Effect of Early Administration of Clarithromycin or Azithromycin on Symptoms of Pertussis in Infants
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Outcomes
4.3. Laboratory Confirmation
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamson, E.; Forbes, C.; Wittkopf, P.; Pandey, A.; Mendes, D.; Kowalik, J.; Czudek, C.; Mugwagwa, T. Impact of pandemics and disruptions to vaccination on infectious diseases epidemiology past and present. Hum. Vaccines Immunother. 2023, 19, 2219577. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.E.; Park, S.W.; Yang, W.; Vecchi, G.A.; Metcalf, C.J.E.; Grenfell, B.T. The impact of COVID-19 nonpharmaceutical interventions on the future dynamics of endemic infections. Proc. Natl. Acad. Sci. USA 2020, 117, 30547–30553. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.; Ashman, M.; Taha, M.-K.; Varon, E.; Angoulvant, F.; Levy, C.; Ryback, A.; Ouldali, N.; Guiso, N.; Grimprel, E. Pediatric Infectious Disease Group (GPIP) position paper on the immune debt of the COVID-19 pandemic in childhood, how can we fill the immunity gap? Infect. Dis. Now 2021, 51, 418–423. [Google Scholar] [CrossRef]
- Treharne, A.; Murthy, B.P.; Zell, E.R.; Jones-Jack, N.; Loper, O.; Bakshi, A.; Nalla, A.; Kuramoto, S.; Cheng, I.; Dykstra, A.; et al. Impact of the COVID-19 pandemic on routine childhood vaccination in 9 U.S. jurisdictions. Vaccine 2024, 42, 125997. [Google Scholar] [CrossRef]
- Lazarus, J.V.; White, T.M.; Wyka, K.; Ratzan, S.C.; Rabin, K.; Larson, H.J.; Martinon-Torres, F.; Kuchar, E.; Karim, S.S.A.; Giles-Vernick, T.; et al. Influence of COVID-19 on trust in routine immunization, health information sources and pandemic preparedness in 23 countries in 2023. Nat. Med. 2024, 30, 1559–1563. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Samara, A.; Campbell, H.; Ladhani, S.N.; Amirthalingam, G. Recent increase in infant pertussis cases in Europe and the critical importance of antenatal immunizations: We must do better…now. Int. J. Infect. Dis. 2024, 146, 107148. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, Q. Resurgence and the shift in the age of peak onset of pertussis in southern China. J. Infect. 2024, 89, 106194. [Google Scholar] [CrossRef]
- CDC. Pertussis Surveillance and Trends. Whooping Cough (Pertussis). Published 11 July 2024. Available online: https://www.cdc.gov/pertussis/php/surveillance/index.html (accessed on 21 January 2025).
- European Centre for Disease Prevention and Control. Increase of Pertussis Cases in the EU/EEA: 8 May 2024; EU Publications Office: Luxembourg, 2024. [Google Scholar]
- Poltorak, V.; Cabré-Riera, A.; Martínez-Botías, F.; López, E.B.; Romero, L.C.; Farré, M.R.S.; Checa, M.J.; Working Group for surveillance of pertussis in Vallès. Increase of pertussis cases in the Vallès region, Catalonia, Spain, September 2023 to April 2024. Euro Surveill. 2024, 29, 2400332. [Google Scholar] [CrossRef]
- Miettinen, M.; Barkoff, A.-M.; Nyqvist, A.; Savolainen-Kopra, C.; Antikainen, J.; Mertsola, J.; Ivaska, L.; He, Q. Macrolide-resistant Bordetella pertussis strain identified during an ongoing epidemic, Finland, January to October 2024. Euro Surveill. 2024, 29, 2400765. [Google Scholar] [CrossRef]
- Poeta, M.; Moracas, C.; Albano, C.; Petrarca, L.; Maglione, M.; Pierri, L.; Carta, M.; Montaldo, P.; Venturini, E.; De Luca, M.; et al. Pertussis outbreak in neonates and young infants across Italy, January to May 2024: Implications for vaccination strategies. Euro Surveill. 2024, 29, 2400301. [Google Scholar] [CrossRef]
- Nordholm, A.C.; Emborg, H.-D.; Nørgaard, S.K.; Nygaard, U.; Ronayne, A.; Nielsen, L.B.; Søborg, B.; Andersen, P.H.; Dalby, T. Pertussis epidemic in Denmark, August 2023 to February 2024. Euro Surveill. 2024, 29, 2400160. [Google Scholar] [CrossRef]
- Rodrigues, C.; Bouchez, V.; Soares, A.; Trombert-Paolantoni, S.; El Belghiti, F.A.; Cohen, J.F.; Armatys, N.; Landier, A.; Blanchot, T.; Hervo, M.; et al. Resurgence of Bordetella pertussis, including one macrolide-resistant isolate, France, 2024. Euro Surveill. 2024, 29, 2400459. [Google Scholar] [CrossRef] [PubMed]
- Stein-Zamir, C.; Shoob, H.; Abramson, N.; Brown, E.H.; Zimmermann, Y. Pertussis outbreak mainly in unvaccinated young children in ultra-orthodox Jewish groups, Jerusalem, Israel 2023. Epidemiol. Infect. 2023, 151, e166. [Google Scholar] [CrossRef] [PubMed]
- Care AGD of H and A. ATAGI 105th Meeting Bulletin—16 and 17 May 2024. 2024. Available online: https://www.health.gov.au/resources/publications/atagi-105th-meeting-bulletin-16-and-17-may-2024?language=en (accessed on 21 January 2025).
- Red Book: 2024 Report of the Committee on Infectious Diseases, 33rd Edition [Paperback] | shopAAP n.d. Available online: https://www.aap.org/Red-Book-2024-Report-of-the-Committee-on-Infectious-Diseases-33rd-Edition-Paperback?srsltid=AfmBOoo28CqPlTyJj_iKiTejYoJfjWPSOKpW5Hs9A6sa-fXaPF3vXl8T (accessed on 21 January 2025).
- Fu, P.; Yan, G.; Li, Y.; Xie, L.; Ke, Y.; Qiu, S.; Wu, S.; Shi, X.; Qin, J.; Zhou, J.; et al. Pertussis upsurge, age shift and vaccine escape post-COVID-19 caused by ptxP3 macrolide-resistant Bordetella pertussis MT28 clone in China. Clin. Microbiol. Infect. 2024, 30, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Lebel, M.H.; Mehra, S. Efficacy and safety of clarithromycin versus erythromycin for the treatment of pertussis: A prospective, randomized, single blind trial. Pediatr. Infect. Dis. J. 2001, 20, 1149–1154. [Google Scholar] [CrossRef]
- Langley, J.M.; Halperin, S.A.; Boucher, F.D.; Smith, B.; Pediatric Investigators Collaborative Network on Infections in Canada (PICNIC). Azithromycin is as effective as and better tolerated than erythromycin estolate for the treatment of pertussis. Pediatrics 2004, 114, e96–e101. [Google Scholar] [CrossRef]
- Altunaiji, S.; Kukuruzovic, R.; Curtis, N.; Massie, J. Antibiotics for whooping cough (pertussis). Cochrane Database Syst. Rev. 2007, 2007, CD004404. [Google Scholar] [CrossRef]
- Bortolussi, R.; Miller, B.; Ledwith, M.; Halperin, S. Clinical course of pertussis in immunized children. Pediatr. Infect. Dis. J. 1995, 14, 870–874. [Google Scholar] [CrossRef]
- Carlsson, R.M.; von Segebaden, K.; Bergstrom, J.; Kling, A.M.; Nilsson, L. Surveillance of infant pertussis in Sweden 1998–2012; severity of disease in relation to the national vaccination programme. Euro Surveill. 2015, 20, 21032. [Google Scholar] [CrossRef]
- Bergquist, S.O.; Bernander, S.; Dahnsjö, H.; Sundelöf, B. Erythromycin in the treatment of pertussis: A study of bacteriologic and clinical effects. Pediatr. Infect. Dis. J. 1987, 6, 458–461. [Google Scholar] [CrossRef]
- Winter, K.; Zipprich, J.; Harriman, K.; Murray, E.L.; Gornbein, J.; Hammer, S.J.; Yeganeh, N.; Adachi, K.; Cherry, J.D. Risk Factors Associated with Infant Deaths from Pertussis: A Case-Control Study. Clin. Infect. Dis. 2015, 61, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Van der Zee, A.; Schellekens, J.F.P.; Mooi, F.R. Laboratory Diagnosis of Pertussis. Clin. Microbiol. Rev. 2015, 28, 1005–1026. [Google Scholar] [CrossRef] [PubMed]
- Ebell, M.H.; Marchello, C.; Callahan, M. Clinical Diagnosis of Bordetella Pertussis Infection: A Systematic Review. J. Am. Board Fam. Med. 2017, 30, 308–319. [Google Scholar] [CrossRef]
- Gould, I.M. Antibiotic resistance: The perfect storm. Int. J. Antimicrob. Agents 2009, 34 (Suppl. S3), S2–S5. [Google Scholar] [CrossRef]
- Muloiwa, R.; Kagina, B.M.; Engel, M.E.; Hussey, G.D. The burden of laboratory-confirmed pertussis in low- and middle-income countries since the inception of the Expanded Programme on Immunisation (EPI) in 1974: A systematic review and meta-analysis. BMC Med. 2020, 18, 233. [Google Scholar] [CrossRef] [PubMed]
- Heil, J.; Ter Waarbeek, H.L.; Hoebe, C.J.; Jacobs, P.H.; van Dam, D.W.; Trienekens, T.A.; Cals, J.W.; van Loo, I.H.; Dukers-Muijrers, N.H. Pertussis surveillance and control: Exploring variations and delays in testing, laboratory diagnostics and public health service notifications, the Netherlands, 2010 to 2013. Euro Surveill. 2017, 22, 30571. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Z.; Luan, Y.; Li, Y.; Liu, X.; Peng, X.; Octavia, S.; Payne, M.; Lan, R. Genomic epidemiology of erythromycin-resistant Bordetella pertussis in China. Emerg. Microbes Infect. 2019, 8, 461–470. [Google Scholar] [CrossRef]
- Fu, P.; Zhou, J.; Yang, C.; Nijiati, Y.; Zhou, L.; Yan, G.; Lu, G.; Zhai, X.; Wang, C. Molecular Evolution and Increasing Macrolide Resistance of Bordetella pertussis, Shanghai, China, 2016–2022. Emerg. Infect. Dis. 2023, 30, 29–38. [Google Scholar] [CrossRef]
- Tozzi, A.E.; Gesualdo, F.; Rizzo, C.; Carloni, E.; Russo, L.; Campagna, I.; Villani, A.; Reale, A.; Concato, C.; Linardos, G.; et al. A data driven clinical algorithm for differential diagnosis of pertussis and other respiratory infections in infants. PLoS ONE 2020, 15, e0236041. [Google Scholar] [CrossRef]
- Baxter, R.; Bartlett, J.; Fireman, B.; Lewis, E.; Klein, N.P. Effectiveness of Vaccination During Pregnancy to Prevent Infant Pertussis. Pediatrics 2017, 139, e20164091. [Google Scholar] [CrossRef]
- Caro, J.J.; Getsios, D.; Payne, K.; Annemans, L.; Neumann, P.J.; Trindade, E. Economic burden of pertussis and the impact of immunization. Pediatr. Infect. Dis. J. 2005, 24, S48–S54. [Google Scholar] [CrossRef] [PubMed]
- Heininger, U. Pertussis: What the pediatric infectious disease specialist should know. Pediatr. Infect. Dis. J. 2012, 31, 78–79. [Google Scholar] [CrossRef] [PubMed]
- Knapp, J.K.; Wilson, M.L.; Murray, S.; Boulton, M.L. The impact of healthcare visit timing on reported pertussis cough duration: Selection bias and disease pattern from reported cases in Michigan, USA, 2000–2010. BMC Infect. Dis. 2016, 16, 522. [Google Scholar] [CrossRef] [PubMed]
- Pandolfi, E.; Gesualdo, F.; Rizzo, C.; Russo, L.; Campagna, I.; Carloni, E.; Concato, C.; Linardos, G.; Villani, A.; Ciampini, S.; et al. The impact of pertussis in infants: Insights from a hospital-based enhanced surveillance system, Lazio region, Italy, 2016 to 2019. Euro Surveill. 2021, 26, 2000562. [Google Scholar] [CrossRef]
- Cox, D.R. Regression Models and Life-Tables (with Discussion). J. R. Stat. Soc. Ser. B Methodol. 1972, 34, 187–220. [Google Scholar] [CrossRef]
Total (N = 148) | Early Administration a (N = 83) | Late Administration b (N = 65) | p | |
---|---|---|---|---|
Age in months, median (IQR) | 2.6 (1.6–3.8) | 2.4 (1.3–4.0) | 2.7 (1.8–3.5) | 0.490 |
Males, No. (%) | 85 (57.4%) | 49 (59.0%) | 36 (55.4%) | 0.656 |
Season at the onset of symptoms, No. (%) | ||||
Summer | 50 (33.8%) | 23 (27.7%) | 27 (41.5%) | 0.078 |
Other | 98 (66.2%) | 60 (72.3%) | 38 (58.5%) | |
Coinfections, No. (%) | 76 (51.4%) | 47 (56.6%) | 29 (44.6%) | 0.204 |
Exclusive breastfeeding, No. (%) | 64 (43.2%) | 36 (43.4%) | 28 (43.1%) | 0.971 |
Smoking in the family, No. (%) | 55 (37.2%) | 29 (34.9%) | 26 (40.0%) | 0.527 |
Household member with symptoms c, No. (%) | 106 (77.4%) | 57 (73.1%) | 49 (83.1%) | 0.167 |
Vaccine, No. (%) | ||||
No | 101 (68.2%) | 58 (69.9%) | 43 (66.2%) | 0.790 |
One dose | 37 (25.0%) | 19 (22.9%) | 18 (27.7%) | |
Two doses | 10 (6.8%) | 6 (7.2%) | 4 (6.1%) | |
Type of macrolide d, No. (%) | 0.177 | |||
Azithromycin | 12 (8.2%) | 9 (10.8%) | 3 (4.7%) | |
Clarithromycin | 135 (91.8%) | 74 (89.2%) | 61 (95.3%) | |
Duration of treatment, median (IQR) | 13 (8–14) | 13 (7–15) | 13 (8–14) | 0.787 |
Socioeconomic problems d, No. (%) | 25 (17.0%) | 18 (21.9%) | 7 (10.8%) | 0.073 |
Distance in km e, median (IQR) | 32.8 (13.6–50.6) | 34.5 (18.3–57.1) | 28.6 (10.8–45.7) | 0.101 |
Complications during hospitalization f, No. (%) | 17 (11.5%) | 11 (13.3%) | 6 (9.2%) | 0.446 |
Length of stay, median (IQR) | 6 (4–10.5) | 6 (4–13) | 6 (4–9) | 0.768 |
Cough duration, median (IQR) | 20 (13–28) | 14 (8–22) | 24 (19–36) | <0.001 |
Total (n = 148) | Early Administration a (n = 83) | Late Administration b (n = 65) | p | |
---|---|---|---|---|
Cyanosis, No. (%) | 86 (58.1%) | 46 (55.4%) | 40 (61.5%) | 0.454 |
Vomiting, No. (%) | 60 (40.5%) | 31 (37.4%) | 29 (44.6%) | 0.372 |
Apnea, No. (%) | 107 (72.3%) | 52 (62.6%) | 55 (84.6%) | 0.003 |
Whoop, No. (%) | 77 (52.0%) | 39 (47.0%) | 38 (58.5%) | 0.166 |
Late Administration of Macrolide (Ref: Early Administration) | ||||||
---|---|---|---|---|---|---|
Unadjusted | Adjusted a | |||||
OR | 95% CI | p | OR | 95% CI | p | |
Cyanosis | 1.29 | 0.66–2.49 | 0.454 | 1.26 | 0.59–2.67 | 0.555 |
Vomiting | 1.35 | 0.70–2.62 | 0.372 | 1.84 | 0.83–4.09 | 0.132 |
Apnea | 3.28 | 1.46–7.35 | 0.004 | 3.02 | 1.26–7.26 | 0.013 |
Whoop | 1.59 | 0.82–3.06 | 0.167 | 1.69 | 0.80–3.57 | 0.169 |
Cough Duration | |||
---|---|---|---|
HR | 95% CI | p | |
Late administration of macrolide | 0.36 | 0.25–0.53 | <0.001 |
Age in months | 1.07 | 0.93–1.24 | 0.346 |
Females | 0.83 | 0.58–1.18 | 0.300 |
Coinfections | 0.86 | 0.57–1.29 | 0.466 |
Exclusive breastfeeding | 1.34 | 0.92–1.96 | 0.129 |
Complications during hospitalization | 0.64 | 0.33–1.22 | 0.175 |
Vaccine (Ref: No) | |||
One dose | 0.74 | 0.42–1.27 | 0.274 |
Two doses | 0.73 | 0.25–2.16 | 0.566 |
Smoking in the family | 0.80 | 0.58–1.18 | 0.247 |
Household with symptoms | 1.35 | 0.85–2.15 | 0.206 |
Season at the onset of symptoms (Ref: Other) | |||
Summer | 0.75 | 0.50–1.13 | 0.173 |
Type of macrolide (Ref: Clarithromycin) | |||
Azithromycin | 0.42 | 0.19–0.92 | 0.030 |
Duration of treatment | 0.93 | 0.89–0.94 | <0.001 |
Socioeconomic problems | 1.34 | 0.83–2.16 | 0.227 |
Distance in km | 1.00 | 0.99–1.00 | 0.379 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tozzi, A.E.; Croci, I.; Gesualdo, F.; Perno, C.F.; Linardos, G.; Villani, A.; Russo, L.; Campagna, I.; Ferro, D.; Pandolfi, E. Effect of Early Administration of Clarithromycin or Azithromycin on Symptoms of Pertussis in Infants. Antibiotics 2025, 14, 279. https://doi.org/10.3390/antibiotics14030279
Tozzi AE, Croci I, Gesualdo F, Perno CF, Linardos G, Villani A, Russo L, Campagna I, Ferro D, Pandolfi E. Effect of Early Administration of Clarithromycin or Azithromycin on Symptoms of Pertussis in Infants. Antibiotics. 2025; 14(3):279. https://doi.org/10.3390/antibiotics14030279
Chicago/Turabian StyleTozzi, Alberto Eugenio, Ileana Croci, Francesco Gesualdo, Carlo Federico Perno, Giulia Linardos, Alberto Villani, Luisa Russo, Ilaria Campagna, Diana Ferro, and Elisabetta Pandolfi. 2025. "Effect of Early Administration of Clarithromycin or Azithromycin on Symptoms of Pertussis in Infants" Antibiotics 14, no. 3: 279. https://doi.org/10.3390/antibiotics14030279
APA StyleTozzi, A. E., Croci, I., Gesualdo, F., Perno, C. F., Linardos, G., Villani, A., Russo, L., Campagna, I., Ferro, D., & Pandolfi, E. (2025). Effect of Early Administration of Clarithromycin or Azithromycin on Symptoms of Pertussis in Infants. Antibiotics, 14(3), 279. https://doi.org/10.3390/antibiotics14030279