In Vitro Synergism of Silver Nanoparticles with Antibiotics as an Alternative Treatment in Multiresistant Uropathogens
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of AgNPs
2.2. Samples and Bacterial Strains
2.3. Antimicrobial Test
2.4. Checkerboard Synergy
2.5. Cytotoxicity of AgNPs
3. Materials and Methods
3.1. Synthesis of AgNPs
3.2. Characterization of AgNPs
3.3. Preparation and Characterization of Combinations of AgNPs with Antibiotics
3.4. Patients
3.5. Microbiological Analysis
3.5.1. Sample Collection and Bacterial Culture
3.5.2. Identification and Antimicrobial Susceptibility Profile of Clinical Strains
3.5.3. Conservation of Strains
3.6. Antimicrobial Test
3.7. Checkerboard Synergy
3.8. Cytotoxicity of AgNPs
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A. FIC Calculation
- FIC of AgNPs = MICAgNPs in combination/MICAgNPs alone
- FIC of Antibiotic = MICAntibiotic in combination/MICAntibiotic alone
- FIC index = FIC of AgNPs + FIC of Antibiotic
References
- Dielubanza, E.J.; Schaeffer, A.J. Urinary tract infections in women. Med. Clin. N. Am. 2011, 95, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Stamm, W.E.; Norrby, S.R. Urinary tract infections: Disease panorama and challenges. J. Infect. Dis. 2001, 183 (Suppl. 1), S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; et al. Multistate point-prevalence survey of health care-associated infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Basu, S.; Mukherjee, S.K.; Majumder, M. Multidrug-Resistance and Extended Spectrum Beta-Lactamase Production in Uropathogenic E. coli which were Isolated from Hospitalized Patients in Kolkata, India. J. Clin. Diagn. Res. 2013, 7, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Ronald, A. The etiology of urinary tract infection: Traditional and emerging pathogens. Am. J. Med. 2002, 113 (Suppl. 1A), 14S–19S. [Google Scholar] [CrossRef]
- Iacovelli, V.; Gaziev, G.; Topazio, L.; Bove, P.; Vespasiani, G.; Finazzi Agrò, E. Nosocomial urinary tract infections: A review. Urologia 2014, 81, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Saint, S.; Lipsky, B.A.; Goold, S.D. Indwelling urinary catheters: A one-point restraint? Ann. Intern. Med. 2002, 137, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Stickler, D.J. Bacterial biofilms in patients with indwelling urinary catheters. Nat. Clin. Pract. Urol. 2008, 5, 598–608. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, P.; Shanmugam, N.; Sivaraman, U.; Kumar, S.; Selvaraj, S. Antiobiotic resistance pattern of biofilm-forming uropathogens isolated from catheterised patients in Pondicherry, India. Australas. Med. J. 2012, 5, 344–348. [Google Scholar] [PubMed]
- Goller, C.C.; Romeo, T. Environmental influences on biofilm development. Curr. Top. Microbiol. Immunol. 2008, 322, 37–66. [Google Scholar] [PubMed]
- Mah, T.F.; O’Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39. [Google Scholar] [CrossRef]
- Mittal, S.; Sharma, M.; Chaudhary, U. Biofilm and multidrug resistance in uropathogenic Escherichia coli. Pathog. Glob. Health 2015, 109, 26–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef]
- Trautner, B.W.; Darouiche, R.O. Role of biofilm in catheter-associated urinary tract infection. Am. J. Infect. Control 2004, 32, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Stickler, D.J. Clinical complications of urinary catheters caused by crystalline biofilms: Something needs to be done. J. Intern. Med. 2014, 276, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Theuretzbacher, U. Antibiotic innovation for future public health needs. Clin. Microbiol. Infect. 2017, 23, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R.; Toleman, M.A. The emergence of pan-resistant Gram-negative pathogens merits a rapid global political response. J. Antimicrob. Chemother. 2012, 67, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gutierrez, F.; Olive, P.L.; Banuelos, A.; Orrantia, E.; Nino, N.; Sanchez, E.M.; Ruiz, F.; Bach, H.; Av-Gay, Y. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine 2010, 6, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [PubMed]
- Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; Jimenez de Aberasturi, D.; de Larramendi, I.R.; Rojo, T. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30, 499–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birla, S.S.; Tiwari, V.V.; Gade, A.K.; Ingle, A.P.; Yadav, A.P.; Rai, M.K. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett. Appl. Microbiol. 2009, 48, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Mala, R.; Annie Aglin, A.; Ruby Celsia, A.S.; Geerthika, S.; Kiruthika, N.; VazagaPriya, C.; Srinivasa Kumar, K. Foley catheters functionalised with a synergistic combination of antibiotics and silver nanoparticles resist biofilm formation. IET Nanobiotechnol. 2017, 11, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Braydich-Stolle, L.; Hussain, S.; Schlager, J.J.; Hofmann, M.C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005, 88, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.M.; Hess, K.L.; Gearhart, J.M.; Geiss, K.T.; Schlager, J.J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 2005, 19, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Tauran, Y.; Brioude, A.; Coleman, A.W.; Rhimi, M.; Kim, B. Molecular recognition by gold, silver and copper nanoparticles. World J. Biol. Chem. 2013, 4, 35–63. [Google Scholar] [CrossRef] [PubMed]
- Yoosaf, K.; Ipe, B.I.; Suresh, C.H.; Thomas, K.G. In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J. Phys. Chem. C 2007, 111, 12839–12847. [Google Scholar] [CrossRef]
- Hur, Y.E.; Kim, S.; Kim, J.-H.; Cha, S.-H.; Choi, M.-J.; Cho, S.; Park, Y. One-step functionalization of gold and silver nanoparticles by ampicillin. Mater. Lett. 2014, 129, 185–190. [Google Scholar] [CrossRef]
- Rogowska, A.; Rafińska, K.; Pomastowski, P.; Walczak, J.; Railean-Plugaru, V.; Buszewska-Forajta, M.; Buszewski, B. Silver nanoparticles functionalized with ampicillin. Electrophoresis 2017, 38, 2757–2764. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; McShan, D.; Zhang, Y.; Sinha, S.S.; Arslan, Z.; Ray, P.C.; Yu, H. Mechanistic Study of the Synergistic Antibacterial Activity of Combined Silver Nanoparticles and Common Antibiotics. Environ. Sci. Technol. 2016, 50, 8840–8848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.S.; Hwang, J.H.; Choi, H.; Kim, K.J.; Lee, D.G. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J. Med. Microbiol. 2012, 61, 1719–1726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; CLSI Supplement M100; CLSI: Wayne, PA, USA, 2017. [Google Scholar]
DLS | TEM | |||||
---|---|---|---|---|---|---|
Hydrodynamic Diameter (nm) | Hydrodynamic Diameter in DMEM (nm) | Zeta Potential (mV) | Zeta Potential in DMEM (mV) | Diameter (nm) | Diameter in DMEM (nm) | |
AgNPs | 8.23 ± 0.91 | 39.25 ± 6.42 | −40.80 ± 9.54 | −16.20 ± 0.0 | 8.57 ± 1.17 | 25.08 ± 2.74 |
AgNPs + AMP | 4.69 ± 0.51 | 26.25 ± 5.55 | −51.00 ± 20.20 | −15.60 ± 0.0 | 4.01 ± 0.80 | 24.17 ± 16.29 |
AgNPs + AMK | 947.90 ± 65.30 | 222.50 ± 47.10 | −21.10 ± 4.63 | −18.10 ± 7.56 | 6.03 ± 0.87 | 6.14 ± 0.99 |
Clinical Strains | MIC (µg/mL) | Fold Change | MIC (µg/mL) | Fold Change | |||
---|---|---|---|---|---|---|---|
AgNPs | AMK | AgNPs + AMK * | AMP | AgNPs + AMP * | |||
Gram-positive | |||||||
Enterococcus faecium | 8 | 128 | 4 | 32 | 128 | 8 | 16 |
Staphylococcus aureus | 8 | 4 | 2 | 2 | 4 | 4 | 1 |
Gram-negative | |||||||
Acinetobacter baumannii | 16 | 128 | 4 | 32 | 128 | 8 | 16 |
Enterobacter cloacae | 16 | 16 | 8 | 2 | 128 | 32 | 4 |
Escherichia coli (501) ** | 8 | 64 | 4 | 16 | 128 | 8 | 16 |
Escherichia coli (508) ** | 8 | 4 | 1 | 4 | 128 | 8 | 16 |
Escherichia coli (515) ** | 8 | 32 | 8 | 4 | 128 | 8 | 16 |
Klebsiella pneumoniae | 4 | 4 | 2 | 2 | 128 | 4 | 32 |
Morganella morganii | 8 | 8 | 4 | 2 | 128 | 8 | 16 |
Pseudomonas aeruginosa | 4 | 32 | 4 | 8 | 128 | 4 | 32 |
Bacterial Strains | FIC Index | |||
---|---|---|---|---|
AgNPs + AMK | AgNPs + AMP | |||
Gram-positive | ||||
Staphylococcus aureus (ATCC 25923) | 1.06 | (AD) | 1.03 | (AD) |
Enterococcus faecium | 0.53 | (PS) | 0.56 | (PS) |
Staphylococcus aureus | 0.63 | (PS) | 1.25 | (AD) |
Gram-negative | ||||
Escherichia coli (ATCC 25922) | 0.31 | (S) | 1.50 | (AD) |
Acinetobacter baumannii | 0.28 | (S) | 0.31 | (S) |
Enterobacter cloacae | 0.75 | (PS) | 1.25 | (AD) |
Escherichia coli (501) ** | 0.56 | (PS) | 0.56 | (PS) |
Escherichia coli (508) ** | 0.31 | (S) | 0.56 | (PS) |
Escherichia coli (515) ** | 0.75 | (PS) | 0.56 | (PS) |
Klebsiella pneumoniae | 0.75 | (PS) | 0.53 | (PS) |
Morganella morganii | 0.75 | (PS) | 0.56 | (PS) |
Pseudomonas aeruginosa | 0.63 | (PS) | 0.53 | (PS) |
Clinical Strains | Viability of Fibroblasts (%) | ||||
---|---|---|---|---|---|
AgNPs | AMK | AgNPs + AMK | AMP | AgNPs + AMP | |
E. faecium | >80 | ≈55 | >90 | >90 | 85–95 |
A. baumannii | 72 | ≈55 | >90 | >90 | 85–95 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Carrizales, M.; Velasco, K.I.; Castillo, C.; Flores, A.; Magaña, M.; Martinez-Castanon, G.A.; Martinez-Gutierrez, F. In Vitro Synergism of Silver Nanoparticles with Antibiotics as an Alternative Treatment in Multiresistant Uropathogens. Antibiotics 2018, 7, 50. https://doi.org/10.3390/antibiotics7020050
Lopez-Carrizales M, Velasco KI, Castillo C, Flores A, Magaña M, Martinez-Castanon GA, Martinez-Gutierrez F. In Vitro Synergism of Silver Nanoparticles with Antibiotics as an Alternative Treatment in Multiresistant Uropathogens. Antibiotics. 2018; 7(2):50. https://doi.org/10.3390/antibiotics7020050
Chicago/Turabian StyleLopez-Carrizales, Montserrat, Karla Itzel Velasco, Claudia Castillo, Andrés Flores, Martín Magaña, Gabriel Alejandro Martinez-Castanon, and Fidel Martinez-Gutierrez. 2018. "In Vitro Synergism of Silver Nanoparticles with Antibiotics as an Alternative Treatment in Multiresistant Uropathogens" Antibiotics 7, no. 2: 50. https://doi.org/10.3390/antibiotics7020050
APA StyleLopez-Carrizales, M., Velasco, K. I., Castillo, C., Flores, A., Magaña, M., Martinez-Castanon, G. A., & Martinez-Gutierrez, F. (2018). In Vitro Synergism of Silver Nanoparticles with Antibiotics as an Alternative Treatment in Multiresistant Uropathogens. Antibiotics, 7(2), 50. https://doi.org/10.3390/antibiotics7020050