Design and Validation of a Simplified Method to Determine Minimum Bactericidal Concentration in Nontuberculous Mycobacteria
Abstract
:1. Introduction
2. Results
2.1. Antibiotic Stability
2.2. Pilot Assay
2.3. Implementation of the Reincubation Method
3. Discussion
4. Materials and Methods
4.1. Antibiotic Stability
4.1.1. Isolate Selection
4.1.2. MIC Determination
4.2. The New Reincubation Method to Evaluate MBC Determination: Pilot Assay
4.2.1. Isolate Selection
4.2.2. MIC Determination
4.2.3. MBC Determination by the Standard Method
4.2.4. MBC Determination by the Reincubation Method
4.3. Implementation of the Reincubation Method
4.3.1. Isolate Recruitment
4.3.2. MIC Determination
4.3.3. MBC Determination by the Reincubation Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMK | amikacin |
AUG | amoxicillin clavulanic acid |
AXO | ceftriaxone |
CFU | colony forming unit |
CIP | ciprofloxacin |
CLA | clarithromycin |
DOX | doxycycline |
EMB | ethambutol |
FEP | cefepime |
ETH | ethionamide |
FOX | cefoxitin |
IMI | imipenem |
INH | isoniazid |
LIN | linezolid |
MAB | Mycobacterium abscessus complex |
MAC | Mycobacterium avium complex |
MBC | minimum bactericidal concentration |
MIC | minimum inhibitory concentration |
MIN | minocycline |
MOX | moxifloxacin |
NTM | nontuberculous mycobacteria |
RFB | rifabutin |
RIF | rifampicin |
RGM | rapid growing mycobacteria |
SGM | slow growing mycobacteria |
STR | streptomycin |
SXT | cotrimoxazole |
TGC | tigecycline |
TBR | tobramycin |
References
- Cook, G.M.; Berney, M.; Gebhard, S.; Heinemann, M.; Cox, R.A.; Danilchanka, O.; Niederweis, M. Physiology of mycobacteria. Adv. Microb. Physiol. 2009, 55, 81–182, 318–319. [Google Scholar] [CrossRef] [PubMed]
- Johansen, M.D.; Herrmann, J.L.; Kremer, L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat. Rev. Microbiol. 2020, 18, 392–407. [Google Scholar] [CrossRef] [PubMed]
- Gopalaswamy, R.; Shanmugam, S.; Mondal, R.; Subbian, S. Of tuberculosis and non-tuberculous mycobacterial infections—A comparative analysis of epidemiology, diagnosis, and treatment. J. Biomed. Sci. 2020, 27, 74. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, L.B.; Garcia, C.N.; Costa, M.S.C.D.; Moraes, M.B.; Kurizky, P.S.; Gomes, C.M. Non-tuberculous cutaneous mycobacterioses. An. Bras. Dermatol. 2021, 96, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Henkle, E.; Winthrop, K.L. Non-tuberculous mycobacteria infections in immunosuppressed hosts. Clin. Chest Med. 2015, 36, 91–99. [Google Scholar] [CrossRef]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Clin. Infect. Dis. 2020, 71, e1–e36. [Google Scholar] [CrossRef]
- Pathak, K.; Hart, S.; Lande, L. Nontuberculous Mycobacteria Lung Disease (NTM-LD): Current recommendations on diagnosis, treatment, and patient management. Int. J. Gen. Med. 2022, 15, 7619–7629. [Google Scholar] [CrossRef]
- Johnson, T.M.; Byrd, T.F.; Drummond, W.K.; Childs-Kean, L.M.; Mahoney, M.V.; Pearson, J.C.; Rivera, C.G. Contemporary pharmacotherapies for nontuberculous mycobacterial infections: A narrative review. Infect. Dis. Ther. 2023, 12, 343–365. [Google Scholar] [CrossRef]
- Rodríguez-Melcón, C.; Alonso-Calleja, C.; García-Fernández, C.; Carballo, J.; Capita, R. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for twelve antimicrobials (biocides and antibiotics) in eight strains of Listeria monocytogenes. Biology 2021, 11, 46. [Google Scholar] [CrossRef]
- Santos, N.C.d.S.; Scodro, R.B.d.L.; Sampiron, E.G.; Ieque, A.L.; Carvalho, H.C.d.; Santos, T.d.S.; Ghiraldi Lopes, L.D.; Campanerut-Sá, P.A.Z.; Siqueira, V.L.D.; Caleffi-Ferracioli, K.R.; et al. Minimum bactericidal concentration techniques in Mycobacterium tuberculosis: A systematic review. Microb. Drug Resist. 2020, 26, 752–765. [Google Scholar] [CrossRef]
- Schoutrop, E.L.M.; Brouwer, M.A.E.; Jenniskens, J.C.A.; Ferro, B.E.; Mouton, J.W.; Aarnoutse, R.E.; van Ingen, J. The stability of antimycobacterial drugs in media used for drug susceptibility testing. Diagn. Microbiol. Infect. Dis. 2018, 92, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Wetzstein, N.; Kohl, T.A.; Andres, S.; Schultze, T.G.; Geil, A.; Kim, E.; Wichelhaus, T.A. Comparative analysis of phenotypic and genotypic antibiotic susceptibility patterns in Mycobacterium avium complex. Int. J. Infect. Dis. 2020, 93, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Hernandes, C.; Coppede, J.d.S.; Bertoni, B.W.; França, S.d.C.; Pereira, A.M.S. Flash Microbiocide: A Rapid and Economic Method for Determination of MBC and MFC. Am. J. Plant Sci. 2013, 4, 850. [Google Scholar] [CrossRef]
- Ugalde-Arbizu, M.; Aguilera-Correa, J.J.; García-Almodóvar, V.; Ovejero-Paredes, K.; Díaz-García, D.; Esteban, J.; Páez, P.L.; Prashar, S.; San Sebastian, E.; Filice, M.; et al. Dual anticancer and antibacterial properties of silica-based theranostic nanomaterials functionalized with coumarin343, folic acid and a cytotoxic organotin (IV) metallodrug. Pharmaceutics 2023, 15, 560. [Google Scholar] [CrossRef]
- Hernando-Gozalo, M.; Aguilera-Correa, J.J.; Rescalvo-Casas, C.; Seijas-Pereda, L.; García-Bertolín, C.; de la Mata, F.J.; Sánchez-Nieves, J.; Cuadros, J.; Pérez-Tanoira, R. Study of the antimicrobial activity of cationic carbosilane dendrimers against clinical strains of multidrug-resistant bacteria and their biofilms. Front. Cell Infect. Microbiol. 2023, 13, 1203991. [Google Scholar] [CrossRef]
- Nam-Cha, S.H.; Domínguez-Jurado, E.; Tinoco-Valencia, S.L.; Pérez-Tanoira, R.; Morata-Moreno, N.; Alfaro-Ruiza, R.; Lara-Sánchez, A.; Esteban, J.; Luján, R.; Alonso-Moreno, C.; et al. Synthesis, characterization, and antibacterial activities of a heteroscorpionate derivative platinum complex against methicillin-resistant Staphylococcus aureus. Front. Cell Infect. Microbiol. 2023, 13, 1100947. [Google Scholar] [CrossRef]
- Ugalde-Arbizu, M.; Aguilera-Correa, J.J.; San Sebastian, E.; Páez, P.L.; Nogales, E.; Esteban, J.; Gómez-Ruiz, S. Antibacterial properties of mesoporous silica nanoparticles modified with fluoroquinolones and copper or silver species. Pharmaceuticals 2023, 16, 961. [Google Scholar] [CrossRef]
- Salar-Vidal, L.; Aguilera-Correa, J.J.; Brüggemann, H.; Achermann, Y.; Esteban, J.; on behalf of the ESGIAI (ESCMID Study Group for Implant-Associated Infections) for the Study of Cutibacterium Infections. Microbiological characterization of Cutibacterium acnes strains isolated from prosthetic joint infections. Antibiotics 2022, 11, 1260. [Google Scholar] [CrossRef]
- Aguilera-Correa, J.J.; García-Álvarez, R.; Mediero, A.; Esteban, J.; Vallet-Regí, M. Effect of gold nanostars plus amikacin against carbapenem-resistant Klebsiella pneumoniae biofilms. Biology 2022, 11, 162. [Google Scholar] [CrossRef]
- Aguilera-Correa, J.J.; Gisbert-Garzarán, M.; Mediero, A.; Carias-Cálix, R.A.; Jiménez-Jiménez, C.; Esteban, J.; Vallet-Regí, M. Arabic gum plus colistin-coated moxifloxacin-loaded nanoparticles for the treatment of bone infection caused by Escherichia coli. Acta Biomater. 2022, 137, 218–237. [Google Scholar] [CrossRef]
- Inácio, M.C.; Paz, T.A.; Wijeratne, E.M.K.; Gunaherath, G.M.K.B.; Guido, R.V.C.; Gunatilaka, A.A.L. Antimicrobial activity of some celastroloids and their derivatives. Med. Chem. Res. 2022, 31, 1488–1499. [Google Scholar] [CrossRef]
- Aguilera-Correa, J.J.; Gisbert-Garzarán, M.; Mediero, A.; Fernández-Aceñero, M.J.; de-Pablo-Velasco, D.; Lozano, D.; Esteban, J.; Vallet-Regí, M. Antibiotic delivery from bone-targeted mesoporous silica nanoparticles for the treatment of osteomyelitis caused by methicillin-resistant Staphylococcus aureus. Acta Biomater. 2022, 154, 608–625. [Google Scholar] [CrossRef] [PubMed]
- Ugalde-Arbizu, M.; Aguilera-Correa, J.J.; Mediero, A.; Esteban, J.; Páez, P.L.; San Sebastian, E.; Gómez-Ruiz, S. Hybrid nanosystems based on nicotinate-functionalized mesoporous silica and silver chloride nanoparticles loaded with phenytoin for preventing Pseudomonas aeruginosa biofilm development. Pharmaceuticals 2022, 15, 884. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Correa, J.J.; Fernández-López, S.; Cuñas-Figueroa, I.D.; Pérez-Rial, S.; Alakomi, H.-L.; Nohynek, L.; Oksman-Caldentey, K.-M.; Salminen, J.-P.; Esteban, J.; Cuadros, J.; et al. Sanguiin H-6 fractionated from cloudberry (Rubus chamaemorus) seeds can prevent the methicillin-resistant Staphylococcus aureus biofilm development during wound infection. Antibiotics 2021, 10, 1481. [Google Scholar] [CrossRef]
- Al-Zahrani, A.; Al-Haj, N.; Omer, H.; Al-Judaibi, A. Impact of extracts of marine macroalgae on multidrug-resistant bacteria. J. Microbiol. Res. 2014, 4, 18–24. [Google Scholar] [CrossRef]
- Akir, A.; Senhaji-Kacha, A.; Muñoz-Egea, M.C.; Esteban, J.; Aguilera-Correa, J.J. Biofilm Development by Mycobacterium avium Complex Clinical Isolates: Effect of Clarithromycin in Ultrastructure. Antibiotics 2024, 13, 263. [Google Scholar] [CrossRef]
- CLSI.M26-A; Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 1999.
- Kwon, Y.S.; Levin, A.; Kasperbauer, S.H.; Huitt, G.A.; Daley, C.L. Efficacy and safety of tigecycline for Mycobacterium abscessus disease. Respir. Med. 2019, 158, 89–99. [Google Scholar] [CrossRef]
- Deshpande, D.; Srivastava, S.; Chapagain, M.L.; Lee, P.S.; Cirrincione, K.N.; Pasipanodya, J.G.; Gumbo, T. The discovery of ceftazidime/avibactam as an anti-Mycobacterium avium agent. J. Antimicrob. Chemother. 2017, 72, 36–44. [Google Scholar] [CrossRef]
- Negatu, D.A.; Shin, S.J.; Kim, S.Y.; Jhun, B.W.; Dartois, V.; Dick, T. Oral β-lactam pairs for the treatment of Mycobacterium avium complex pulmonary disease. J. Infect. Dis. 2024, 230, 241–246. [Google Scholar] [CrossRef]
- Calcagno, A.; Coppola, N.; Sarmati, L.; Tadolini, M.; Parrella, R.; Matteelli, A.; Riccardi, N.; Trezzi, M.; Di Biagio, A.; Pirriatore, V.; et al. Drugs for treating infections caused by non-tubercular mycobacteria: A narrative review from the study group on mycobacteria of the Italian Society of Infectious Diseases and Tropical Medicine. Infection 2024, 52, 737–765. [Google Scholar] [CrossRef]
- Portell-Buj, E.; González-Criollo, C.; López-Gavín, A.; Fernández-Pittol, M.; Busquets, M.A.; Estelrich, J.; Garrigó, M.; Rubio, M.; Tudó, G.; Gonzalez-Martin, J. Activity of Antibiotics and Potential Antibiofilm Agents against Biofilm-Producing Mycobacterium avium-intracellulare Complex Causing Chronic Pulmonary Infections. Antibiotics 2022, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Clinical Laboratory Standards Institute (CLSI). Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes—Approved Standard, 2nd ed.; CLSI document M24-A2; Clinical Standards Institute: Wayne, PA, USA, 2011. [Google Scholar]
- Hazen, K.C. Fungicidal versus fungistatic activity of terbinafine and itraconazole: An in vitro comparison. J. Am. Acad. Dermatol. 1998, 38, S37–S41. [Google Scholar] [CrossRef] [PubMed]
- Wald-Dickler, N.; Holtom, P.; Spellberg, B. Busting the myth of “static vs cidal”: A systemic literature review. Clin. Infect. Dis. 2018, 66, 1470–1474. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Wermuth, H.R.; Calhoun, C.; Hall, G.A. Antibiotics; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535443/ (accessed on 26 August 2024).
MIC (µg/mL) M. intracellulare Complex | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Isolate 1 | Isolate 2 | Isolate 3 | Isolate 4 | Isolate 5 | ||||||
Standard Protocol * | Preincubation | Standard Protocol | Preincubation | Standard Protocol | Preincubation | Standard Protocol | Preincubation | Standard Protocol | Preincubation | |
AMK | 8 | 8 | 4 | 8 | 2 | 8 | 16 | 32 | 16 | 16 |
CIP | 8 | 8 | 2 | 2 | 1 | 1 | 8 | 8 | 8 | 8 |
CLA | 4 | 8 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
DOX | >8 | >8 | >8 | >8 | >8 | >8 | >8 | >8 | >8 | >8 |
EMB | 2 | 2 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
ETH | 10 | 10 | >10 | >10 | 1.25 | 1.25 | 1.25 | 1.25 | >10 | >10 |
INH | 4 | 4 | >4 | >4 | 4 | 4 | 2 | 2 | >4 | >4 |
LIN | 16 | 16 | 8 | 16 | 16 | 32 | 16 | 16 | 16 | 16 |
MOX | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 1 | 0.5 | 0.5 | 1 | 1 |
RFB | 0.25 | 0.5 | 0.125 | 0.25 | 0.125 | 0.25 | 0.125 | 0.25 | 0.25 | 0.125 |
RIF | 0.5 | 1 | 0.5 | 2 | 0.25 | 4 | 1 | 4 | 1 | >4 |
STR | 8 | 8 | 4 | 4 | 8 | 8 | 8 | 16 | 16 | 16 |
SXT | >4 | >4 | >4 | >4 | >4 | >4 | 2 | 2 | >4 | >4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batista, S.; Fernández-Pittol, M.; San Nicolás, L.; Martínez, D.; Narváez, S.; Espasa, M.; Garcia Losilla, E.; Rubio, M.; Garrigo, M.; Tudó, G.; et al. Design and Validation of a Simplified Method to Determine Minimum Bactericidal Concentration in Nontuberculous Mycobacteria. Antibiotics 2025, 14, 381. https://doi.org/10.3390/antibiotics14040381
Batista S, Fernández-Pittol M, San Nicolás L, Martínez D, Narváez S, Espasa M, Garcia Losilla E, Rubio M, Garrigo M, Tudó G, et al. Design and Validation of a Simplified Method to Determine Minimum Bactericidal Concentration in Nontuberculous Mycobacteria. Antibiotics. 2025; 14(4):381. https://doi.org/10.3390/antibiotics14040381
Chicago/Turabian StyleBatista, Sara, Mariana Fernández-Pittol, Lorena San Nicolás, Diego Martínez, Sofía Narváez, Mateu Espasa, Elena Garcia Losilla, Marc Rubio, Montserrat Garrigo, Griselda Tudó, and et al. 2025. "Design and Validation of a Simplified Method to Determine Minimum Bactericidal Concentration in Nontuberculous Mycobacteria" Antibiotics 14, no. 4: 381. https://doi.org/10.3390/antibiotics14040381
APA StyleBatista, S., Fernández-Pittol, M., San Nicolás, L., Martínez, D., Narváez, S., Espasa, M., Garcia Losilla, E., Rubio, M., Garrigo, M., Tudó, G., & González-Martin, J. (2025). Design and Validation of a Simplified Method to Determine Minimum Bactericidal Concentration in Nontuberculous Mycobacteria. Antibiotics, 14(4), 381. https://doi.org/10.3390/antibiotics14040381