Exometabolite-Based Antimicrobial Formulations from Lactic Acid Bacteria as a Multi-Target Strategy Against Multidrug-Resistant Escherichia coli
Abstract
1. Introduction
2. Results and Discussions
2.1. LAB Exometabolites Suppress Growth of MDR L1PEag1 in Co-Culture
2.2. ExAFs Induced Morphological and Ultrastructural Cell Changes in E. coli L1PEag1
2.3. Metabolite Profiles Showed Compounds with Antimicrobial Properties
Compound | Charge | Antimicrobial Role | Reference |
---|---|---|---|
Lincomycin | ESI (+) | Broad-spectrum antibiotic (protein synthesis inhibitor) | [25] |
Chrysin | ESI (−) | Natural flavonoid with antibacterial and antifungal effects | [23] |
Daidzein | ESI (−) | Isoflavone with synergistic effects with antibiotics | [20] |
DL-4-Hydroxyphenyllactic acid | ESI (−) | Produced by LAB; contributes to antimicrobial activity | [22] |
DL-p-Hydroxyphenyllactic acid | ESI (−) | LAB metabolite with mild antimicrobial effects | [22] |
Dihydrocoumarin | ESI (−) | Inhibits bacterial quorum sensing, anti-virulence | [24] |
3,7,4′-Trihydroxyflavone (5-Deoxykampferol) | ESI (−) | Flavonoid with antimicrobial activity and efflux pump inhibition | [26] |
Loperamide | ESI (+) | Anti-virulence and antimicrobial activity against Mycobacterium spp. | [18] |
Lithocholic Acid | ESI (−) | Secondary bile acid that inhibits gut pathogens | [27] |
Palmitic acid | ESI (−) | Fatty acid with membrane-disrupting antimicrobial activity | [28] |
Val–leu–pro–val–pro–gln | ESI (+) | Antimicrobial; identified in L. plantarum UTNGt2 with intracellular/extracellular action | [17] |
2.4. ExAF Metabolite Profiling Reveals Structural Analogs to RiPPs with Antimicrobial Potential
3. Materials and Methods
3.1. Bacterial Strains and Culture Conditions
3.2. Preparation of ExAFs
3.3. Antimicrobial Activity Assay
3.4. Minimum Inhibitory Concentration (MIC) Assay of Selected ExAFs
3.5. Effect of ExAFs on L1PEag1 Cell Viability
3.6. Scanning Electron Microscopy (SEM) of Treated Cells with Selected ExAFs
3.7. Transmission Electron Microscopy (TEM) of Treated Cells with Selected ExAFs
3.8. Metabolomic Profiling and Structural Similarity Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zapaśnik, A.; Sokołowska, B.; Bryła, M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022, 11, 1283. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 2005, 3, 777–788. [Google Scholar] [CrossRef]
- Lahiri, D.; Nag, M.; Dutta, B.; Sarkar, T.; Pati, S.; Basu, D.; Abdul Kari, Z.; Wei, L.S.; Smaoui, S.; Wen Goh, K.; et al. Bacteriocin: A natural approach for food safety and food security. Front. Bioeng. Biotechnol. 2022, 10, 1005918. [Google Scholar] [CrossRef] [PubMed]
- Agriopoulou, S.; Stamatelopoulou, E.; Sachadyn-Król, M.; Varzakas, T. Lactic Acid Bacteria as Antibacterial Agents to Extend the Shelf Life of Fresh and Minimally Processed Fruits and Vegetables: Quality and Safety Aspects. Microorganisms 2020, 8, 952. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.C.G.; Silva, S.P.M.; Ribeiro, S.C. Application of bacteriocins and protective cultures in dairy food preservation. Front. Microbiol. 2018, 9, 594. [Google Scholar] [CrossRef]
- Santos, C.; Raymundo, A.; Moreira, J.B.; Prista, C. Exploring the Potential of Lactic Acid Bacteria Fermentation as a Clean Label Alternative for Use in Yogurt Production. Appl. Sci. 2025, 15, 2686. [Google Scholar] [CrossRef]
- Garzón, K.; Ortega, C.; Tenea, G.N. Characterization of Bacteriocin-Producing Lactic Acid Bacteria Isolated from Native Fruits of Ecuadorian Amazon. Pol. J. Microbiol. 2017, 66, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Tenea, G.N.; Angamarca, E.; Olmedo, D. Combinations of Peptide-Protein Extracts from Native Probiotics Suppress the Growth of Multidrug-Resistant Staphylococcus aureus and Citrobacter freundii via Membrane Perturbation and Ultrastructural Changes. Antibiotics 2022, 11, 154. [Google Scholar] [CrossRef]
- Molina, D.; Carrión-Olmedo, J.C.; Jarrín-V, P.; Tenea, G.N. Genome characterization of a multi-drug resistant Escherichia coli strain, L1PEag1, isolated from commercial cape gooseberry fruits (Physalis peruviana L.). Front. Microbiol. 2024, 15, 1392333. [Google Scholar] [CrossRef]
- Prete, R.; Alam, M.K.; Perpetuini, G.; Perla, C.; Pittia, P.; Corsetti, A. Lactic Acid Bacteria Exopolysaccharides Producers: A Sustainable Tool for Functional Foods. Foods 2021, 10, 1653. [Google Scholar] [CrossRef]
- Hamman, J.H. Composition and applications of Aloe vera leaf gel. Molecules 2008, 13, 1599–1616. [Google Scholar] [CrossRef]
- Matei, C.E.; Visan, A.I.; Cristescu, R. Aloe vera Polysaccharides as Therapeutic Agents: Benefits Versus Side Effects in Biomedical Applications. Polysaccharides 2025, 6, 36. [Google Scholar] [CrossRef]
- Tenea, G.N.; Reyes, P.; Flores, C. Crosslinking bacterial postbiotics for microbial and quality control of strawberries postharvest: Bacteriological and 16S amplicon metagenome evidence. Front. Microbiol. 2025, 16, 1570312. [Google Scholar] [CrossRef]
- Hisada, A.; Matsumoto, E.; Hirano, R.; Kanomi, M.; Bou Khalil, J.Y.; Raoult, D.; Ominami, Y. Detection of antimicrobial impact on gram-negative bacterial cell envelope based on single-cell imaging by scanning electron microscopy. Sci. Rep. 2023, 13, 11258. [Google Scholar] [CrossRef] [PubMed]
- Peres Fabbri, L.; Cavallero, A.; Vidotto, F.; Gabriele, M. Bioactive Peptides from Fermented Foods: Production Approaches, Sources, and Potential Health Benefits. Foods 2024, 13, 3369. [Google Scholar] [CrossRef] [PubMed]
- Lai, P.K.; Tresnak, D.T.; Hackel, B.J. Identification and elucidation of proline-rich antimicrobial peptides with enhanced potency and delivery. Biotechnol. Bioeng. 2019, 116, 2439–2450. [Google Scholar] [CrossRef] [PubMed]
- Molina, D.; Angamarca, E.; Marinescu, G.C.; Popescu, R.G.; Tenea, G.N. Integrating Metabolomics and Genomics to Uncover Antimicrobial Compounds in Lactiplantibacillus plantarum UTNGt2, a Cacao-Originating Probiotic from Ecuador. Antibiotics 2025, 14, 123. [Google Scholar] [CrossRef]
- Juárez, E.; Ruiz, A.; Cortez, O.; Sada, E.; Torres, M. Antimicrobial and immunomodulatory activity induced by loperamide in mycobacterial infections. Int. Immunopharmacol. 2018, 65, 29–36. [Google Scholar] [CrossRef]
- Kim, P.I.; Sohng, J.K.; Sung, C.; Joo, H.S.; Kim, E.M.; Yamaguchi, T.; Park, D.; Kim, B.G. Characterization and structure identification of an antimicrobial peptide, hominicin, produced by Staphylococcus hominis MBBL 2-9. Biochem. Biophys. Res. Commun. 2010, 399, 133–138. [Google Scholar] [CrossRef]
- Hong, Z.; Yu, T.T.; Yasir, M.; Sara, M.; Black, D.S.; Willcox, M.D.P.; Kuppusamy, R.; Kumar, N. Daidzein-based amphiphilic small molecular antimicrobial peptidomimetics as novel antimicrobial agents with anti-biofilm activity. ChemistrySelect 2024, 9, e202400502. [Google Scholar] [CrossRef]
- Dhayakaran, R.P.A.; Neethirajan, S.; Xue, J.; Shi, J. Characterization of antimicrobial efficacy of soy isoflavones against pathogenic biofilms. LWT-Food Sci. Technol. 2015, 63, 859–865. [Google Scholar] [CrossRef]
- Forouhandeh, H.; Haryani, Y.; Halid, N.A.; Guat, G.S.; Nor Khaizura, M.A.R.; Hatta, A.; Hasan, H. Antimicrobial activity and applications of fermentates from lactic acid bacteria—A review. Sustain. Food Technol. 2024, 2, 292–306. [Google Scholar] [CrossRef]
- Weremczuk-Jeżyna, I.; Grzegorczyk-Karolak, I. A Comprehensive Review of the Phenolic Compounds in Dracocephalum Genus (Lamiaceae) Related to Traditional Uses of the Species and Their Biological Activities. Molecules 2025, 30, 2017. [Google Scholar] [CrossRef] [PubMed]
- Reen, F.J.; Gutiérrez-Barranquero, J.A.; Parages, M.L.; O’Gara, F. Coumarin: A novel player in microbial quorum sensing and biofilm formation inhibition. Appl. Microbiol. Biotechnol. 2018, 102, 2063–2073. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Chagas, M.D.S.S.; Behrens, M.D.; Moragas-Tellis, C.J.; Penedo, G.X.M.; Silva, A.R.; Gonçalves-de-Albuquerque, C.F. Flavonols and Flavones as Potential Anti-Inflammatory, Antioxidant, and Antibacterial Compounds. Oxidative Med. Cell. Longev. 2022, 2022, 9966750. [Google Scholar] [CrossRef]
- Adhikari, A.A.; Ramachandran, D.; Chaudhari, S.N.; Powell, C.E.; Li, W.; McCurry, M.D.; Banks, A.S.; Devlin, A.S. A Gut-Restricted Lithocholic Acid Analog as an Inhibitor of Gut Bacterial Bile Salt Hydrolases. ACS Chem. Biol. 2021, 16, 1401–1412. [Google Scholar] [CrossRef]
- Casillas-Vargas, G.; Ocasio-Malavé, C.; Medina, S.; Morales-Guzmán, C.; Del Valle, R.G.; Carballeira, N.M.; Sanabria-Ríos, D.J. Antibacterial Fatty Acids: An Update of Possible Mechanisms of Action and Implications in the Development of the Next-Generation of Antibacterial Agents. Prog. Lipid Res. 2021, 82, 101093. [Google Scholar] [CrossRef]
- Arnison, P.G.; Bibb, M.J.; Bierbaum, G.; Bowers, A.A.; Bugni, T.S.; Bulaj, G.; Camarero, J.A.; Campopiano, D.J.; Challis, G.L.; Clardy, J.; et al. Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 2013, 30, 108–160. [Google Scholar] [CrossRef] [PubMed]
- Knappe, T.A.; Linne, U.; Robbel, L.; Marahiel, M.A. Insights into the biosynthesis and stability of the lasso peptide capistruin. Chem. Biol. 2009, 16, 1290–1298. [Google Scholar] [CrossRef] [PubMed]
- Repka, L.M.; Chekan, J.R.; Nair, S.K.; van der Donk, W.A. Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chem. Rev. 2017, 117, 5457–5520. [Google Scholar] [CrossRef]
- Cushnie, T.P.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents 2014, 44, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wang, Y.; Yang, G.; Zhang, Q.; Meng, L.; Xin, Y.; Jiang, X. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol. Res. 2021, 165, 105420. [Google Scholar] [CrossRef]
- Brogden, N.K.; Mehalick, L.; Fischer, C.L.; Wertz, P.W.; Brogden, K.A. The emerging role of peptides and lipids as antimicrobial epidermal barriers and modulators of local inflammation. Skin Pharmacol. Physiol. 2012, 25, 167–181. [Google Scholar] [CrossRef]
- Stevick, R.J.; Audrain, B.; Bedu, S.; Dray, N.; Ghigo, J.-M.; Pérez-Pascual, D. Anti-diarrheal drug loperamide induces dysbiosis in zebrafish microbiota via bacterial inhibition. Microbiome 2023, 11, 252. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Guo, H.; Cheng, Q.; Abbas, Z.; Tong, Y.; Yang, T.; Zhou, Y.; Zhang, H.; Wei, X.; et al. Optimization of Exopolysaccharide Produced by Lactobacillus plantarum R301 and Its Antioxidant and Anti-Inflammatory Activities. Foods 2023, 12, 2481. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, X.; Zheng, H.L.; Chen, J.Y.; Lin, L.B.; Zhang, Q.L. Purification and antibacterial properties of a novel bacteriocin against Escherichia coli from Bacillus subtilis isolated from blueberry ferments. LWT-Food Sci. Technol. 2021, 146, 111456. [Google Scholar] [CrossRef]
- Cheikhyoussef, A.; Pogori, N.; Chen, H.; Tian, F.; Chen, W.; Tang, J.; Zhang, H. Antimicrobial activity and partial characterization of bacteriocin-like inhibitory substances (BLIS) produced by Bifidobacterium infantis BCRC 14602. Food Control 2009, 20, 553–559. [Google Scholar] [CrossRef]
- Arena, M.P.; Capozzi, V.; Russo, P.; Drider, D.; Spano, G.; Fiocco, D. Immunobiosis and probiosis: Antimicrobial activity of lactic acid bacteria with a focus on their antiviral and antifungal properties. Appl. Microbiol. Biotechnol. 2016, 102, 9949–9958. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lin, S.; Fang, Q.; Gyampoh, R.; Lu, Z.; Gao, Y.; Clarke, D.J.; Wu, K.; Trembleau, L.; Yu, Y.; et al. A ribosomally synthesised and post-translationally modified peptide containing a β-enamino acid and a macrocyclic motif. Nat. Commun. 2022, 13, 5044. [Google Scholar] [CrossRef]
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.; MacDonald, P.; Wishart, D.; Li, S.; et al. MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 2024, 1, W398–W406. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Matsuura, Y.; Ishiguro-Watanabe, M. KEGG: Biological systems database as a model of the real world. Nucleic Acids Res. 2024, 1, D672–D677. [Google Scholar] [CrossRef]
- Agrawal, P.; Khater, S.; Gupta, M.; Sain, N.; Mohanty, D. RiPPMiner: A bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links. Nucleic Acids Res. 2017, 45, W80–W88. [Google Scholar] [CrossRef] [PubMed]
- Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform. 2015, 7, 20. [Google Scholar] [CrossRef] [PubMed]
Charge | Metabolite | Formula | Mass | Class | HMDB | PubChem | KEGG |
---|---|---|---|---|---|---|---|
ESI (−) | L-(-)-Malic acid | C4H6O5 | 133.02 | Beta hydroxy acids and derivatives | HMDB0000156 | 222656 | C00149 |
L-Phenylalanine | C9H11NO2 | 165.06 | Phenylalanine and derivatives | HMDB0000159 | 6140 | C00079 | |
Eriodictyol-7-neohesperidoside | C27H32O15 | 595.16 | Flavonoid-7-O-glycosides | - | - | - | |
Tryptophan | C11H12N2O2 | 203.09 | Indolyl carboxylic acids and derivatives | HMDB0000929 | 6305 | C00078 | |
DL-4-Hydroxyphenyllactic acid | C9H10O4 | 163.04 | 1-hydroxy-2-unsubstituted benzenoids | - | - | - | |
DL-p-Hydroxyphenyllactic acid | C9H10O4 | Phenylpropanoic acids | HMDB0000755 | 9378 | C03672 | ||
Glimepiride | C24H34N4O5S | 489.22 | Benzenesulfonamides | HMDB0014367 | 3476 | C07669 | |
Dihydrocoumarin | C9H8O2 | 147.05 | 3,4-dihydrocoumarins | HMDB0036626 | 660 | C02274 | |
Chrysin | C15H10O4 | 253.06 | Flavones | HMDB0036619 | 5281607 | C10028 | |
Pravastatin | C23H36O7 | 423.24 | Medium-chain hydroxy acids and derivatives | HMDB0005022 | 54687 | C01844 | |
(2S,3S,4S,5R,6R)-6-[[(3S,6aR,6bS,8aS,14bR)-4,4,6a,6b,11,11,14b-heptamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid | C42H66O14 | 793.44 | Triterpene saponins | - | - | - | |
Daidzein | C15H10O4 | 253.04 | Isoflavones | HMDB0003312 | 5281708 | C10208 | |
3,7,4′-Trihydroxyflavone (5-Deoxykampferol) | C15H10O5 | 269.05 | Flavonols | - | - | - | |
Palmitic acid | C16H32O2 | 255.24 | Long-chain fatty acids | - | - | - | |
C10-LAS | C16H26O3S | 297.16 | Benzenesulfonic acids and derivatives | - | - | - | |
Lithocholic Acid | C24H40O3 | 375.29 | Monohydroxy bile acids, alcohols and derivatives | HMDB0000761 | 9903 | C03990 | |
ESI (+) | Loperamide | C29H33ClN2O2 | 477.23 | Diphenylmethanes | HMDB0004999 | 3955 | C07080 |
Val–leu–pro–val–pro–gln | C31H53N7O8 | 244.12 | Oligopeptides | - | - | - | |
Lincomycin | C18H34N2O6S | 407.22 | Proline and derivatives | HMDB0015564 | 656509 | C06812 | |
Tri(butoxyethyl)phosphate | C18H39O7P | 399.24 | Trialkyl phosphates | - | - | - | |
Tetramethylscutellarein | C19H18O6 | 365.1 | 7-O-methylated flavonoids | HMDB0030575 | 96118 | C14472 | |
Tryptophan | C11H12N2O2 | 188.07 | Indolyl carboxylic acids and derivatives | HMDB0000929 | 6305 | C00078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenea, G.N.; Molina, D.; Cuamacas, Y.; Marinescu, G.C.; Popescu, R.G. Exometabolite-Based Antimicrobial Formulations from Lactic Acid Bacteria as a Multi-Target Strategy Against Multidrug-Resistant Escherichia coli. Antibiotics 2025, 14, 851. https://doi.org/10.3390/antibiotics14090851
Tenea GN, Molina D, Cuamacas Y, Marinescu GC, Popescu RG. Exometabolite-Based Antimicrobial Formulations from Lactic Acid Bacteria as a Multi-Target Strategy Against Multidrug-Resistant Escherichia coli. Antibiotics. 2025; 14(9):851. https://doi.org/10.3390/antibiotics14090851
Chicago/Turabian StyleTenea, Gabriela N., Diana Molina, Yuleissy Cuamacas, George Cătălin Marinescu, and Roua Gabriela Popescu. 2025. "Exometabolite-Based Antimicrobial Formulations from Lactic Acid Bacteria as a Multi-Target Strategy Against Multidrug-Resistant Escherichia coli" Antibiotics 14, no. 9: 851. https://doi.org/10.3390/antibiotics14090851
APA StyleTenea, G. N., Molina, D., Cuamacas, Y., Marinescu, G. C., & Popescu, R. G. (2025). Exometabolite-Based Antimicrobial Formulations from Lactic Acid Bacteria as a Multi-Target Strategy Against Multidrug-Resistant Escherichia coli. Antibiotics, 14(9), 851. https://doi.org/10.3390/antibiotics14090851