Genetic Variation in the blaZ Gene Leading to the BORSA Phenotype in Staphylococcus aureus
Abstract
:1. Introduction
2. Results
2.1. Distribution of blaZ Variants in Clinical S. aureus Isolates
2.2. Antibiotic Susceptibility of Clinical Isolates Carrying Variants A, B, C, D and F
2.3. Comparison of Variants A, B, C, D and F in Escherichia coli
2.4. Antibiotic Resistance of Variants A and F in the S. aureus Newman Strain
3. Discussion
4. Materials and Methods
4.1. Isolate Collection
4.2. Whole Genome Sequencing & Bioinformatics
4.3. Antibiotic Susceptibility Testing
4.4. Cloning of the blaZ in pET26b(+) Plasmid
4.5. Cloning of the blaIRZ Cassette in S. aureus Plasmid
4.6. Nitrocefin Assay on Cell Extracts
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MIC | Minimum inhibitory concentration |
BORSA | Borderline oxacillin-resistant Staphylococcus aureus |
MSSA | Methicillin-susceptible Staphylococcus aureus |
MRSA | Methicillin-resistant Staphylococcus aureus |
AST | Antibiotic susceptibility testing |
References
- McNeil, J.C.; Sommer, L.M.; Vallejo, J.G.; Boyle, M.; Hulten, K.G.; Kaplan, S.L.; Fritz, S.A. Going Back in Time: Increasing Penicillin Susceptibility among Methicillin-Susceptible Staphylococcus aureus Osteoarticular Infections in Children. Antimicrob. Agents Chemother. 2023, 67, e0119622. [Google Scholar] [CrossRef] [PubMed]
- Rowland, S.J.; Dyke, K.G. Tn552, a novel transposable element from Staphylococcus aureus. Mol. Microbiol. 1990, 4, 961–975. [Google Scholar] [CrossRef] [PubMed]
- Novick, R.P.; Richmond, M.H. Nature and Interactions of the Genetic Elements Governing Penicillinase Synthesis in Staphylococcus aureus. J. Bacteriol. 1965, 90, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.Z.; Projan, S.J.; Novick, R.P. Nucleotide sequence of beta-lactamase regulatory genes from staphylococcal plasmid pI258. Nucleic Acids Res. 1991, 19, 4000. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef]
- Ambler, R.P.; Coulson, A.F.; Frere, J.M.; Ghuysen, J.M.; Joris, B.; Forsman, M.; Levesque, R.C.; Tiraby, G.; Waley, S.G. A standard numbering scheme for the class A beta-lactamases. Biochem. J. 1991, 276 Pt 1, 269–270. [Google Scholar] [CrossRef]
- Voladri, R.K.; Kernodle, D.S. Characterization of a chromosomal gene encoding type B beta-lactamase in phage group II isolates of Staphylococcus aureus. Antimicrob. Agents Chemother. 1998, 42, 3163–3168. [Google Scholar] [CrossRef]
- Voladri, R.K.; Tummuru, M.K.; Kernodle, D.S. Structure-function relationships among wild-type variants of Staphylococcus aureus beta-lactamase: Importance of amino acids 128 and 216. J. Bacteriol. 1996, 178, 7248–7253. [Google Scholar] [CrossRef]
- Hryniewicz, M.M.; Garbacz, K. Borderline oxacillin-resistant Staphylococcus aureus (BORSA)—A more common problem than expected? J. Med. Microbiol. 2017, 66, 1367–1373. [Google Scholar] [CrossRef]
- McDougal, L.K.; Thornsberry, C. The role of beta-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins. J. Clin. Microbiol. 1986, 23, 832–839. [Google Scholar] [CrossRef]
- Liu, H.; Buescher, G.; Lewis, N.; Snyder, S.; Jungkind, D. Detection of borderline oxacillin-resistant Staphylococcus aureus and differentiation from methicillin-resistant strains. Eur. J. Clin. Microbiol. Infect. Dis. 1990, 9, 717–724. [Google Scholar] [CrossRef]
- Chatterjee, S.S.; Chen, L.; Gilbert, A.; da Costa, T.M.; Nair, V.; Datta, S.K.; Kreiswirth, B.N.; Chambers, H.F. PBP4 Mediates beta-Lactam Resistance by Altered Function. Antimicrob. Agents Chemother. 2017, 61, e0093217. [Google Scholar] [CrossRef] [PubMed]
- Hackbarth, C.J.; Kocagoz, T.; Kocagoz, S.; Chambers, H.F. Point mutations in Staphylococcus aureus PBP 2 gene affect penicillin-binding kinetics and are associated with resistance. Antimicrob. Agents Chemother. 1995, 39, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Nadarajah, J.; Lee, M.J.S.; Louie, L.; Jacob, L.; Simor, A.E.; Louie, M.; McGavin, M.J. Identification of different clonal complexes and diverse amino acid substitutions in penicillin-binding protein 2 (PBP2) associated with borderline oxacillin resistance in Canadian Staphylococcus aureus isolates. J. Med. Microbiol. 2006, 55, 1675–1683. [Google Scholar] [CrossRef] [PubMed]
- Tomasz, A.; Drugeon, H.B.; de Lencastre, H.M.; Jabes, D.; McDougall, L.; Bille, J. New mechanism for methicillin resistance in Staphylococcus aureus: Clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity. Antimicrob. Agents Chemother. 1989, 33, 1869–1874. [Google Scholar] [CrossRef]
- Griffiths, J.M.; O’Neill, A.J. Loss of function of the gdpP protein leads to joint beta-lactam/glycopeptide tolerance in Staphylococcus aureus. Antimicrob. Agents Chemother. 2012, 56, 579–581. [Google Scholar] [CrossRef]
- Corrigan, R.M.; Abbott, J.C.; Burhenne, H.; Kaever, V.; Grundling, A. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog. 2011, 7, e1002217. [Google Scholar] [CrossRef]
- Papanicolas, L.E.; Bell, J.M.; Bastian, I. Performance of phenotypic tests for detection of penicillinase in Staphylococcus aureus isolates from Australia. J. Clin. Microbiol. 2014, 52, 1136–1138. [Google Scholar] [CrossRef]
- Sakoulas, G.; Nizet, V. Measuring beta-lactam minimum inhibitory concentrations in Staphylococcus aureus in the clinical microbiology laboratory: Pinning the tail on the donkey. J. Clin. Microbiol. 2024, 62, e0036623. [Google Scholar] [CrossRef]
- Nannini, E.C.; Stryjewski, M.E.; Singh, K.V.; Bourgogne, A.; Rude, T.H.; Corey, G.R.; Fowler, V.G., Jr.; Murray, B.E. Inoculum effect with cefazolin among clinical isolates of methicillin-susceptible Staphylococcus aureus: Frequency and possible cause of cefazolin treatment failure. Antimicrob. Agents Chemother. 2009, 53, 3437–3441. [Google Scholar] [CrossRef]
- Richter, S.S.; Doern, G.V.; Heilmann, K.P.; Miner, S.; Tendolkar, S.; Riahi, F.; Diekema, D.J. Detection and Prevalence of Penicillin-Susceptible Staphylococcus aureus in the United States in 2013. J. Clin. Microbiol. 2016, 54, 812–814. [Google Scholar] [CrossRef] [PubMed]
- Skov, R.; Lonsway, D.R.; Larsen, J.; Larsen, A.R.; Samulioniene, J.; Limbago, B.M. Evaluation of methods for detection of beta-lactamase production in MSSA. J. Antimicrob. Chemother. 2021, 76, 1487–1494. [Google Scholar] [CrossRef] [PubMed]
- Ba, X.; Harrison, E.M.; Lovering, A.L.; Gleadall, N.; Zadoks, R.; Parkhill, J.; Peacock, S.J.; Holden, M.T.; Paterson, G.K.; Holmes, M.A. Old Drugs To Treat Resistant Bugs: Methicillin-Resistant Staphylococcus aureus Isolates with mecC Are Susceptible to a Combination of Penicillin and Clavulanic Acid. Antimicrob. Agents Chemother. 2015, 59, 7396–7404. [Google Scholar] [CrossRef] [PubMed]
- Baba, T.; Takeuchi, F.; Kuroda, M.; Yuzawa, H.; Aoki, K.; Oguchi, A.; Nagai, Y.; Iwama, N.; Asano, K.; Naimi, T.; et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 2002, 359, 1819–1827. [Google Scholar] [CrossRef]
- Brzoska, A.J.; Firth, N. Two-plasmid vector system for independently controlled expression of green and red fluorescent fusion proteins in Staphylococcus aureus. Appl. Environ. Microbiol. 2013, 79, 3133–3136. [Google Scholar] [CrossRef]
- Baba, T.; Bae, T.; Schneewind, O.; Takeuchi, F.; Hiramatsu, K. Genome sequence of Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: Polymorphism and evolution of two major pathogenicity islands. J. Bacteriol. 2008, 190, 300–310. [Google Scholar] [CrossRef]
- Livorsi, D.J.; Crispell, E.; Satola, S.W.; Burd, E.M.; Jerris, R.; Wang, Y.F.; Farley, M.M. Prevalence of blaZ gene types and the inoculum effect with cefazolin among bloodstream isolates of methicillin-susceptible Staphylococcus aureus. Antimicrob. Agents Chemother. 2012, 56, 4474–4477. [Google Scholar] [CrossRef]
- Banerjee, S.; Pieper, U.; Kapadia, G.; Pannell, L.K.; Herzberg, O. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase. Biochemistry 1998, 37, 3286–3296. [Google Scholar] [CrossRef]
- Konstantinovski, M.M.; Veldkamp, K.E.; Lavrijsen, A.P.M.; Bosch, T.; Kraakman, M.E.M.; Nooij, S.; Claas, E.C.J.; Gooskens, J. Hospital transmission of borderline oxacillin-resistant Staphylococcus aureus evaluated by whole-genome sequencing. J. Med. Microbiol. 2021, 70, 001384. [Google Scholar] [CrossRef]
- Monk, I.R.; Tree, J.J.; Howden, B.P.; Stinear, T.P.; Foster, T.J. Complete Bypass of Restriction Systems for Major Staphylococcus aureus Lineages. mBio 2015, 6, e0030815. [Google Scholar] [CrossRef]
- O’Callaghan, C.H.; Morris, A.; Kirby, S.M.; Shingler, A.H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob. Agents Chemother. 1972, 1, 283–288. [Google Scholar] [CrossRef] [PubMed]
blaZ Variants | Amino Acid 128 | Amino Acid 216 |
---|---|---|
A | Thr | Ser |
B | Lys | Asn |
C | Thr | Asn |
D | Ala | Ser |
E | Leu | Ser |
F | Thr | Thr |
Antibiotic | blaZ variants | Controls | |||||
---|---|---|---|---|---|---|---|
A | B | C | D | F | S | ATCC29213 | |
Benzylpenicillin | 0.22 (0.094–0.38) | 0.19 (0.125–0.75) | 0.22 (0.125–0.38) | 0.125 (0.094–0.25) | 4 (1–32) | 0.064 (0.064) | 0.19 (0.19) |
Piperacillin | 1 (1–2) | 2 (1.5–4) | 3 (1.5–4) | 2 (0.5–4) | 12 (3–48) | 0.38 (0.38) | 1.5 (1.5) |
Piperacillin-tazobactam | 1 (0.5–1.5) | 2 (0.75–3) | 1.5 (0.75–1.5) | 1 (0.75–2) | 1 (0.75–2) | 0.38 (0.38) | 0.75 (0.75) |
Amoxicillin | 0.32 (0.19–0.75) | 0.75 (0.38–1.5) | 0.5 (0.38–1) | 0.5 (0.125–0.75) | 1 (0.75–1.5) | 0.125 (0.125) | 0.38 (0.38) |
Oxacillin | 0.25 (0.125–0.38) | 0.38 (0.25–0.5) | 0.38 (0.25–0.75) | 0.32 (0.25–0.5) | 1.5 (1.5–4) | 0.125 (0.125) | 0.19 (0.19) |
Cloxacillin | 0.125 (0.094–0.19) | 0.19 (0.125–0.25) | 0.19 (0.19–0.38) | 0.19 (0.125–0.25) | 0.75 (0.5–1.5) | 0.125 (0.125) | 0.19 (0.19) |
Antibiotic | AST Method | blaZ Variants | Controls | |||
---|---|---|---|---|---|---|
A | A–F | F | N | ATCC25923 | ||
Benzylpenicillin | BMD | 1 (1) | 2 (2) | 32 (32) | <0.03 (<0.03) | 0.0625 (<0.03–0.0625) |
E-test | 0.38 (0.38) | 0.5 (0.38–0.5) | 1.5 (1.5–3) | 0.32 (0.32) | - | |
Oxacillin | BMD | 0.25 (0.25) | 0.5 (0.5) | 2 (2–4) | 0.125 (0.125–0.25) | 0.25 (0.25) |
E-test | 0.38 (0.38–0.5) | 0.75 (0.75) | 1.5 (1–1.5) | 0.19 (0.19) | - | |
Cloxacillin | BMD | 0.25 (0.25) | 0.25 (0.25) | 1 (1) | 0.125 (0.125) | 0.125 (0.125) |
E-test | 0.38 (0.25–0.38) | 0.5 (0.38–0.5) | 0.75 (0.5–0.75) | 0.125 (0.125) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aarris, M.; Hertz, F.B.; Nielsen, K.L.; Sato, A.; Johansen, H.K.; Westh, H.; Kemp, M.; Ellermann-Eriksen, S.; Løbner-Olesen, A.; Frimodt-Møller, N.; et al. Genetic Variation in the blaZ Gene Leading to the BORSA Phenotype in Staphylococcus aureus. Antibiotics 2025, 14, 449. https://doi.org/10.3390/antibiotics14050449
Aarris M, Hertz FB, Nielsen KL, Sato A, Johansen HK, Westh H, Kemp M, Ellermann-Eriksen S, Løbner-Olesen A, Frimodt-Møller N, et al. Genetic Variation in the blaZ Gene Leading to the BORSA Phenotype in Staphylococcus aureus. Antibiotics. 2025; 14(5):449. https://doi.org/10.3390/antibiotics14050449
Chicago/Turabian StyleAarris, Mia, Frederik Boëtius Hertz, Karen Leth Nielsen, Alexander Sato, Helle Krogh Johansen, Henrik Westh, Michael Kemp, Svend Ellermann-Eriksen, Anders Løbner-Olesen, Niels Frimodt-Møller, and et al. 2025. "Genetic Variation in the blaZ Gene Leading to the BORSA Phenotype in Staphylococcus aureus" Antibiotics 14, no. 5: 449. https://doi.org/10.3390/antibiotics14050449
APA StyleAarris, M., Hertz, F. B., Nielsen, K. L., Sato, A., Johansen, H. K., Westh, H., Kemp, M., Ellermann-Eriksen, S., Løbner-Olesen, A., Frimodt-Møller, N., & Charbon, G. (2025). Genetic Variation in the blaZ Gene Leading to the BORSA Phenotype in Staphylococcus aureus. Antibiotics, 14(5), 449. https://doi.org/10.3390/antibiotics14050449