Previous Issue
Volume 14, April
 
 

Antibiotics, Volume 14, Issue 5 (May 2025) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
11 pages, 1183 KiB  
Article
Metabolic Stress Induced by Quercetin Enhances Dormancy and Persistence in Staphylococcus aureus
by Dae-Youn Kim and Tae-Jong Kim
Antibiotics 2025, 14(5), 424; https://doi.org/10.3390/antibiotics14050424 (registering DOI) - 22 Apr 2025
Abstract
Background/Objectives: The persistence of Staphylococcus aureus poses a significant challenge in clinical treatments because of its ability to withstand antibiotic therapy. This study assessed the role of quercetin in promoting bacterial dormancy and persistence through ATP depletion and revealed its potential impact [...] Read more.
Background/Objectives: The persistence of Staphylococcus aureus poses a significant challenge in clinical treatments because of its ability to withstand antibiotic therapy. This study assessed the role of quercetin in promoting bacterial dormancy and persistence through ATP depletion and revealed its potential impact on antibiotic tolerance. Methods: To assess the effects of quercetin on bacterial metabolism and persistence, S. aureus cultures were treated with quercetin, and intracellular ATP levels were then measured. The effect of quercetin on persister cell formation was assessed using antibiotic exposure assays, including pre-treatment and post-treatment strategies. Results: Quercetin treatment significantly depleted intracellular ATP levels in a dose-dependent manner, suggesting the presence of metabolic stress. This ATP depletion correlated with increased persister cell formation across multiple antibiotic treatments, indicating that quercetin-induced dormancy enhances bacterial persistence. Notably, quercetin pre-treatment further increased persister cell counts, while delayed quercetin administration increased persister cell survival, highlighting the influence of the timing of metabolic stress on persistence outcomes. Conclusions: Quercetin promotes bacterial persistence by inducing ATP depletion and metabolic dormancy. Although quercetin’s bactericidal properties may initially impair bacterial growth, its potential to enhance persistence underscores the complexity of its effects. Further research is necessary to determine optimal strategies for harnessing the antimicrobial properties of quercetin while minimizing its persistence-promoting effects. Full article
Show Figures

Figure 1

14 pages, 1820 KiB  
Article
Broad-Spectrum Gramicidin S Derivatives with Potent Activity Against Multidrug-Resistant Gram-Negative ESKAPE Pathogens
by John T. Kalyvas, Yifei Wang, Ornella Romeo, John R. Horsley and Andrew D. Abell
Antibiotics 2025, 14(5), 423; https://doi.org/10.3390/antibiotics14050423 (registering DOI) - 22 Apr 2025
Abstract
Background/Objectives: Multidrug-resistant Gram-negative ESKAPE pathogens, including E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii, pose a significant global health threat. Gramicidin S, a potent cyclic antimicrobial peptide, is largely ineffective against these bacteria, and its high haemolytic toxicity [...] Read more.
Background/Objectives: Multidrug-resistant Gram-negative ESKAPE pathogens, including E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii, pose a significant global health threat. Gramicidin S, a potent cyclic antimicrobial peptide, is largely ineffective against these bacteria, and its high haemolytic toxicity limits its clinical usage. This study reports on several novel gramicidin S analogues with improved efficacy and safety profiles against multidrug-resistant Gram-negative bacteria. Methods: A total of 19 gramicidin S derivatives were synthesised using Fmoc-based solid-phase peptide synthesis with targeted substitutions to enhance cationicity and modulate hydrophobicity. Minimum inhibitory concentrations (MICs) were determined against standard Gram-negative and Gram-positive strains. Haemolytic toxicity and in vitro nephrotoxicity were evaluated using human red blood cells and HEK-293 cells, respectively. All peptides were characterised by RP-HPLC and HRMS. Results: The selective incorporation of DArg and Trp significantly enhanced activity against Gram-negative bacteria while reducing cytotoxicity. Peptide 8 improved the therapeutic index (TI) against E. coli by 10-fold (MIC: 8 µg/mL; TI: 4.10) compared to gramicidin S (MIC: 32 µg/mL; TI: 0.38). Peptide 9 exhibited an 8-fold potency increase against K. pneumoniae and a 25-fold TI improvement. Peptide 19 enhanced activity against P. aeruginosa 8-fold over gramicidin S, while peptide 7 showed a 27-fold TI enhancement. All active peptides retained broad-spectrum activity against S. aureus, including MRSA. Conclusions: The findings highlight the critical role of balancing hydrophobicity and cationicity to overcome species-specific resistance mechanisms. Our gramicidin S analogues demonstrate potent broad-spectrum activity with significantly reduced toxicity compared to the parent peptide, providing a robust platform for the development of new antibiotics against ESKAPE bacterial pathogens. Full article
(This article belongs to the Special Issue ESKAPE and MDRO Pathogens: Infections and Antimicrobial Treatment)
Show Figures

Figure 1

22 pages, 2773 KiB  
Review
The Role of Flexibility in the Bioactivity of Short α-Helical Antimicrobial Peptides
by Daniel Balleza
Antibiotics 2025, 14(5), 422; https://doi.org/10.3390/antibiotics14050422 - 22 Apr 2025
Abstract
The formation of aqueous pores through the interaction of amphipathic peptides is a process facilitated by the conformational dynamics typical of these biomolecules. Prior to their insertion with the membrane, these peptides go through several conformational states until they finally reach a stable [...] Read more.
The formation of aqueous pores through the interaction of amphipathic peptides is a process facilitated by the conformational dynamics typical of these biomolecules. Prior to their insertion with the membrane, these peptides go through several conformational states until they finally reach a stable α-helical structure. The conformational dynamics of these pore-forming peptides, α-PFP, is, thus, encoded in their amino acid sequence, which also predetermines their intrinsic flexibility. However, although the role of flexibility is widely recognized as fundamental in their bioactivity, it is still unclear whether this parameter is indeed decisive, as there are reports favoring the view of highly disruptive flexible peptides and others where relative rigidity also predetermines high rates of permeability across membranes. In this review we discuss in depth all those aspects linked to the conformational dynamics of these small biomolecules and which depend on the composition, sequence and dynamic performance both in aqueous phase and in close interaction with phospholipids. In addition, evidence is provided for the contribution of the known carboxyamidation in some well-studied α-PFPs, which are preferentially associated with sequences intrinsically more rigid than those not amidated and generally more flexible than the former. Taken together, this information is of great relevance for the optimization of new antibiotic peptides. Full article
(This article belongs to the Special Issue Structure and Function of Antimicrobial Peptides)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop