Molecular Epidemiology of tet(A)-v1-Positive Carbapenem-Resistant Klebsiella pneumoniae in Pediatric Patients in a Chinese Hospital
Abstract
1. Background
2. Results
2.1. Antimicrobial Resistance Profiles of tet(A)-v1-Positive CRKP
2.2. Genetic Background of tet(A)-v1-Positive CRKP
2.3. Antimicrobial Resistance Genes in tet(A)-v1-Positive CRKP
2.4. Hypervirulence-Associated Genes in tet(A)-v1-Positive CRKP
2.5. Clonal Transmission of tet(A)-v1-Positive CRKP
2.6. Diversity of tet(A)-v1-Carrying Plasmids
2.7. Conjugative Transferability of tet(A)-v1-Carrying Plasmids
2.8. Genetic Contexts of tet(A)-v1 in CRKP
3. Discussion
4. Methods
4.1. Study Design and Setting
4.2. Bacteria Isolates and Clinical Data Collection
4.3. Antimicrobial Susceptibility Testing
4.4. Conjugation Assay
4.5. DNA Extraction and Whole-Genome Sequencing
4.6. Bioinformatics Analysis
4.7. Phylogenetic Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Earley, M.; Chen, L.; Hanson, B.M.; Yu, Y.; Liu, Z.; Salcedo, S.; Cober, E.; Li, L.; Kanj, S.S.; et al. Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions (CRACKLE-2): A prospective, multicentre, cohort study. Lancet Infect. Dis. 2022, 22, 401–412. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, L.; Zhou, H.; Chan, E.W.; Li, J.; Fang, Y.; Li, Y.; Liao, K.; Chen, S. Nationwide Surveillance of Clinical Carbapenem-resistant Enterobacteriaceae (CRE) Strains in China. EBioMedicine 2017, 19, 98–106. [Google Scholar] [CrossRef]
- Xu, L.; Sun, X.; Ma, X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 18. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; van Dorp, L.; Shaw, L.P.; Bradley, P.; Wang, Q.; Wang, X.; Jin, L.; Zhang, Q.; Liu, Y.; Rieux, A.; et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 2018, 9, 1179. [Google Scholar] [CrossRef] [PubMed]
- Pankey, G.A. Tigecycline. J. Antimicrob. Chemother. 2005, 56, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Hoban, D.J.; Bouchillon, S.K.; Johnson, B.M.; Johnson, J.L.; Dowzicky, M.J. In vitro activity of tigecycline against 6792 Gram-negative and Gram-positive clinical isolates from the global Tigecycline Evaluation and Surveillance Trial (TEST Program, 2004). Diagn. Microbiol. Infect. Dis. 2005, 52, 215–227. [Google Scholar] [CrossRef]
- Dong, N.; Zeng, Y.; Cai, C.; Sun, C.; Lu, J.; Liu, C.; Zhou, H.; Sun, Q.; Shu, L.; Wang, H. Prevalence, transmission, and molecular epidemiology of tet (X)-positive bacteria among humans, animals, and environmental niches in China: An epidemiological, and genomic-based study. Sci. Total Environ. 2022, 818, 151767. [Google Scholar] [CrossRef]
- Li, Y.; Wang, T.; Li, Y.; Xu, C.; Wang, T.; Huang, L.; Zeng, X.; Zhang, G.; Li, C.; Dong, N. Fitness cost of tet (A) type I variant-mediated tigecycline resistance in Klebsiella pneumoniae. J. Glob. Antimicrob. Resist. 2024, 38, 158–162. [Google Scholar] [CrossRef]
- Korczak, L.; Majewski, P.; Iwaniuk, D.; Sacha, P.; Matulewicz, M.; Wieczorek, P.; Majewska, P.; Wieczorek, A.; Radziwon, P.; Tryniszewska, E. Molecular mechanisms of tigecycline-resistance among Enterobacterales. Front. Cell Infect. Microbiol. 2024, 14, 1289396. [Google Scholar] [CrossRef]
- Liu, C.; Guo, J.; Lu, M.; Shen, N.; Du, P. Dissemination of the mobilised RND efflux pump gene cluster tmexCD-toprJ among Klebsiella pneumoniae. Lancet Microbe 2023, 4, e135. [Google Scholar] [CrossRef]
- Zhai, W.; Tian, Y.; Lu, M.; Zhang, M.; Song, H.; Fu, Y.; Ma, T.; Sun, C.; Bai, L.; Wang, Y. Presence of mobile tigecycline resistance gene tet (X4) in clinical Klebsiella pneumoniae. Microbiol. Spectr. 2022, 10, e01021–e01081. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhu, Z.; Chen, Y.; Wang, W.; He, F. The Plasmid-Borne tet(A) Gene Is an Important Factor Causing Tigecycline Resistance in ST11 Carbapenem-Resistant Klebsiella pneumoniae Under Selective Pressure. Front. Microbiol. 2021, 12, 644949. [Google Scholar] [CrossRef] [PubMed]
- Tuckman, M.; Petersen, P.J.; Projan, S.J. Mutations in the interdomain loop region of the tetA(A) tetracycline resistance gene increase efflux of minocycline and glycylcyclines. Microb Drug Resist. 2000, 6, 277–282. [Google Scholar] [CrossRef]
- Hentschke, M.; Christner, M.; Sobottka, I.; Aepfelbacher, M.; Rohde, H. Combined ramR mutation and presence of a Tn1721-associated tet(A) variant in a clinical isolate of Salmonella enterica serovar Hadar resistant to tigecycline. Antimicrob. Agents Chemother. 2010, 54, 1319–1322. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Wang, L.; Zheng, X.; Zhang, Y.; Chen, T.; Zhou, C.; Xu, Y.; Chen, L.; Zhou, T. Evolution of tet(A) variant mediating tigecycline resistance in KPC-2-producing Klebsiella pneumoniae during tigecycline treatment. J. Glob. Antimicrob. Resist. 2022, 28, 168–173. [Google Scholar] [CrossRef]
- Peng, K.; Wang, Q.; Li, Y.; Wang, M.; Kurekci, C.; Li, R.; Wang, Z. Molecular mechanisms and genomic basis of tigecycline-resistant Enterobacterales from swine slaughterhouses. Microbiol. Res. 2022, 264, 127151. [Google Scholar] [CrossRef]
- Yu, R.; Li, L.; Zou, C.; Chen, Z.; Schwarz, S.; Chen, S.; Xu, C.; Yao, H.; Du, X.-D. Emergence of high-level tigecycline resistance due to the amplification of a tet(A) gene variant in clinical carbapenem-resistant Klebsiella pneumoniae. Clin. Microbiol. Infect. 2023, 29, e1451–e1452. [Google Scholar] [CrossRef]
- Gorrie, C.L.; Mirčeta, M.; Wick, R.R.; Judd, L.M.; Lam, M.M.C.; Gomi, R.; Abbott, I.J.; Thomson, N.R.; Strugnell, R.A.; Pratt, N.F.; et al. Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen. Nat. Commun. 2022, 13, 3017. [Google Scholar] [CrossRef]
- Chiu, S.-K.; Huang, L.-Y.; Chen, H.; Tsai, Y.-K.; Liou, C.-H.; Lin, J.-C.; Siu, L.K.; Chang, F.-Y.; Yeh, K.-M. Roles of ramR and tet(A) Mutations in Conferring Tigecycline Resistance in Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates. Antimicrob. Agents Chemother. 2017, 61, e00391-17. [Google Scholar] [CrossRef]
- Akiyama, T.; Presedo, J.; Khan, A.A. The tetA gene decreases tigecycline sensitivity of Salmonella enterica isolates. Int. J. Antimicrob. Agents 2013, 42, 133–140. [Google Scholar] [CrossRef]
- Du, X.; He, F.; Shi, Q.; Zhao, F.; Xu, J.; Fu, Y.; Yu, Y. The Rapid Emergence of Tigecycline Resistance in blaKPC-2 Harboring Klebsiella pneumoniae, as Mediated in Vivo by Mutation in tetA During Tigecycline Treatment. Front. Microbiol. 2018, 9, 648. [Google Scholar] [CrossRef] [PubMed]
- Linkevicius, M.; Sandegren, L.; Andersson, D.I. Potential of Tetracycline Resistance Proteins To Evolve Tigecycline Resistance. Antimicrob. Agents Chemother. 2016, 60, 789–796. [Google Scholar] [CrossRef]
- Guo, M.-Q.; Wang, Y.-T.; Wang, S.-S.; Chen, L.-K.; Xu, Y.-H.; Li, G. Genomic epidemiology of hypervirulent carbapenem-resistant Klebsiella pneumoniae at Jinshan local hospital, Shanghai, during 2014-2018. J. Microbiol. Immunol. Infect. 2024, 57, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, S.; Wei, X.; Lu, Z.; Qin, X.; Li, M. Infection with Carbapenem-resistant Hypervirulent Klebsiella Pneumoniae: Clinical, virulence and molecular epidemiological characteristics. Antimicrob. Resist. Infect. Control 2023, 12, 124. [Google Scholar] [CrossRef]
- Carfrae, L.A.; Rachwalski, K.; French, S.; Gordzevich, R.; Seidel, L.; Tsai, C.N.; Tu, M.M.; MacNair, C.R.; Ovchinnikova, O.G.; Clarke, B.R.; et al. Inhibiting fatty acid synthesis overcomes colistin resistance. Nat. Microbiol. 2023, 8, 1026–1038. [Google Scholar] [CrossRef] [PubMed]
- CLSI M100-Ed34; Performance Standards for Antimicrobial Susceptibility Testing. CLSI: Wayne, PA, USA, 2024.
- Tigecycline—Injection Products. Available online: https://www.fda.gov/drugs/development-resources/tigecycline-injection-products (accessed on 26 November 2024).
- Taylor, D.E.; De Grandis, S.A.; Karmali, M.A.; Fleming, P.C. Transmissible plasmids from Campylobacter jejuni. Antimicrob. Agents Chemother. 1981, 19, 831–835. [Google Scholar] [CrossRef]
- Li, R.; Xie, M.; Dong, N.; Lin, D.; Yang, X.; Wong, M.H.Y.; Chan, E.W.-C.; Chen, S. Efficient generation of complete sequences of MDR-encoding plasmids by rapid assembly of MinION barcoding sequencing data. Gigascience 2018, 7, gix132. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef]
- Lam, M.M.C.; Wick, R.R.; Watts, S.C.; Cerdeira, L.T.; Wyres, K.L.; Holt, K.E. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat. Commun. 2021, 12, 4188. [Google Scholar] [CrossRef] [PubMed]
- Calland, J.K.; Haukka, K.; Kpordze, S.W.; Brusah, A.; Corbella, M.; Merla, C.; Samuelsen, Ø.; Feil, E.J.; Sassera, D.; Karikari, A.B.; et al. Population structure and antimicrobial resistance among Klebsiella isolates sampled from human, animal, and environmental sources in Ghana: A cross-sectional genomic One Health study. Lancet Microbe 2023, 4, e943–e952. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006, 34, D32–D36. [Google Scholar] [CrossRef]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef]
- Alikhan, N.-F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011, 12, 402. [Google Scholar] [CrossRef]
- snp-dists. Available online: https://github.com/tseemann/snp-dists (accessed on 26 November 2024).
- Milenkov, M.; Proux, C.; Rasolofoarison, T.L.; Rakotomalala, F.A.; Rasoanandrasana, S.; Rahajamanana, V.L.; Rafalimanana, C.; Ravaoarisaina, Z.; Ramahatafandry, I.T.H.; Westeel, E.; et al. Implementation of the WHO Tricycle protocol for surveillance of extended-spectrum β-lactamase producing Escherichia coli in humans, chickens, and the environment in Madagascar: A prospective genomic epidemiology study. Lancet Microbe 2024, 5, 100850. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Xia, R. A painless way to customize Circos plot: From data preparation to visualization using TBtools. Imeta 2022, 1, e35. [Google Scholar] [CrossRef]
- Subramanian, B.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.-H. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019, 47, W270–W275. [Google Scholar] [CrossRef]
- Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014, 15, 524. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.-F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef]
- Gong, T.; Jiang, Y.; Saldivia, L.E.; Agard, C. Using Sankey diagrams to visualize drag and drop action sequences in technology-enhanced items. Behav. Res. Methods 2022, 54, 117–132. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Li, C.; Li, Y.; Zeng, X.; Yang, Y.; Zhou, M.; Jiang, J.; Li, Y.; Zhang, G.; Li, X.; et al. Molecular Epidemiology of tet(A)-v1-Positive Carbapenem-Resistant Klebsiella pneumoniae in Pediatric Patients in a Chinese Hospital. Antibiotics 2025, 14, 852. https://doi.org/10.3390/antibiotics14090852
Xu C, Li C, Li Y, Zeng X, Yang Y, Zhou M, Jiang J, Li Y, Zhang G, Li X, et al. Molecular Epidemiology of tet(A)-v1-Positive Carbapenem-Resistant Klebsiella pneumoniae in Pediatric Patients in a Chinese Hospital. Antibiotics. 2025; 14(9):852. https://doi.org/10.3390/antibiotics14090852
Chicago/Turabian StyleXu, Chen, Chunli Li, Yuanyuan Li, Xiangkun Zeng, Yi Yang, Mi Zhou, Jiani Jiang, Yunbing Li, Guangfen Zhang, Xiaofan Li, and et al. 2025. "Molecular Epidemiology of tet(A)-v1-Positive Carbapenem-Resistant Klebsiella pneumoniae in Pediatric Patients in a Chinese Hospital" Antibiotics 14, no. 9: 852. https://doi.org/10.3390/antibiotics14090852
APA StyleXu, C., Li, C., Li, Y., Zeng, X., Yang, Y., Zhou, M., Jiang, J., Li, Y., Zhang, G., Li, X., You, J., Liu, Y., Huang, L., Chen, S., & Dong, N. (2025). Molecular Epidemiology of tet(A)-v1-Positive Carbapenem-Resistant Klebsiella pneumoniae in Pediatric Patients in a Chinese Hospital. Antibiotics, 14(9), 852. https://doi.org/10.3390/antibiotics14090852