Effectiveness and Safety of Dual Versus Triple Antibiotic Therapy for Treating Brucellosis Infection: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. Treatment Outcomes
2.3. Antibiotics Regimens Used
3. Discussion
4. Materials and Methods
4.1. Study Design and Setting
4.2. Eligibility Criteria
4.3. Laboratory Test
4.4. Data Collection
4.5. Outcomes
4.6. Definitions
- Favorable response: achievement of either complete clinical cure, defined as resolution of brucella symptoms, resolution of fever within 72 h (fever defined as a temperature of 38 °C or 100.4 °F or greater), and the resolution of leukocytosis (defined as white blood count less than 12 × 109/L); or partial clinical cure, defined as achieving 1 or 2 of the criteria for complete clinical cure.
- Acute kidney injury is defined as alanine aminotransferase (ALT) ≥ 3 times the upper limit of normal in the presence of hepatitis or ≥5 times in the absence of symptoms [28].
- Recurrence of brucella: re-infection with brucella species confirmed with positive blood culture or serology within 90 days.
- Time for brucella symptoms resolution: time from antibiotic initiation to brucella symptoms resolution.
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qureshi, K.A.; Parvez, A.; Fahmy, N.A.; Abdel Hady, B.H.; Kumar, S.; Ganguly, A.; Atiya, A.; Elhassan, G.O.; Alfadly, S.O.; Parkkila, S.; et al. Brucellosis: Epidemiology, pathogenesis, diagnosis and treatment-a comprehensive review. Ann. Med. 2023, 55, 2295398. [Google Scholar] [CrossRef] [PubMed]
- Alshaalan, M.A.; Alalola, S.A.; Almuneef, M.A.; Albanyan, E.A.; Balkhy, H.H.; AlShahrani, D.A.; Johani, S.A. Brucellosis in children: Prevention, diagnosis and management guidelines for general pediatricians endorsed by the Saudi Pediatric Infectious Diseases Society (SPIDS). Int. J. Pediatr. Adolesc. Med. 2014, 1, 40–46. [Google Scholar] [CrossRef]
- Jin, M.; Fan, Z.; Gao, R.; Li, X.; Gao, Z.; Wang, Z. Research progress on complications of Brucellosis. Front. Cell Infect. Microbiol. 2023, 13, 1136674. [Google Scholar] [CrossRef]
- Brucellosis, Council of Health Insurance. Available online: https://www.chi.gov.sa/Style%20Library/IDF_Branding/Indication/215%20-%20Brucellosis-New%20Indication.pdf (accessed on 10 January 2025).
- Al Mofleh, I.A.; Al Aska, A.I.; Al Sekait, M.A.; Al Balla, S.R.; Al Nasser, A.N. Brucellosis in Saudi Arabia: Epidemiology in the central region. Ann. Saudi Med. 1996, 16, 349–352. [Google Scholar] [CrossRef]
- Al-Tawfiq, J.A.; Abukhamsin, A. A 24-year study of the epidemiology of human brucellosis in a health-care system in Eastern Saudi Arabia. J. Infect. Public. Health 2009, 2, 81–85. [Google Scholar] [CrossRef]
- Holloway, P.; Gibson, M.; Holloway, T.; Pickett, I.; Crook, B.; Cardwell, J.M.; Nash, S.; Musallam, I.; Al-Omari, B.; Al-Majali, A.; et al. Camel milk is a neglected source of brucellosis among rural Arab communities. Nat. Commun. 2025, 16, 861. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention, Brucellosis. Available online: https://www.cdc.gov/brucellosis/about/index.html (accessed on 15 January 2025).
- Tuon, F.F.; Cerchiari, N.; Cequinel, J.C.; Droppa, E.E.H.; Moreira, S.D.R.; Costa, T.P.; Navarro, A.P.B.; Handar, A.M.; Souza, M.N.; Brucellosis, W. Guidelines for the management of human brucellosis in the State of Parana, Brazil. Rev. Soc. Bras. Med. Trop. 2017, 50, 458–464. [Google Scholar] [CrossRef]
- Vrioni, G.; Bourdakis, A.; Pappas, G.; Pitiriga, V.; Mavrouli, M.; Pournaras, S.; Tsakris, A. Administration of a triple versus a standard double antimicrobial regimen for human brucellosis more efficiently eliminates bacterial DNA load. Antimicrob. Agents Chemother. 2014, 58, 7541–7544. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wang, H.; Li, F.; Du, L.; Fan, W.; Zhao, M.; Zhen, H.; Yan, Y.; Lu, M.; Han, X.; et al. Better efficacy of triple antibiotics therapy for human brucellosis: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2023, 17, e0011590. [Google Scholar] [CrossRef]
- Mylene, L.; Duane, B. Levels and determinants of overprescribing of antibiotics in the public and private primary care sectors in South Africa. BMJ Glob. Health 2023, 8, e012374. [Google Scholar] [CrossRef]
- Maduranga, S.; Valencia, B.M.; Li, X.; Moallemi, S.; Rodrigo, C. A systematic review and meta-analysis of comparative clinical studies on antibiotic treatment of brucellosis. Sci. Rep. 2024, 14, 19037. [Google Scholar] [CrossRef] [PubMed]
- Al-Madfaa, R.O.; Alalawi, M.A.; Basudan, L.O.; Alhejaili, S.F.; Eljaaly, K.; Madani, T.A.; Thabit, A.K. Dual versus triple therapy for uncomplicated brucellosis: A retrospective cohort study. J. Infect. Dev. Ctries. 2020, 14, 1380–1386. [Google Scholar] [CrossRef] [PubMed]
- Skalsky, K.; Yahav, D.; Bishara, J.; Pitlik, S.; Leibovici, L.; Paul, M. Treatment of human brucellosis: Systematic review and meta-analysis of randomised controlled trials. BMJ 2008, 336, 701–704. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, L.; Wang, C.; Wang, K.; Guo, G.; Zhang, X.; Wang, J. Predictive analysis of the number of human brucellosis cases in Xinjiang, China. Sci. Rep. 2021, 11, 11513. [Google Scholar] [CrossRef]
- Rajendhran, J. Genomic insights into Brucella. Infect. Genet. Evol. 2021, 87, 104635. [Google Scholar] [CrossRef]
- Sallam, A.M.; Abou-Souliman, I.; Reyer, H.; Wimmers, K.; Rabee, A.E. New insights into the genetic predisposition of brucellosis and its effect on the gut and vaginal microbiota in goats. Sci. Rep. 2023, 13, 20086. [Google Scholar] [CrossRef]
- Lopez-Santiago, R.; Sanchez-Argaez, A.B.; De Alba-Nunez, L.G.; Baltierra-Uribe, S.L.; Moreno-Lafont, M.C. Immune Response to Mucosal Brucella Infection. Front. Immunol. 2019, 10, 1759. [Google Scholar] [CrossRef]
- Glowacka, P.; Zakowska, D.; Naylor, K.; Niemcewicz, M.; Bielawska-Drozd, A. Brucella-Virulence Factors, Pathogenesis and Treatment. Pol. J. Microbiol. 2018, 67, 151–161. [Google Scholar] [CrossRef]
- Molina-Mora, J.A.; Gonzalez, A.; Jimenez-Morgan, S.; Cordero-Laurent, E.; Brenes, H.; Soto-Garita, C.; Sequeira-Soto, J.; Duarte-Martinez, F. Clinical Profiles at the Time of Diagnosis of SARS-CoV-2 Infection in Costa Rica During the Pre-vaccination Period Using a Machine Learning Approach. Phenomics 2022, 2, 312–322. [Google Scholar] [CrossRef]
- Aljuaid, A.S.; Badirah, S.B.; Abusaeed, R.I.; Almalki, A.M.; Almaghrabi, M.A.; Alzahrani, E.A.; Alhazmi, K.A.; Almaghrabi, A.A.; AlQarni, A.M.; Alghamdi, K.M. Analysis of antibiotic regimens and outcomes in spinal brucellosis: Insights from a retrospective cohort study in Makkah, Saudi Arabia. J. Spine Surg. 2024, 10, 264–273. [Google Scholar] [CrossRef]
- Yang, X.M.; Jia, Y.L.; Zhang, Y.; Zhang, P.N.; Yao, Y.; Yin, Y.L.; Tian, Y. Clinical Effect of Doxycycline Combined with Compound Sulfamethoxazole and Rifampicin in the Treatment of Brucellosis Spondylitis. Drug Des. Devel Ther. 2021, 15, 4733–4740. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.N.; Cota, G.; Xavier, D.M.; de Souza, G.M.; Souza, M.R.F.; Goncalves, M.W.A.; Tuon, F.F.; Galvao, E.L. Efficacy and safety of therapeutic strategies for human brucellosis: A systematic review and network meta-analysis. PLoS Negl. Trop. Dis. 2024, 18, e0012010. [Google Scholar] [CrossRef] [PubMed]
- Hasanain, A.; Mahdy, R.; Mohamed, A.; Ali, M. A randomized, comparative study of dual therapy (doxycycline-rifampin) versus triple therapy (doxycycline-rifampin-levofloxacin) for treating acute/subacute brucellosis. Braz. J. Infect. Dis. 2016, 20, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Solis Garcia del Pozo, J.; Solera, J. Systematic review and meta-analysis of randomized clinical trials in the treatment of human brucellosis. PLoS ONE 2012, 7, e32090. [Google Scholar] [CrossRef]
- World Health Organization, Brucellosis. Available online: https://www.who.int/news-room/fact-sheets/detail/brucellosis (accessed on 5 January 2025).
- Lopes, J.A.; Jorge, S. The RIFLE and AKIN classifications for acute kidney injury: A critical and comprehensive review. Clin. Kidney J. 2013, 6, 8–14. [Google Scholar] [CrossRef]
Variables | Total N = 287 | Dual Therapy N = 164 | Triple Therapy N = 123 | p-Value |
---|---|---|---|---|
Age, mean (SD) | 44.9 (24) | 44.4 (23.6) | 45.5 (24.4) | 0.70 |
Male gender | 200 (69.7%) | 115 (70.1%) | 85 (69.1%) | 0.85 |
Saudi national | 282 (98.5%) | 161 (98.7%) | 121 (98.3%) | 0.9 |
Weight, mean (SD) | 67.5 (23.3) | 68.3 (21.1) | 66.6 (25.8) | 0.56 |
Living situation
| 53 (18.5%) 12 (4.2%) 222 (77.4%) | 23 (14.0%) 7 (4.3%) 134 (81.7%) | 30 (24.4%) 5 (4.1%) 88 (71.5%) | 0.08 |
Working with cattle | 75 (26.1%) | 51 (31.1%) | 24 (19.5%) | 0.03 |
Source of infection
| 161 (56.1%) 28 (9.8%) 98 (34.1%) | 93 (56.7%) 16 (9.8%) 55 (33.5%) | 68 (55.3%) 12 (9.8%) 43 (35.0%) | 0.97 |
Treatment setting
| 13 (4.5%) 274 (95.4%) | 7 (4.3%) 157 (95.7%) | 6 (4.9%) 117 (95.1%) | 0.67 |
Comorbidities | ||||
Hypertension | 96 (33.4%) | 52 (31.7%) | 44 (35.8%) | 0.47 |
Diabetes mellitus | 95 (33.1%) | 55 (33.5%) | 40 (32.5%) | 0.86 |
Dyslipidemia | 62 (21.6%) | 39 (23.8%) | 23 (18.7%) | 0.3 |
Chronic kidney disease | 14 (4.9%) | 11 (6.7%) | 3 (2.4%) | 0.1 |
Hypothyroidism | 14 (4.9%) | 9 (5.5%) | 5 (4.1%) | 0.58 |
Hyperthyroidism | 1 (0.3%) | 0 (0.0%) | 1 (0.8%) | 0.25 |
Malignancy | 8 (2.8%) | 7 (4.3%) | 1 (0.8%) | 0.08 |
Autoimmune disease | 17 (5.9%) | 14 (8.5%) | 3 (2.4%) | 0.03 |
Organ transplantation | 3 (1.0%) | 2 (1.2%) | 1 (0.8%) | 0.74 |
Taking immunosuppressive for cancer | 7 (2.4%) | 6 (3.7%) | 1 (0.8%) | 0.12 |
Cardiovascular disease | 37 (12.9%) | 21 (12.8%) | 16 (13.0%) | 0.96 |
Symptoms | ||||
Myalgia | 15 (5.2%) | 9 (5.5%) | 6 (4.9%) | 0.82 |
Headache | 42 (14.6%) | 23 (14.0%) | 19 (15.4%) | 0.74 |
Arthralgia | 27 (9.4%) | 14 (8.5%) | 13 (10.6%) | 0.56 |
Fever | 178 (62.0%) | 123 (75.0%) | 55 (44.7%) | <0.001 |
Sweating | 71 (24.7%) | 43 (26.2%) | 28 (22.8%) | 0.5 |
Low back pain | 71 (24.7%) | 33 (20.1%) | 38 (30.9%) | 0.04 |
Focal disease | ||||
Peripheral arthritis | 22 (7.7%) | 9 (5.5%) | 13 (10.6%) | 0.11 |
Sacroiliitis | 21 (7.3%) | 6 (3.7%) | 15 (12.2%) | 0.006 |
Spondylitis | 42 (14.6%) | 13 (7.9%) | 29 (23.6%) | <0.001 |
Epididymo-orchitis | 9 (3.1%) | 3 (1.8%) | 6 (4.9%) | 0.14 |
Baseline serum creatinine, mg/dL, mean (SD) | 0.960 (0.81) | 1.069 (1.2) | 0.815 (0.42) | 0.03 |
Acute kidney injury | 29 (10.5%) | 17 (10.8%) | 12 (10.0%) | 0.82 |
Baseline ALT | 49.5 (SD 43.73) | 50.4 (SD 44.4) | 48.2 (42.8) | 0.73 |
Baseline AST | 52.4 (SD 51.3) | 55.9 (58.4) | 46.9 (37.6) | 0.2 |
Liver injury | 15 (5.2%) | 8 (4.9%) | 7 (5.7%) | 0.76 |
Baseline C-reactive protein | 51.3 (SD 47.8) | 53 (SD 50.1) | 46.1 (SD 40.3) | 0.49 |
Baseline procalcitonin | 0.65 (SD 2.3) | 0.37 (0.66) | 0.97 (3.34) | 0.25 |
Baseline erythrocyte sedimentation rate, mm/h, mean (SD) | 51.3 (SD 32.3) | 46.6 (29.4) | 57.1 (34.8) | 0.01 |
Baseline white blood cell count | 6.8 (3.4) | 6.8 (3.9) | 6.7 (2.4) | 0.76 |
Baseline temperature | 37.7 (0.98) | 37.6 (0.96) | 37.9 (0.98) | 0.98 |
Mean duration of symptoms before therapy initiation | 29.2 (75.3) | 18.3 (23.6) | 44.1 (111.4) | 0.005 |
Previous brucella infection | 44 (15.3%) | 22 (13.4%) | 22 (17.9%) | 0.3 |
Co-infection | 22 (7.7%) | 13 (7.9%) | 9 (7.3%) | 0.85 |
Mean duration of therapy, week | 8.2 (5.4) | 6.987 (4.6) | 9.854 (6) | <0.001 |
Positive culture for brucella | 205 (71.7%) | 119 (73.0%) | 86 (69.9%) | 0.57 |
Outcome | Dual Therapy N = 164 (%) | Triple Therapy N = 123 (%) | Odds Ratio (95% CI) | p-Value | Adjusted Odds Ratio (95% CI) * |
---|---|---|---|---|---|
Achievement of favorable response | 131 (87.3%) | 105 (90.5%) | 1.38 (0.63–3.04) | 0.42 | 1.2 (0.48–3.02) |
Treatment failure | 30 (18.3%) | 29 (23.6%) | 1.38 (0.78–2.45) | 0.27 | 1.06 (0.52–2.16) |
90-day mortality | 0 | 0 | - | ||
Mean duration of hospitalization, days (SD) | 10.74 (1.7) | 17.41(1.9) | - | 0.12 | - |
Relapse of brucella after completion of therapy | 7 (4.3%) | 3 (2.5%) | 0.56 (0.14–2.21) | 0.4 | 0.43 (0.08–2.4) |
Hospital re-admission | 3 (1.9%) | 5 (4.1%) | 2.25 (0.53–9.6) | 0.27 | 2.74 (0.45–16.55) |
ADRs related to antibiotic therapy | 26 (15.9%) | 31 (25.2%) | 1.79 (0.98–3.20) | 0.05 | 1.73 (0.86–3.47) |
Antibiotic discontinuation due to ADRs | 14 (53.8%) | 23 (74.2%) | 2.46 (0.81–7.51) | 0.11 | 2.83 (0.58–13.92) |
Office follow up | 151 (92.6%) | 114 (92.7%) | 1 (0.41–2.47) | 0.99 | 0.52 (0.17–1.56) |
Mean time to defervescence, days (SD) | 67.16 (8.1) | 72.70 (10.1) | - | 0.69 | - |
Mean duration of therapy, weeks | 6.987 (4.6) | 9.854 (6) | - | <0.001 | - |
Dual Therapy, n = 164 | Triple Therapy, n = 123 |
---|---|
Doxycycline + aminoglycoside, n = 85 (51.83%) | Doxycycline + Rifamycin antibiotics + aminoglycosides, n = 52 (21.14%) |
Doxycycline +rifamycin, n = 48 (29.27%) | Doxycycline + ciprofloxacin + aminoglycoside, n = 36 (29.2%) |
Doxycycline + ciprofloxacin, n = 22 (13.4%) | Doxycycline + rifampin +ceftriaxone, n = 4 (3.2%) Ciprofloxacin + doxycycline + rifamycin, n = 7 (5.7%) |
Tripmethoprim/sulfamethoxazole + Rifampin, n = 3 (1.8%) | Trimethoprim/sulfamethoxazole + rifampin+ gentamycin, n = 4 (3.2%) |
Tripmethoprim/sulfamethoxazole + doxycycline, n = 2 (1.2%) | Trimethoprim/sulfamethoxazole + doxycycline+ aminoglycoside, n = 4 (3.2%) |
Amoxicillin/clavulanates + doxycycline n = 1 (0.6%) | Trimethoprim/sulfamethoxazole +ciprofloxacin + doxycycline, n = 3 (2.4%) |
Rifampin + cotrimoxazole, n = 1 (0.6%) | Ceftriaxone + rifamycin + doxycycline, n = 2 (1.6%) |
Cotrimoxazole + rifamycin + ceftriaxone, n = 1 (0.8%) | |
Ampicillin + rifamycin + doxycycline, n = 1 (0.8%) | |
Cefazolin + rifamycin + doxycycline, n = 1 (0.8%) | |
Ciprofloxacin + rifamycin + aminoglycoside, n = 1 (0.8%) | |
Piperacillin/tazobactam + ciprofloxacin + doxycycline, n = 1 (0.8%) | |
Unknown triple therapy, n = 6 (4.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsowaida, Y.S.; Alowais, S.A.; Aldugiem, R.A.; Albahlal, H.N.; Saleh, K.B.; Alshoumr, B.; Alshammari, A.; Alshurtan, K.; Almangour, T.A. Effectiveness and Safety of Dual Versus Triple Antibiotic Therapy for Treating Brucellosis Infection: A Retrospective Cohort Study. Antibiotics 2025, 14, 265. https://doi.org/10.3390/antibiotics14030265
Alsowaida YS, Alowais SA, Aldugiem RA, Albahlal HN, Saleh KB, Alshoumr B, Alshammari A, Alshurtan K, Almangour TA. Effectiveness and Safety of Dual Versus Triple Antibiotic Therapy for Treating Brucellosis Infection: A Retrospective Cohort Study. Antibiotics. 2025; 14(3):265. https://doi.org/10.3390/antibiotics14030265
Chicago/Turabian StyleAlsowaida, Yazed Saleh, Shuroug A. Alowais, Rema A. Aldugiem, Hussah N. Albahlal, Khalid Bin Saleh, Bader Alshoumr, Alia Alshammari, Kareemah Alshurtan, and Thamer A. Almangour. 2025. "Effectiveness and Safety of Dual Versus Triple Antibiotic Therapy for Treating Brucellosis Infection: A Retrospective Cohort Study" Antibiotics 14, no. 3: 265. https://doi.org/10.3390/antibiotics14030265
APA StyleAlsowaida, Y. S., Alowais, S. A., Aldugiem, R. A., Albahlal, H. N., Saleh, K. B., Alshoumr, B., Alshammari, A., Alshurtan, K., & Almangour, T. A. (2025). Effectiveness and Safety of Dual Versus Triple Antibiotic Therapy for Treating Brucellosis Infection: A Retrospective Cohort Study. Antibiotics, 14(3), 265. https://doi.org/10.3390/antibiotics14030265