 30 | 11 | 4 | 31 | 41 | 233 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alluhaim, W.; Alkhulaifi, M.M.; Alzahrani, R.R.; Alrfaei, B.M.; Yassin, A.E.B.; Alghoribi, M.F.; Alsaadi, A.M.; Al-Asmari, A.I.; Al-Fahad, A.J.; Ali, R.; et al. Effectiveness of a Novel Liposomal Methylglyoxal–Tobramycin Formulation in Reducing Biofilm Formation and Bacterial Adhesion. Antibiotics 2025, 14, 3. https://doi.org/10.3390/antibiotics14010003
Alluhaim W, Alkhulaifi MM, Alzahrani RR, Alrfaei BM, Yassin AEB, Alghoribi MF, Alsaadi AM, Al-Asmari AI, Al-Fahad AJ, Ali R, et al. Effectiveness of a Novel Liposomal Methylglyoxal–Tobramycin Formulation in Reducing Biofilm Formation and Bacterial Adhesion. Antibiotics. 2025; 14(1):3. https://doi.org/10.3390/antibiotics14010003
Chicago/Turabian StyleAlluhaim, Wed, Manal M. Alkhulaifi, Raghad R. Alzahrani, Bahauddeen M. Alrfaei, Alaa Eldeen B. Yassin, Majed F. Alghoribi, Ahlam M. Alsaadi, Ahmed I. Al-Asmari, Ahmed J. Al-Fahad, Rizwan Ali, and et al. 2025. "Effectiveness of a Novel Liposomal Methylglyoxal–Tobramycin Formulation in Reducing Biofilm Formation and Bacterial Adhesion" Antibiotics 14, no. 1: 3. https://doi.org/10.3390/antibiotics14010003
APA StyleAlluhaim, W., Alkhulaifi, M. M., Alzahrani, R. R., Alrfaei, B. M., Yassin, A. E. B., Alghoribi, M. F., Alsaadi, A. M., Al-Asmari, A. I., Al-Fahad, A. J., Ali, R., Alhawiti, N. M., & Halwani, M. A. (2025). Effectiveness of a Novel Liposomal Methylglyoxal–Tobramycin Formulation in Reducing Biofilm Formation and Bacterial Adhesion. Antibiotics, 14(1), 3. https://doi.org/10.3390/antibiotics14010003