A Pilot Study on the Impact of Cranberry and Ascorbic Acid Supplementation on the Urinary Microbiome of Healthy Women: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Results
2.1. Study Aim and Sample Analysis
2.2. Demographics
2.3. Volume Intake
2.4. Timing of Urine Sampling
2.5. Urinary pH
2.6. Medication Use
2.7. Adverse Events
2.8. Feasibility of Urine Sample Processing for Microbiome Analysis
2.9. Taxonomic Overview
2.10. Stability and Variability of Microbiome Composition
3. Discussion
4. Materials and Methods
4.1. Ethics
4.2. Study Design and Population
4.3. Study Protocol and Procedures
4.4. Study Supplements
4.5. Urine Sampling, Processing, and Storage
4.6. Microbiome Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The Human Microbiome Project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef]
- Shreiner, A.B.; Kao, J.Y.; Young, V.B. The Gut Microbiome in Health and in Disease. Curr. Opin. Gastroenterol. 2015, 31, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.H.; Pomare, E.W.; Branch, H.W.J.; Naylor, E.; Macfarlane, G.T. Short Chain Fatty Acids in Human Large Intestine, Portal, Hepatic and Venous Blood. Gut 1987, 28, 1221–1227. [Google Scholar] [CrossRef]
- Methé, B.A.; Nelson, K.E.; Pop, M.; Creasy, H.H.; Giglio, M.G.; Huttenhower, C.; Gevers, D.; Petrosino, J.F.; Abubucker, S.; Badger, J.H.; et al. A Framework for Human Microbiome Research. Nature 2012, 486, 215–221. [Google Scholar] [CrossRef]
- Hilt, E.E.; McKinley, K.; Pearce, M.M.; Rosenfeld, A.B.; Zilliox, M.J.; Mueller, E.R.; Brubaker, L.; Gai, X.; Wolfe, A.J.; Schreckenberger, P.C. Urine Is Not Sterile: Use of Enhanced Urine Culture Techniques to Detect Resident Bacterial Flora in the Adult Female Bladder. J. Clin. Microbiol. 2014, 52, 871–876. [Google Scholar] [CrossRef]
- Pearce, M.M.; Hilt, E.E.; Rosenfeld, A.B.; Zilliox, M.J.; Thomas-White, K.; Fok, C.; Kliethermes, S.; Schreckenberger, P.C.; Brubaker, L.; Gai, X.; et al. The Female Urinary Microbiome: A Comparison of Women with and without Urgency Urinary Incontinence. mBio 2014, 5, 01283-14. [Google Scholar] [CrossRef]
- Neugent, M.L.; Hulyalkar, N.V.; Nguyen, V.H.; Zimmern, P.E.; De Nisco, N.J. Advances in Understanding the Human Urinary Microbiome and Its Potential Role in Urinary Tract Infection. mBio 2020, 11, 00218-20. [Google Scholar] [CrossRef]
- Fouts, D.E.; Pieper, R.; Szpakowski, S.; Pohl, H.; Knoblach, S.; Suh, M.J.; Huang, S.T.; Ljungberg, I.; Sprague, B.M.; Lucas, S.K.; et al. Integrated Next-Generation Sequencing of 16S RDNA and Metaproteomics Differentiate the Healthy Urine Microbiome from Asymptomatic Bacteriuria in Neuropathic Bladder Associated with Spinal Cord Injury. J. Transl. Med. 2012, 10, 174. [Google Scholar] [CrossRef]
- Siddiqui, H.; Lagesen, K.; Nederbragt, A.J.; Jeansson, S.L.; Jakobsen, K.S. Alterations of Microbiota in Urine from Women with Interstitial Cystitis. BMC Microbiol. 2012, 12, 205. [Google Scholar] [CrossRef]
- Zafriri, D.; Ofek, I.; Adar, R.; Pocino, M.; Sharon2, N. Inhibitory Activity of Cranberry Juice on Adherence of Type 1 and Type P Fimbriated Escherichia Coli to Eucaryotic Cells. Antimicrob. Agents Chemother. 1989, 33, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Howell, A.B.; Reed, J.D.; Krueger, C.G.; Winterbottom, R.; Cunningham, D.G.; Leahy, M. A-Type Cranberry Proanthocyanidins and Uropathogenic Bacterial Anti-Adhesion Activity. Phytochemistry 2005, 66, 2281–2291. [Google Scholar] [CrossRef] [PubMed]
- Jepson, R.G.; Williams, G.; Craig, J.C. Cranberries for Preventing Urinary Tract Infections. Cochrane Database Syst. Rev. 2012, 2014, CD001321. [Google Scholar] [CrossRef] [PubMed]
- Luís, Â.; Domingues, F.; Pereira, L. Can Cranberries Contribute to Reduce the Incidence of Urinary Tract Infections? A Systematic Review with Meta-Analysis and Trial Sequential Analysis of Clinical Trials. J. Urol. 2017, 198, 614–621. [Google Scholar] [CrossRef]
- Fu, Z.; Liska, D.A.; Talan, D.; Chung, M. Cranberry Reduces the Risk of Urinary Tract Infection Recurrence in Otherwise Healthy Women: A Systematic Review and Meta-Analysis. J. Nutr. 2017, 147, 2282–2288. [Google Scholar] [CrossRef]
- Hickling, D.R.; Nitti, V.W. Management of Recurrent Urinary Tract Infections in Healthy Adult Women. Rev. Urol. 2013, 15, 41–48. [Google Scholar]
- Ochoa-Brust, G.J.; Fernández, A.R.; Villanueva-Ruiz, G.J.; Velasco, R.; Trujillo-Hernández, B.; Vásquez, C. Daily Intake of 100 Mg Ascorbic Acid as Urinary Tract Infection Prophylactic Agent during Pregnancy. Acta Obstet. Gynecol. Scand. 2007, 86, 783–787. [Google Scholar] [CrossRef]
- Castelló, T.; Girona, L.; Gómez, M.R.; Mur, A.M.; García, L. The Possible Value of Ascorbic Acid as a Prophylactic Agent for Urinary Tract Infection. Spinal Cord 1996, 34, 592–593. [Google Scholar] [CrossRef]
- Montorsi, F.; Gandaglia, G.; Salonia, A.; Briganti, A.; Mirone, V. Effectiveness of a Combination of Cranberries, Lactobacillus Rhamnosus, and Vitamin C for the Management of Recurrent Urinary Tract Infections in Women: Results of a Pilot Study. Eur. Urol. 2016, 70, 912–915. [Google Scholar] [CrossRef]
- Komesu, Y.M.; Dinwiddie, D.L.; Richter, H.E.; Lukacz, E.S.; Sung, V.W.; Siddiqui, N.Y.; Zyczynski, H.M.; Ridgeway, B.; Rogers, R.G.; Arya, L.A.; et al. Defining the Relationship between Vaginal and Urinary Microbiomes. Am. J. Obstet. Gynecol. 2020, 222, e1–e154. [Google Scholar] [CrossRef]
- Stapleton, A.E.; Au-Yeung, M.; Hooton, T.M.; Fredricks, D.N.; Roberts, P.L.; Czaja, C.A.; Yarova-Yarovaya, Y.; Fiedler, T.; Cox, M.; Stamm, W.E. Randomized, Placebo-Controlled Phase 2 Trial of a Lactobacillus Crispatus Probiotic given Intravaginally for Prevention of Recurrent Urinary Tract Infection. Clin. Infect. Dis. 2011, 52, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Eley, R.; Judge, C.; Knight, L.; Dimeski, G.; Sinnott, M. Illustrations Reduce Contamination of Midstream Urine Samples in the Emergency Department. J. Clin. Pathol. 2016, 69, 921–925. [Google Scholar] [CrossRef]
- Brotman, R.M.; Shardell, M.D.; Gajer, P.; Fadrosh, D.; Chang, K.; Silver, M.I.; Viscidi, R.P.; Burke, A.E.; Ravel, J.; Gravitt, P.E. Association between the Vaginal Microbiota, Menopause Status, and Signs of Vulvovaginal Atrophy. Menopause 2018, 25, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Ammitzbøll, N.; Bau, B.P.J.; Bundgaard-Nielsen, C.; Villadsen, A.B.; Jensen, A.M.; Leutscher, P.D.C.; Glavind, K.; Hagstrøm, S.; Arenholt, L.T.S.; Sørensen, S. Pre- and Postmenopausal Women Have Different Core Urinary Microbiota. Sci. Rep. 2021, 11, 2212. [Google Scholar] [CrossRef] [PubMed]
- Joesoef, M.R.; Karundeng, A.; Runtupalit, C.; Moran, J.S.; Lewis, J.S.; Ryan, C.A. High Rate of Bacterial Vaginosis among Women with Intrauterine Devices in Manado, Indonesia. Contraception 2001, 64, 169–172. [Google Scholar] [CrossRef]
- Hayward, G.; Mort, S.; Yu, L.M.; Voysey, M.; Glogowska, M.; Croxson, C.; Yang, Y.; Allen, J.; Cook, J.; Tearne, S.; et al. Urine Collection Devices to Reduce Contamination in Urine Samples for Diagnosis of Uncomplicated UTI: A Single-Blind Randomised Controlled Trial in Primary Care. Br. J. Gen. Pract. 2022, 72, e225–e233. [Google Scholar] [CrossRef]
- Lough, M.E.; Shradar, E.; Hsieh, C.; Hedlin, H. Contamination in Adult Midstream Clean-Catch Urine Cultures in the Emergency Department: A Randomized Controlled Trial. J. Emerg. Nurs. 2019, 45, 488–501. [Google Scholar] [CrossRef]
- Holm, A.; Aabenhus, R. Urine Sampling Techniques in Symptomatic Primary-Care Patients: A Diagnostic Accuracy Review. BMC Fam. Pract. 2016, 17, 72. [Google Scholar] [CrossRef]
- Welch, A.A.; Mulligan, A.; Bingham, S.A.; Khaw, K.T. Urine PH Is an Indicator of Dietary Acid-Base Load, Fruit and Vegetables and Meat Intakes: Results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk Population Study. Br. J. Nutr. 2008, 99, 1335–1343. [Google Scholar] [CrossRef]
- Remer, T.; Manz, F. Potential Renal Acid Load of Foods and Its Influence on Urine PH. J. Am. Diet. Assoc. 1995, 95, 791–797. [Google Scholar] [CrossRef]
- Khoshandam, A.; Imenshahidi, M.; Hosseinzadeh, H. Pharmacokinetic of Berberine, the Main Constituent of Berberis vulgaris L.: A Comprehensive Review. Phytother. Res. 2022, 36, 4063–4079. [Google Scholar] [CrossRef]
- Li, Z.; Henning, S.M.; Lee, R.-P.; Lu, Q.-Y.; Summanen, P.H.; Thames, G.; Corbett, K.; Downes, J.; Tseng, C.-H.; Finegold, S.M.; et al. Pomegranate Extract Induces Ellagitannin Metabolite Formation and Changes Stool Microbiota in Healthy Volunteers. Food Funct. 2015, 6, 2487–2495. [Google Scholar] [CrossRef]
- Chang, Z.; An, L.; He, Z.; Zhang, Y.; Li, S.; Lei, M.; Xu, P.; Lai, Y.; Jiang, Z.; Huang, Y.; et al. Allicin Suppressed Escherichia coli -Induced Urinary Tract Infections by a Novel MALT1/NF-ΚB Pathway. Food Funct. 2022, 13, 3495–3511. [Google Scholar] [CrossRef]
- Urbaniak, G.C.; Geoffrey, C. Urbaniak and Scott Plous. (No Date) Research Randomizer. Available online: https://www.randomizer.org/ (accessed on 2 September 2021).
- Pjevac, P.; Hausmann, B.; Schwarz, J.; Kohl, G.; Herbold, C.W.; Loy, A.; Berry, D. An Economical and Flexible Dual Barcoding, Two-Step PCR Approach for Highly Multiplexed Amplicon Sequencing. Front. Microbiol. 2021, 12, 669776. [Google Scholar] [CrossRef]
- Callahan, B.J.; Sankaran, K.; Fukuyama, J.A.; McMurdie, P.J.; Holmes, S.P. Bioconductor Workflow for Microbiome Data Analysis: From Raw Reads to Community Analyses. F1000 Res. 2016, 5, 1492. [Google Scholar] [CrossRef]
- Pruesse, E.; Peplies, J.; Glöckner, F.O. SINA: Accurate High-Throughput Multiple Sequence Alignment of Ribosomal RNA Genes. Bioinformatics 2012, 28, 1823–1829. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
Characteristics of the Study Participants and Collected Data | Total | Cranberry Group | Ascorbic Acid Group | Control/ Non-Intervention Group |
---|---|---|---|---|
n | 27 | 8 | 10 | 9 |
mean age|SD | 26|5.506 | 26|5.743 | 25|4.784 | 26|5.925 |
contraception | ||||
oral contraceptives | 7 (77.8%) | 1 (14.3%) | 3 (42.9%) | 3 (42.9%) |
intrauterine device | 2 (22.2%) | - | 1 (50%) | 1 (50%) |
mean amount of liquid per day in liters|SD | 2.3|0.653 | 2.6|0.694 | 2.1|0.404 | 2.1|0.731 |
time of sampling | ||||
morning (08:00–10:39) | 8 (9.9%) | 3 (37.5%) | 3 (37.5%) | 2 (25.0%) |
noon (10:40–13:19) | 45 (55.6%) | 11 (24.4%) | 15 (33.3%) | 19 (42.2%) |
afternoon (13:20–16:00) | 28 (34.6%) | 10 (35.7%) | 12 (42.9%) | 6 (21.4%) |
mean pH|SD | 6|0.211 | 6|0.195 | 6|0.279 | 6|0.354 |
intake of medicine | ||||
paracetamol | 8 (88.9%) | 2 (25.0%) | 3 (37.5%) | 3 (37.5%) |
other | 1 (11.1%) | 1 (100%) | - | - |
reason for intake of paracetamol | ||||
headache/migraine | 6 (66.7%) | 2 (33.3%) | 3 (50.0%) | 1 (16.7%) |
menstrual pain/disorder | 3 (33.3%) | - | 1 (33.3%) | 2 (66.7%) |
adverse event (AE) | 17 | 4 (23.5%) | 10 (58.8%) | 3 (17.6%) |
documented | 15 (88.2%) | 3 (20.0%) | 9 (60.0%) | 3 (20.0%) |
undocumented | 2 (11.8%) | 1 (50.0%) | 1 (50.0%) | - |
kind of AE | ||||
headache/migraine | 8 (53.3%) | 2 (25.0%) | 5 (62.5%) | 1 (12.5%) |
menstrual pain/disorder | 3 (20.0%) | - | 1 (33.3%) | 2 (66.7%) |
gastrointestinal | 3 (20.0%) | 2 (66.7%) | 1 (33.3%) | - |
symptoms of a cold | 1 (6.7%) | - | 1 (100%) | - |
severity of documented AE | ||||
mild | 8 (53.3%) | 2 (25.0%) | 6 (75.0%) | - |
moderate | 7 (46.7%) | 1 (14.3%) | 3 (42.9%) | 3 (42.9%) |
relation to study drug of documented AE | ||||
unrelated | 12 (80%) | 2 (16.7%) | 7 (58.3%) | 3 (25.0%) |
unlikely | 2 (13.3%) | - | 2 (100%) | - |
possible | 1 (6.7%) | 1 (100%) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nussbaumer-Pröll, A.; Hausmann, B.; Weber, M.; Pjevac, P.; Berry, D.; Zeitlinger, M. A Pilot Study on the Impact of Cranberry and Ascorbic Acid Supplementation on the Urinary Microbiome of Healthy Women: A Randomized Controlled Trial. Antibiotics 2025, 14, 278. https://doi.org/10.3390/antibiotics14030278
Nussbaumer-Pröll A, Hausmann B, Weber M, Pjevac P, Berry D, Zeitlinger M. A Pilot Study on the Impact of Cranberry and Ascorbic Acid Supplementation on the Urinary Microbiome of Healthy Women: A Randomized Controlled Trial. Antibiotics. 2025; 14(3):278. https://doi.org/10.3390/antibiotics14030278
Chicago/Turabian StyleNussbaumer-Pröll, Alina, Bela Hausmann, Maria Weber, Petra Pjevac, David Berry, and Markus Zeitlinger. 2025. "A Pilot Study on the Impact of Cranberry and Ascorbic Acid Supplementation on the Urinary Microbiome of Healthy Women: A Randomized Controlled Trial" Antibiotics 14, no. 3: 278. https://doi.org/10.3390/antibiotics14030278
APA StyleNussbaumer-Pröll, A., Hausmann, B., Weber, M., Pjevac, P., Berry, D., & Zeitlinger, M. (2025). A Pilot Study on the Impact of Cranberry and Ascorbic Acid Supplementation on the Urinary Microbiome of Healthy Women: A Randomized Controlled Trial. Antibiotics, 14(3), 278. https://doi.org/10.3390/antibiotics14030278