Anacardiaceae Family: Effect of Isolated Compounds and Other Identified Phytochemicals Against Clinically Relevant Candida Species—A Short Review
Abstract
:1. Introduction
2. The Anacardiaceae Family
3. Anacardiaceae Species with Anti-Candida Activity
4. Mechanisms Associated with the Anti-Candida Activity of Some Isolated Compounds Found in the Anacardiaceae Family
4.1. Cardanol
4.2. Oleanonic Acid Oleanonic Aldehyde and 24Z-Isomaticadionolic Acid
4.3. α-Pinene
4.4. Gallic Acid
4.5. β-Sitosterol-3-O-Glucoside and Catechin-3-O-Rhamnoside
4.6. Estragole and Trans-Anethole
4.7. Myrcene
4.8. Apigenin
4.9. Terpinen-4-ol
4.10. Pistagremic Acid and Sakuranetin
4.11. Integrisides A and B
5. Delivery Systems as an Alternative to Reduce Toxicity and Improve Antifungal Action
6. Challenges and Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
NI | not informed in the article |
MIC | minimum inhibitory concentration |
MFC | minimum fungicidal concentration |
MW | molecular weight |
HBD | hydrogen-bond donor |
HBA | hydrogen-bond acceptor |
LogP | values of lipophilicity |
MF | molar refractivity |
LD 50 | lethal dose 50 |
TNF | tumor necrosis factor |
IL | interleukin |
References
- Kainz, K.; Bauer, M.A.; Madeo, F.; Carmona-Gutierrez, D. Fungal infections in humans: The silent crisis. Microb. Cell 2020, 7, 143–145. [Google Scholar] [CrossRef]
- Agnelli, C.; Guimarães, T.; Sukiennik, T.; Lima, P.R.P.; Salles, M.J.; Breda, G.L.; Queiroz-Telles, F.; Chaves Magri, M.M.; Mendes, A.V.; Camargo, L.F.A. Prognostic trends and current challenges in candidemia: A Comparative analysis of two multicenter cohorts within the past decade. J. Fungi 2023, 9, 468. [Google Scholar] [CrossRef]
- Cornely, F.B.; Cornely, O.A.; Salmanton-García, J. Attributable mortality of candidemia after the introduction of echinocandins. Mycoses 2020, 63, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Pal, M. Morbidity and mortality due to fungal infections. J. Appl. Microbiol. 2018, 1, 1–3. [Google Scholar] [CrossRef]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. 2018, 4, 1–20. [Google Scholar] [CrossRef]
- Rai, L.S.; Wijlick, L.V.; Bougnoux, M.E.; Bachellier-Bassi, S.; d’Enfert, C. Regulators of commensal and pathogenic lifestyles of an opportunistic fungus-Candida albicans. Yeast 2021, 38, 243–250. [Google Scholar] [CrossRef]
- Banu, S.F.; Rubini, D.; Shanmugavelan, P.; Murugan, R.; Gowrishankar, S.; Pandian, S.K.; Nithyanand, P. Effects of patchouli and cinnamon essential oils on biofilm and hyphae formation by Candida species. J. Mycol. Med. 2018, 28, 332–339. [Google Scholar] [CrossRef]
- Talapko, J.; Juzbašić, M.; Matijević, T.; Pustijanac, E.; Bekić, S.; Kotris, I.; Škrlec, I. Candida albicans-The virulence factors and clinical manifestations of infection. J. Fungi 2021, 7, 79. [Google Scholar] [CrossRef]
- Lopes, J.P.; Lionakis, M.S. Pathogenesis, and virulence of Candida albicans. Virulence 2022, 13, 89–121. [Google Scholar] [CrossRef]
- Cui, X.; Wang, L.; Lv, Y.; Yue, C. Development and research progress of anti-drug-resistant fungal drugs. J. Infect. Public Health 2022, 15, 986–1000. [Google Scholar] [CrossRef]
- Hamill, R.J. Amphotericin B formulations: A comparative review of efficacy and toxicity. Drugs 2013, 73, 919–934. [Google Scholar] [CrossRef] [PubMed]
- Colombo, A.L.; Júnior, J.N.; Guinea, J. Emerging multidrug-resistant Candida species. Curr. Opin. Infect. Dis. 2017, 30, 528–538. [Google Scholar] [CrossRef]
- Gonzalez-Lara, M.F.; Ostrosky-Zeichner, L. Invasive candidiasis. Semin Respir. Crit. Care Med. 2020, 41, 3–12. [Google Scholar] [CrossRef]
- Pedroso, R.S.; Balbino, B.L.; Andrade, G.; Dias, M.C.P.S.; Alvarenga, T.A.; Pedroso, R.C.N.; Pimenta, L.P.; Lucarini, R.; Pauletti, P.M.; Januário, A. In vitro and in vivo anti-Candida spp. activity of plant-derived products. Plants 2019, 8, 494. [Google Scholar] [CrossRef]
- Zou, X.; Zeng, M.; Huang, F.; Qin, G.; Song, Z.; Liu, F. The potential role of plant secondary metabolites on antifungal and immunomodulatory effect. Appl. Microbiol. Biotechnol. 2023, 107, 4471–4492. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef]
- Pell, S.K.; Mitchell, J.D.; Miller, A.J.; Lobova, T.A. Anacardiaceae. In The Families and Genera of Vascular Plants. Flower. Plants, Eudicots-Sapindales, Cucurbitales, Myrtaceae; KubtzkiI, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 10, pp. 7–50. [Google Scholar]
- Hall, C.F.; Bragança, A.S. Flora das cangas da Serra dos Carajás, Pará, Brasil: Anacardiaceae. Rodriguesia 2017, 68, 911–916. [Google Scholar] [CrossRef]
- Arlandini, E.; Gelmini, F.; Testa, C.; Angioletti, S.; Beretta, G. GC-MS analysis and biological activity of hydroalcoholic extracts and essential oils of Rhus typhina L. wood (Anacardiaceae) in comparison with leaves and fruits. Nat. Prod. Res. 2021, 35, 4764–4768. [Google Scholar] [CrossRef]
- Silva, R.A.; Liberio, S.A.; Amaral, F.M.M.; Nascimento, F.R.F.; Torres, L.M.B.; Monteiro-Neto, V.; Guerra, R.N.M. Antimicrobial and antioxidant activity of Anacardium occidentale L. flowers in comparison to bark and leaves extracts. J. Biosci. Med. 2016, 4, 87–99. [Google Scholar]
- Costa, A.R.; Almeida-Bezerra, J.C.; Silva, T.G.; Pereira, P.S.; Oliveira Borba, E.F.; Braga, A.L.; Fonseca, V.J.A.; Menezes, S.A.; Silva, F.S.C.; Sousa Fernandes, P.A. Phytochemical profile and anti-Candida and cytotoxic potential of Anacardium occidentale L. (cashew tree). Biocatalisis Agric. Biotechnol. 2021, 37, 102–192. [Google Scholar] [CrossRef]
- Mahata, D.; Mandal, S.M.; Bharti, R.; Gupta, V.K.; Mandal, M.; Nag, A.; Nando, G.B. Self-assembled cardanol azo derivatives as an antifungal agent with chitin-binding ability. Int. J. Biol. Macromol. 2014, 69, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Ulukanli, Z.; Karabörklü, S.; Bozok, F.; Çenet, M.; Oztürk, B.; Balcilar, M. Antimicrobial, insecticidal and phytotoxic activities of Cotinus coggyria Scop. essential oil (Anacardiaceae). Nat. Prod. Res. 2014, 28, 2150–2157. [Google Scholar] [CrossRef] [PubMed]
- Sukhikh, S.; Noskova, S.; Pungin, A.; Ivanova, S.; Skrypnik, L.; Chupakhin, E.; Babich, O. Study of the Biologically Active Properties of Medicinal Plant Cotinus coggygria. Plants 2021, 10, 1224. [Google Scholar] [CrossRef] [PubMed]
- Njinga, N.S.; Sule, M.I.; Pateh, U.U.; Hassan, C.S.; Abdullahi, S.T.; Ache, R.N. Isolation and antimicrobial activity of β-sitosterol-3-O-glucoside from Lannea kerstingii Engl. & K. Krause (Anacardiacea). J. Health Allied Sci. 2016, 6, 4–8. [Google Scholar]
- Stanislaus, N.N.; Ibrahim, S.M.; Usman, P.U.; Sa’adiya, C.C.; Garba, M.M.; Toyin, A.S.; Moji, B.-O.T.; Ndifor, A.R.; Osas, E.G.; Oyetunji, S.A. Antimicrobial and antioxidant activity of catechin-3-o-rhamnoside isolated from the stem bark of Lannea kerstingii Engl. and K. Krause (Anacardiaceae). Pak. J. Pharm. Sci. 2021, 34, 629–634. [Google Scholar]
- Dorta, E.; González, M.; Lobo, M.G.; Laich, F. Antifungal activity of mango peel and seed extracts against clinically pathogenic and food spoilage yeasts. Nat. Prod. Res. 2016, 30, 2598–2604. [Google Scholar] [CrossRef]
- Benabdallah, F.Z.; Kouamé, R.O.; El Bentchikou, M.; Zellagui, A.; Gherraf, N. Études ethnobotanique, phytochimique et valorisation de l’activité antimicrobienne des feuilles et de l’oléorésine du pistachier de l’atlas (Pistacia atlantica Desf.). Phytothérapie 2017, 15, 222–229. [Google Scholar] [CrossRef]
- Othman, S.; El-Hashash, M.; Hussein, S.; El-Mesallamy, A.; Rizk, S.; Elabbar, F.A. Phenolic content as antioxidant and antimicrobial activities of Pistacia atlantica Desf. (Anacardiaceae) extract from Libya. Egypt. J. Chem. 2019, 62, 21–28. [Google Scholar] [CrossRef]
- Hasheminya, S.-M.; Dehghannya, J. Composition, phenolic content, antioxidant, and antimicrobial activity of Pistacia atlantica subsp. Kurdica Hulls’ essential oil. Food Biosci. 2020, 34, 100–510. [Google Scholar] [CrossRef]
- Rauf, A.; Anyanwu, M.; Aliiri, A.A.; Alanazi, H.A.H.; Alharbi, A.M.A.; Wadood, A.; Aljohani, A.S.M.; Muhammad, N.; Samad, A.; Shah, S.U.A.; et al. Antifungal and antiproliferative activity of pistagremic acid and flavonoids extracted from the galls of Pistacia chinensis subsp. integerrima. Chem. Biodiver. 2024, 21, e202301815. [Google Scholar] [CrossRef] [PubMed]
- Irfan, A.; Sumrra, S.H.; Imran, M.; Assiri, M.A.; Khalid, N.; Al-Sehemi, A.G. Quantum chemical and experimental exploration of biological activity and inhibitory potential of new acylated oligosaccharides from Pistacia integerrima J. L. Stewart ex Brandis. Iran. J. Chem. Eng. 2021, 40, 1630–1641. [Google Scholar] [CrossRef]
- Karygianni, L.; Cecere, M.; Argyropoulou, A.; Hellwig, E.; Skaltsounis, A.L.; Wittmer, A.; Tchorz, J.P.; Al-Ahmad, A. Compounds from Olea europaea and Pistacia lentiscus inhibit oral microbial growth. BMC Complement. Altern. Med. 2019, 19, 51. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, F.; Haddad, S.; Bouamara, K.; Yalaoui-Guellal, D.; Prost-Camus, E.; Barros, J.-P.P.; Prost, M.; Atanasov, A.G.; Madani, K.; Boulekbache-Makhlouf, L. Comparison of chemical composition and biological activities of Algerian seed oils of Pistacia lentiscus L., Opuntia ficus indica (L.) Mill. and Argania spinosa L. Skeels. Ind. Crops Prod. 2020, 151, 112–456. [Google Scholar] [CrossRef]
- Milia, E.; Usai, M.; Szotáková, B.; Elstnerová, M.; Králová, V.; D’hallewin, G.; Spissu, C.; Barberis, A.; Marchetti, M.; Bortone, A.; et al. The pharmaceutical ability of Pistacia lentiscus L. leaves essential oil against periodontal bacteria and Candida sp. and its anti-inflammatory potential. Antibiotics 2020, 9, 281. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, C.; Beteinakis, S.; Papachristodoulou, A.; Pachi, V.K.; Dionysopoulou, M.; Dimou, S.; Diallinas, G.; Skaltsounis, L.A.; Halabalaki, M. Phytochemical investigation of Pistacia lentiscus L. var. Chia leaves: A byproduct with antimicrobial potential. Fitoterapia 2023, 170, 105648. [Google Scholar] [CrossRef]
- D’Arrigo, M.; Bisignano, C.; Irrera, P.; Smeriglio, A.; Zagami, R.; Trombetta, D.; Romeo, O.; Mandalari, G. In vitro evaluation of the activity of essential oil from Pistacia vera L. variety Bronte hull against Candida sp. BMC Complement. Altern. Med. 2019, 19, 6. [Google Scholar] [CrossRef]
- Gharibi, S.; Matkowski, A.; Sarfaraz, D.; Mirhendi, H.; Fakhim, H.; Szumny, A.; Rahimmalek, M. Identification of polyphenolic compounds responsible for antioxidant, anti-Candida activities and nutritional properties in different pistachio (Pistacia vera L.) hull cultivars. Molecules 2020, 28, 4772. [Google Scholar] [CrossRef]
- Yilmaz, G.; Ekşi, G.; Demirci, B.; Demirci, F. Characterization of the fatty acid compositions and antimicrobial activity of sumac (Rhus coriaria L.) fruits, growing naturally in Turkey and sold in herbalist markets. J. Fac. Pharm. Ank. 2020, 44, 61–69. [Google Scholar]
- Vandal, J.; Abou-Zaid, M.M.; Ferroni, G.; Leduc, L. Antimicrobial activity of natural products from the flora of Northern Ontario, Canada. Pharm. Biol 2015, 53, 800–806. [Google Scholar] [CrossRef]
- Donati, M.; Mondin, A.; Chen, Z.; Miranda, F.M.; Nascimento, B.B., Jr.; Schirato, G.; Pastore, P.; Froldi, G. Radical scavenging and antimicrobial activities of Croton zehntneri, Pterodon emarginatus, and Schinopsis brasiliensis essential oils and their major constituents: Estragole, trans-anethole, β-caryophyllene, and myrcene. Nat. Prod. Res. 2015, 29, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, I.T.; Neto, A.T.; Pedroso, M.; Mostardeiro, C.P.; Da Cruz, I.B.; Silva, U.F.; Ilha, V.; Dalcol, I.I.; Morel, A.F. Antimicrobial activity of Schinus lentiscifolius (Anacardiaceae). J. Ethnopharmacol. 2013, 148, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.S.R.; Fernandes, C.C.; Dos Santos, D.A.; Mazza, M.C.M.; Silva, J.B.A.; Magalhães, L.G.; Pires, R.H.; Miranda, M.L.D.; Crotti, A.E.M. Antileishmanial and antifungal activities of volatile oils from Cinnamomum Cassia bark and Schinus molle leaves. Chem. Biodivers. 2024, 21, e202401076. [Google Scholar] [CrossRef] [PubMed]
- Turchetti, G.; Garzoli, S.; Laghezza Masci, V.; Sabia, C.; Iseppi, R.; Giacomello, P.; Tiezzi, A.; Ovidi, E. Antimicrobial Testing of Schinus molle (L.) Leaf extracts and fractions followed by GC-MS investigation of the biological active fractions. Molecules 2020, 25, 1977. [Google Scholar] [CrossRef]
- El-Nashar, H.A.S.; Mostafa, N.M.; El-Badry, M.A.; Eldahshan, O.A.; Singab, A.N.B. Chemical composition, antimicrobial and cytotoxic activities of essential oils from Schinus polygamus (Cav.) cabrera leaf and bark grown in Egypt. Nat. Prod. Res. 2021, 35, 5369–5372. [Google Scholar] [CrossRef]
- Piras, A.; Marzouki, C.; Falconieri, D.; Porcedda, S.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Chemical composition and biological activity of volatile extracts from leaves and fruits of Schinus terebinthifolius Raddi from Tunisia. Rec. Nat. Prod. 2017, 11, 9–16. [Google Scholar]
- Hernandes, C.; Taleb-Contini, S.C.; Bartolomeu, A.C.D.; Bertoni, B.C.; França, S.C.; Pereira, A.M.S. Chemical composition and antifungal activity of the essential oils of Schinus weinmannifolius collected in the spring and winter. Nat. Prod. Commun. 2014, 9, 1383–1386. [Google Scholar] [CrossRef]
- Freitas, M.A.; Cruz, R.P.; Santos, A.T.L.; Almeida-Bezerra, J.C.; Machado, A.J.T.; Santos, J.F.S.; Rocha, J.E.; Boligon, A.A.; Bezerra, C.F.; Freitas, T.S. HPLC–DAD analysis and antimicrobial activities of Spondias mombin (Anacardiaceae). Biotechnology 2022, 12, 61. [Google Scholar] [CrossRef]
- Costa-Cordeiro, B.M.P.; Lima Santos, N.D.; Ferreira, M.R.A.; Araújo, L.C.C.; Junior ARCConceição Santos, A.D.; Oliveira, A.P.; Silva, A.G.; Silva Falcão, E.P.; Santos Correia, M.T.; Silva Almeida, J.R.G.; et al. Hexane extract from Spondias tuberosa (Anacardiaceae) leaves has antioxidant activity and is an anti-Candida agent by causing mitochondrial and lysosomal damage. BMC Complement. Altern. Med. 2018, 18, 284. [Google Scholar] [CrossRef]
- Santos, A.; Carneiro, J.N.P.; Cruz, R.P.; Sales, D.L.; Andrade, J.C.; Almeida, C.O.; Costa, J.G.M.; Ribeiro, R.V.; Brito, E.S.; Batista, F.L.A. UPLC-MS-ESI-QTOF analysis and antifungal activity of the Spondias tuberosa—Arruda leaf and root hydroalcoholic extracts. Antibiotics 2019, 8, 240. [Google Scholar] [CrossRef]
- WFO—World Flora Online. Available online: https://www.worldfloraonline.org/ (accessed on 25 October 2024).
- Masevhe, N.A.; McGaw, L.J.; Eloff, J.N. The traditional use of plants to manage candidiasis and related infections in Venda, South Africa. J. Ethnopharmacol. 2015, 168, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, D.H.X.; Gondim, C.R.; Silva-Henriques, M.Q.; Soares, C.S.; Alves, D.N.; Santos, S.G.; Castro, R.D. Coriandrum sativum L. essential oil obtained from organic culture shows antifungal activity against planktonic and multi-biofilm Candida. Braz. J. Biol. 2023, 83, e264875. [Google Scholar]
- Novaryatiin, S.; Indah, I. The medicinal plants used in Anjir Pulang Pisau, Central Kalimantan-Indonesia. Pharmacogn. J. 2019, 11, 12–32. [Google Scholar] [CrossRef]
- Souza, A.O.; Pereira, P.S.; Fernandes, C.C.; Andrade, G.; Pires, R.H.; Candido, A.C.B.B.; Magalhães, L.G.; Vieira, T.M.; Crotti AE, M.; Martins, C.H.G.; et al. Hexane extract from Spiranthera odoratissima A. St.-hil. leaves: Chemical composition and bioactive potential against Candida pathogenic species, Leishmania amazonensis and Xylella fastidiosa. Nat. Prod. Res. 2022, 36, 2907–2912. [Google Scholar] [CrossRef]
- CLSI—Clinical and Laboratory Standards Institute. Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved M27-A3; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Donadu, M.G.; Peralta-Ruiz, C.; Usai, D.; Maggio, F.; Molina-Hernandez, J.B.; Rizzo, D.; Bussu, F.; Rubino, S.; Zanetti, S.; Paparella, A.; et al. Colombian essential oil of Ruta graveolens against nosocomial antifungal resistant Candida strains. J. Fungi 2021, 7, 383. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.E.; Shokohi, T.; Abastabar, M.; Aslani, N.; Ghadamzadeh, M.; Haghani, I. Species distribution and susceptibility profiles of Candida species isolated from vulvovaginal candidiasis, emergence of C. lusitaniae. Curr. Med. Mycol. 2019, 5, 26–36. [Google Scholar] [CrossRef]
- Gangneux, J.P.; Dannaoui, E.; Fekkar, A.; Luyt, C.E.; Botterel, F.; De Prost, N.; Bougnoux, M.E. Fungal infections in mechanically ventilated patients with COVID-19 during the first wave: The French Multicenter MYCOVID study. Lancet Respirat. Med. 2022, 10, 180–190. [Google Scholar] [CrossRef]
- Montes, K.; Ortiz, B.; Galindo, C.; Figueroa, I.; Braham, S.; Fontecha, G. Identification of Candida Species from Clinical Samples in a Honduran Tertiary Hospital. Pathogens 2019, 8, 237. [Google Scholar] [CrossRef]
- Teodoro, G.R.; Ellepola, K.; Seneviratne, C.J.; Koga-Ito, C.Y. Potential use of phenolic acids as anti-Candida agents: A Review. Front. Microbiol. 2015, 6, 1420. [Google Scholar] [CrossRef]
- Mazzetto, S.E.; Lomonaco, D.; Mele, G. Cashew nut oil: Opportunities and challenges in the context of sustainable industrial development. Química Nova 2009, 32, 732–741. [Google Scholar] [CrossRef]
- Kumar, A.; Vemula, P.K.; Ajayan, P.M.; John, G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 2008, 7, 236–241. [Google Scholar] [CrossRef]
- Ribeiro, I.M.M.; de Sousa, V.C.; Melo, E.C.S.; Carvalho, R.d.C.V.d.; Santos, M.d.S.d.; Neto, J.A.d.O.N.; de Melo, D.S.; Teixeira, L.S.d.A.; Citó, A.M.d.G.L.; Moura, A.K.S.; et al. Antileishmania and immunomodulatory potential of cashew nut shell liquid and cardanol. Toxicol. Vitr. 2023, 87, 105524. [Google Scholar] [CrossRef]
- Ahmed, Z.B.; Yousfi, M.; Viaene, J.; Dejaegher, B.; Demeyer, K.; Vander Heyden, C. Four Pistacia atlantica subspecies (atlantica, cabulica, kurdica, and mutica): A review of their botany, ethnobotany, phytochemistry, and pharmacology. J. Ethnopharmacol. 2021, 265, 113–329. [Google Scholar]
- Iranshahy, M.; Javadi, B.; Sahebkar, A. Protective effects of functional foods against Parkinson’s disease: A narrative review on pharmacology, phytochemistry, and molecular mechanisms. Phytother. Res. 2022, 36, 1952–1989. [Google Scholar] [CrossRef] [PubMed]
- Georgiadis, I.; Karatzas, T.; Korou, L.M.; Katsilambros, N.; Perrea, D. Beneficial health effects of chios gum mastic and peroxisome proliferator-activated receptors: Indications of common mechanisms. J. Med. Food 2015, 18, 1–10. [Google Scholar] [CrossRef]
- van den Berg, K.J.; van der Horst, J.; Boon, J.J.; Sudeiijer, O.O. Cis-1,4-poly-ß-myrcene; the structure of the polymeric fraction of mastic resin (Pistacia lentiscus L) elucidated. Tetrahedron Lett. 1998, 39, 2645–2648. [Google Scholar] [CrossRef]
- Sharifi, M.S.; Hazell, S.L. Isolation, analysis and antimicrobial activity of the acidic fractions of mastic, kurdica, mutica and cabolica gums from genus Pistacia. Glob. J. Health Sci. 2024, 4, 217. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, M.; Duan, L.; Wang, W.; Zhang, J.; Wang, D.; Liang, X. Efficient synthesis and anti-fungal activity of oleanolic acid oxime esters. Molecules 2013, 18, 3615–3629. [Google Scholar] [CrossRef]
- Giner-Larza, E.M.; Mánz, S.; Recio, M.C.; Giner, R.M.; Prieto, J.M.; Cerda-Nicolas, M.; Rios, J.L. Oleanonic acid, a 3-oxotripene from Pistacia, inhibits leukotriene synthesis and has anti-inflammatory activity. Eur. J. Pharmacol. 2001, 428, 137–143. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, H.J.; Jeon, Y.D.; Han, Y.H.; Kee, J.Y.; Kim, H.J.; Shin, H.J.; Kang, J.; Lee, B.S.; Kim, S.H.; et al. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-kappa B pathway in mouse peritoneal macrophages. Am. J. Chin. Med. 2015, 43, 731–742. [Google Scholar] [CrossRef]
- Nóbrega, J.R.; Silva, D.F.; Andrade Júnior, F.P.; Sousa, P.M.S.; Figueiredo, P.T.R.; Cordeiro, L.V.; Lima, E.D.O. Antifungal action of α-pinene against Candida spp. isolated from patients with otomycosis and the effects of its association with boric acid. Nat. Prod. Res. 2021, 35, 6190–6193. [Google Scholar] [CrossRef] [PubMed]
- de Barros, D.B.; Lima, L.d.O.e.; Silva, L.A.; Fonseca, M.C.; Diniz-Neto, H.; Rocha, W.P.d.S.; Beltrão, G.V.d.M.; Castellano, L.R.C.; Guerra, F.Q.S.; da Silva, M.V. Antifungal effect of α-pinene alone and in association with antifungals against Candida albicans strains. Res. Soc. Dev. 2022, 11, 58711427748. [Google Scholar] [CrossRef]
- Liberato, I.; A Lino, L.; Souza, J.K.D.; A Neto, J.B.; Sá, L.G.A.V.; Cabral, V.P.F.; Silva, C.R.; Cavalcanti, B.C.; O Moraes, M.; Freire, V.N.; et al. Gallic acid leads to cell death of Candida albicans by the apoptosis mechanism. Future Microbiol. 2022, 17, 599–606. [Google Scholar] [CrossRef]
- Giordani, B.; Basnet, P.; Mishchenko, E.; Luppi, B.; Škalko-Basnet, N. Utilizing liposomal quercetin and gallic acid in localized treatment of vaginal Candida infections. Pharmaceutics 2019, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Rhimi, C.; Aneke, C.I.; Annoscia, G.; Otranto, D.; Boekhout, T.; Cafarchia, C. Effect of chlorogenic and gallic acids combined with azoles on antifungal susceptibility and virulence of multidrug-resistant Candida spp. and Malassezia furfur isolates. Med. Mycol. 2020, 58, 1091–1101. [Google Scholar] [CrossRef]
- Li, Z.-J.; Liu, M.; Dawuti, G.; Dou, Q.; Ma, Y.; Liu, H.-G.; Aibai, S. Antifungal activity of gallic acid in vitro and in vivo. Phytother. Res. 2017, 31, 1039–1045. [Google Scholar] [CrossRef]
- Maiyoa, F.; Moodley, R.; Singh, M. Phytochemistry, cytotoxicity and apoptosis studies of β-sitosterol-3-glucoside and β-amyrin from Prunus africana. Afr. J. Tradit. Complement Altern. Med. 2016, 13, 105–112. [Google Scholar] [CrossRef]
- Kim, J.E.; Kim, S.S.; Hyun, C.-G.; Lee, N.C. Antioxidative chemical constituents from the stems of Cleyera japonica Thunberg. Int. J. Pharmacol. 2012, 8, 410–415. [Google Scholar] [CrossRef]
- El-Alfy, T.S.; Ezzat, S.M.; Hegazy, A.K.; Amer, A.M.; Kamel, G.M. Isolation of biologically active constituents from Moringa peregrina (Forssk.) family: Moringaceae growing in Egypt. Pharmacogn. Mag. 2011, 7, 109–115. [Google Scholar]
- Shin, S.; Pyun, M. Anti-Candida effects of estragole in combination with ketoconazole or amphotericin B. Phyther. Res. 2004, 18, 827–830. [Google Scholar] [CrossRef]
- Khan, A.; Ahmad, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Induction of oxidative stress as a possible mechanism of the antifungal action of three phenylpropanoids. FEMS Yeast Res. 2011, 11, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Mota, A.S.; Martins, M.R.; Arantes, S.; Lopes, V.R.; Bettencourt, E.; Pombal, S.; Gomes, A.C.; Silva, L.A. Antimicrobial activity and chemical composition of the essential oils of Portuguese Foeniculum vulgare fruits. Nat. Prod. Comm. 2015, 10, 673–676. [Google Scholar] [CrossRef]
- Dąbrowska, M.; Zielińska-Bliźniewska, C.; Kwiatkowski, P.; Łopusiewicz, Ł.; Pruss, A.; Kostek, M.; Kochan, E.; Sienkiewicz, M. Inhibitory effect of eugenol and trans-anethole alone and in combination with antifungal medicines on Candida albicans clinical isolates. Chem. Biodivers 2021, 18, 200–223. [Google Scholar] [CrossRef]
- Sahin, C.; Magomedova, L.; Ferreira, T.A.M.; Liu, J.; Tiefenbach, J.; Alves, P.S.; Queiroz, F.J.G.; Oliveira, A.S.; Bhattacharyya, M.; Grouleff, J.; et al. Phenolic lipids derived from cashew nutshell liquid to treat metabolic diseases. J. Med. Chem. 2022, 65, 1961–1978. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Woo, E.R.; Lee, D.G. Effect of apigenin isolated from Aster yomena against Candida albicans: Apigenin-triggered apoptotic pathway regulated by mitochondrial calcium signaling. J. Ethnopharmacol. 2019, 231, 19–28. [Google Scholar] [CrossRef]
- Mondello, F.; De Bernardis, F.; Girolamo, A.; Cassone, A.; Salvatore, G. In vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree) oil against azole-susceptible and -resistant human pathogenic Candida species. BMC Infect. Dis. 2006, 6, 158. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wang, J.; Shao, X.; Xu, F.; Wang, H. Antifungal modes of action of tea tree oil and its two characteristic components against Botrytis cinerea. J. Appl. Microbiol. 2015, 119, 1253–1262. [Google Scholar] [CrossRef]
- Kolge, H.; Patil, G.; Jadhav, S.; Ghormade, V. A pH-tuned chitosan-PLGA nanocarrier for fluconazole delivery reduces toxicity and improves efficacy against resistant Candida. Intern. J. Biol. Macromol. 2023, 227, 453–461. [Google Scholar] [CrossRef]
- Gaberc-Porekar, V.; Zore, I.; Podobnik, B.; Menart, V. Obstacles and pitfalls in the PEGylation of therapeutic proteins. Curr. Opin. Drug Discov. Dev. 2008, 11, 242–250. [Google Scholar]
- Li, W.; Zhan, P.; De Clercq, E.; Lou, H.; Liu, X. Current drug research on PEGylation with small molecular agents. Prog. Polym. Sci. 2013, 38, 421–444. [Google Scholar] [CrossRef]
- Marcus, Y.; Sasson, K.; Fridkin, M.; Shechter, Y. Turning low-molecular-weight drugs into prolonged acting prodrugs by reversible pegylation: A study with gentamicin. J. Med. Chem. 2008, 51, 4300–4305. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Y.; Yang, C.; Wang, P.; Oelschlager, D.K.; Zheng, Y.; Tian, D.A.; Grizzle, W.E.; Buchsbaum, D.J.; Wan, M. Polyethylene glycosylated curcumin conjugate inhibits pancreatic cancer cell growth through inactivation of Jab1. Mol. Pharmacol. 2009, 76, 81–90. [Google Scholar] [CrossRef]
- Zhang, P.; Ye, H.; Min, T.; Zhang, C. Water soluble poly(ethylene glycol) prodrug of silybin: Design, synthesis, and characterization. J. Appl. Polym. Sci. 2008, 107, 3230–3235. [Google Scholar] [CrossRef]
- Yang, X. Design and optimization of crocetin loaded PLGA nanoparticles against diabetic nephropathy via suppression of inflammatory biomarkers: A formulation approach to preclinical study. Drug Deliv. 2019, 26, 49–59. [Google Scholar] [CrossRef]
- Italia, J.L.; Sharp, A.; Carter, K.C.; Warn, P.; Kumar, M.R. Peroral amphotericin B polymer nanoparticles lead to comparable or superior in vivo antifungal activity to that of intravenous Ambisome® or Fungizone™. PLoS ONE 2011, 6, e25744. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.S.; Liu, X.J.; Lv, G.X.; Sun, B.; Kong, Q.F.; Zhai, D.X.; Wang, Q.; Zhao, W.; Wang, G.Y.; Wang, D.D.; et al. Voriconazole into PLGA nanoparticles: Improving agglomeration and antifungal efficacy. Int. J. Pharm. 2008, 352, 29–35. [Google Scholar] [CrossRef]
- Darwesh, B.; Aldawsari, H.M.; Badr-Eldin, S.M. Optimized chitosan/anion polyelectrolyte complex based inserts for vaginal delivery of fluconazole: In vitro/in vivo evaluation. Pharmaceutics 2018, 10, 227. [Google Scholar] [CrossRef]
Plant Species | Type of Extract or Fraction (Plant Part) | Compounds Identified and/or Isolated/Reference | Candida Species Tested | Type of Assay (Methods) * | Ref. |
---|---|---|---|---|---|
Anacardium occidentale L. | Ethanolic (flowers, leaves, stem bark) | Phosphoric acid, dodecanoic acid, ethylgallic acid, sorbitol, glucose, gallic acid, hexadecanoic acid, octadecanoic acid, 1,2-benzenedicarboxylic acid | C. albicans C. tropicalis | In vitro (halo inhibition, MIC, MFC) | [21] |
Ethanolic (bark) | Galloyl-beta-glucose, gallic acid, epicatechin gallate, luteolin, agathisflavone, 7: 9,12,13-trihydroxyoctadec-10-enoic acid, caffeoyl-d-glucose | C. albicans, C. krusei, C. tropicalis | In vitro (MIC/MFC), growth curve | [22] | |
(NI) * Cashew nutshell | Cardanol ** | C. albicans | In vitro (MIC) | [23] | |
Cotinus coggyria Scop | Essential oil (leaves) | α-pinene, β-pinene, limonene, α-terpinolene, β-terpinene, β-myrcene, β-caryophyllene, limonene β-phellandrene, β-ocimene, t-terpinene, o-cymene | C. albicans C. parapsilosis | In vitro (halo inhibition) | [24] |
Ethyl alcohol (leaves and flowers) | Gallic acid **, benzoic acid **, rutin, ferulic acid, quercetin, hyperoside, disulphuretin, sulphuretin, kaempferol, sulphurein, 7-O-β-D glucopyranoside, apigenin, pentagalloyl glucose, methyl gallate, 3-O-α-L-rhamnofuranoside | C. albicans | In vitro (halo inhibition) | [25] | |
Lannea kerstingii Engl. and K. Krause. | Ethyl acetate (stem bark) | β-sitosterol-3-O-glucoside ** | C. albicans, C. krusei, C. tropicalis | In vitro (halo inhibition, MIC, MFC) | [26] |
Catechin-3-O-rhamnoside ** | C. albicans C. tropicalis | In vitro (MIC, MFC) | [27] | ||
Mangifera indica L. | NI (peel and seed) | Proanthocyanidins, gallates, gallotannins | C. bracarensis, C. glabrata C. parapsilosis, C. nivariensis | In vitro (halo inhibition MIC) | [28] |
Pistacia atlantica Desf. | Essential oil (leaves, fruits) | α-Pyrene, terpinen-4-ol acid | C. albicans | In vitro (MIC) | [29] |
Methanolic (leaves) | Nilocitin **, 1,3-di-O-galloyl-β-D-4 **, C1-glucopyranose **, gallic acid, ellagic acid, gallotannins, 3,3’-dimethoxyellagic acid, 2,3-di-O-galloyl-(α/β)-4 C1-glucopyranose, 1,2,3,4,6-penta-O-galloyl-β-D-4 | C. albicans | In vitro (halo inhibition) | [30] | |
Pistacia atlantica subsp. kurdica | Essential oil (hulls) | α-Pinene, β-citral, carvone hydrate, myristic acid, p-acetyltoluene, pinocarveol, palustrol + 88 compounds | C. albicans | In vitro (halo inhibition, MIC) | [31] |
Pistacia chinensis subsp. integerrima | Fresh galls | Pistagremic acid **, apigenin **, sakuranetin ** | C. albicans, C. glabrata | In vitro (MIC) | [32] |
Pistacia integerrima | Aerial parts | Integriside A **; integriside B ** | C. albicans, C. glabrata | In vitro (halo inhibition, MIC) | [33] |
Pistacia lentiscus L. | Mastic gum | 24Z-isomasticadienolic acid **, oleanolic acid **, oleanonic aldehyde** | C. albicans | In vitro (MIC) | [34] |
Oils (seeds) | α-Pinene terpinen-4-ol, limonene, β-myrcene, caryophyllene linoleic acid, oleic acid, fatty acid, β-sitosterol, protocatechuic acid, p-coumaric, t-cinnamic + other compounds | C. albicans | In vitro (halo inhibition) | [35] | |
Essential oil (leaves) | α-Pinene, terpinen-4-ol, camphene D-limonene 3-carene, and 60 other compounds | C. albicans C. glabrata | In vitro (MIC) | [36] | |
Polyphenol enriched MeOH extract (leaves) | Shikimic acid, 2-hydroxy-1,8-cineole β-D-glucopyranoside, myricitrin ** | C. albicans | In vitro (growth rate) | [37] | |
Pistacia vera L. | Essential oil (hulls) | α-Pinene **, α-terpineol **, camphene **, D-limonene **, 3-carene ** | C. albicans, C. parapsilosis C. glabrata | In vitro (MIC, MFC, checkboard, time-kill curve) | [38] |
Gallic acid, cyanidin-3-O-galactoside, catechin, epicatechin, eriodictyol-7-O-glucoside, naringin, eriodictyol, quercetin, naringenin, luteolin, kaempferol | C. albicans C. glabrata C. parapsilosis C. auris | In vitro (MIC) | [39] | ||
Rhus coriaria L. | Essential oil (seeds) | Linoleic acid, oleic acid, palmitic acid | C. albicans | In vitro (halo inhibition, MIC) | [40] |
Rhus typhina L. | Hydroalcoholic extract, essential oil (branches, leaves, and fruits) | Gallic acid, 1-cyclohexane-3,4,5- hydroxy-carboxylic acid, malic acid, d-cadinene, β-pinene, phenylacetaldehyde | C. albicans | In vitro (halo inhibition, MIC) | [20] |
Ethanolic (leaves and berries) | Gallic acid, chlorogenic acid, gentisic acid, sinapic acid, caffeic acid, ethyl gallate | C. albicans | In vitro (MIC) | [41] | |
Schinopsis brasiliensis Engl. | Essential oil (leaves) | Estragole **, trans-anethole **, β-caryophyllene ** myrcene | C. parapsilosis | In vitro (MIC) | [42] |
Schinus lentiscifolius Marchand. | Aqueous, n-hexane, ethyl acetate, and n-butanol fractions (leaves) | Nonadecanol, moronic acid, gallic acid, quercetin, quercitrin | C. albicans, C. tropicalis | In vitro (MIC) | [43] |
Schinus molle L. | Volatile oil dried leaves | Spathulenol, β-caryophyllene, caryophyllene oxide | C. albicans, C. glabrata, C. krusei, C. orthopilosis, C. parapsilosis, C. rugosa, C. tropicalis, C. metapsilosis | In vitro (MIC) | [44] |
Petroleum ether, diethyl ether, acetone, aqueous (leaves) | Sesquiterpenes, sesquiterpenoids, and other terpenes | C. albicans | In vitro (halo inhibition; MIC) | [45] | |
Schinus polygamus Cav | Essential oil (bark) | dl-limonene, myrtenal, caryophyllene oxide | C. albicans | In vitro (MIC) | [46] |
Essential oil (leaves) | E-caryophyllene, DL-limonene β-pinene | C. albicans | In vitro (MIC) | [46] | |
Essential oil (leaves and fruits) | A-phellandrene, β-phellandrene, α-pinene, germacrene D | C. albicans, C. tropicalis, C. krusei, C. guilliermondii, C. parapsilosis | In vitro (MIC) | [43] | |
Schinus terenbintifolius Raddi | Essential oils (leaves and fruits) | Monoterpene hydrocarbons, α-pinene camphene, β-pinene terpinolene, β-phellandrene | C. albicans | In vitro (MIC) | [47] |
Schinus weinmannifolius Engl. | Essential oil (leaves) | Bicyclogermacrene, limonene | C. albicans | In vitro (MIC) | [48] |
Spondias mombin L. | Aqueous (leaves), hydroethanolic (bark) | Quercetin, caffeic acid, catechin, kaempferol | C. albicans C. tropicalis | In vitro (MIC, MFC) | [49] |
Spondias tuberosa Arruda. | Hexane (leaves) | Gallic acid, fatty acids | C. albicans, C. parapsilosis, C. glabrata, C. krusei | In vitro (MIC, MFC) | [50] |
Hydroalcoholic (leaves and roots) | Dehydroascorbic acid, quinic acid, and others | C. albicans, C. tropicalis | In vitro (MIC, morphological transition) | [51] |
Plant Species | Plant Part | Chemical Method | Compounds Isolated | Com. Conc. a μg/mL | Drug b (μg/mL) | MIC c (μg/mL) | Disk/Hallo (mm) | Ref. |
---|---|---|---|---|---|---|---|---|
Anacardium occidentale | Cashew nutshell | High performance liquid chromatography (HPLC), NMR, MALDI-TOF, and others | Cardanol | 512–1.0 | NI d | 64 | - | [23] |
Cotinus coggyria | Leaves and flowers | Chromatographic column, preparative HPLC | Gallic acid, benzoic acid | NI | FZL | - | 13 ± 0.5 | [25] |
Lannea kerstingii | Stem bark | Liquid and thin-layer chromatography | β-sitosterol-3-O-glucoside, | 200 | FZL 50 | 50 | - | [26] |
Thin-layer chromatography 1H NMR | catechin-3-o-rhamnoside | 50 to 6.25 µg/mL | FZL 50 | 12.5 | 22–35 | [27] | ||
Pistacia chinensis | Galls | Mass spectroscopy | Pistagremic acid, apigenin, sakuranetin | NI | MCZL AmphoB | - | 19 ± 1.0% 29 ± 0.4% 36−42 ± 0.7% | [32] |
Pistacia integerrima | Aerial parts | Liquid chromatography reverse-phase CC preparative HPLC | Integriside A, integriside B | NI | MCZL | 93–95 89–92 | 30 30 | [33] |
Pistacia lentiscus. | Mastic gum | Liquid chromatography (MPLC) | 24Z-isomasticadienolic acid, oleanolic acid, oleanonic aldehyde | 2.4–2500 | NI | 1250 1250 1250 | - - - | [34] |
Pistacia vera | Hulls | GC-FID and GC-MS analysis | α-Pinene, α-terpineol, camphene, D-limonene, 3-carene | NI | VOZL (0.0156–16) FZL (0.0625–64) CFGN (0.00195–2) | >1000 >1000 >1000 125−250 62.5–250 | - - - - - | [38] |
Schinopsis brasiliensis | Leaves | GC-FID and GC-MS analysis | Estragole, trans-anethole, β-caryophyllene, myrcene | NI | FZL | ND | 20 ± 0.5 8 ± 0.5 20 ± 0.5 8 ± 0.3 | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra, R.N.M.; Oliveira, A.S.; Farias, J.R.; Franco, D.C.G.; Santos, P.G.; Barbosa, N.T.; Muniz, S.B.; Abreu, A.G.; Nascimento, F.R.F. Anacardiaceae Family: Effect of Isolated Compounds and Other Identified Phytochemicals Against Clinically Relevant Candida Species—A Short Review. Antibiotics 2025, 14, 308. https://doi.org/10.3390/antibiotics14030308
Guerra RNM, Oliveira AS, Farias JR, Franco DCG, Santos PG, Barbosa NT, Muniz SB, Abreu AG, Nascimento FRF. Anacardiaceae Family: Effect of Isolated Compounds and Other Identified Phytochemicals Against Clinically Relevant Candida Species—A Short Review. Antibiotics. 2025; 14(3):308. https://doi.org/10.3390/antibiotics14030308
Chicago/Turabian StyleGuerra, Rosane Nassar Meireles, Aluísio Silva Oliveira, Josivan Regis Farias, Danielle Cristine Gomes Franco, Pamela Gomes Santos, Nicolle Teixeira Barbosa, Simone Batista Muniz, Afonso Gomes Abreu, and Flavia Raquel Fernandes Nascimento. 2025. "Anacardiaceae Family: Effect of Isolated Compounds and Other Identified Phytochemicals Against Clinically Relevant Candida Species—A Short Review" Antibiotics 14, no. 3: 308. https://doi.org/10.3390/antibiotics14030308
APA StyleGuerra, R. N. M., Oliveira, A. S., Farias, J. R., Franco, D. C. G., Santos, P. G., Barbosa, N. T., Muniz, S. B., Abreu, A. G., & Nascimento, F. R. F. (2025). Anacardiaceae Family: Effect of Isolated Compounds and Other Identified Phytochemicals Against Clinically Relevant Candida Species—A Short Review. Antibiotics, 14(3), 308. https://doi.org/10.3390/antibiotics14030308