Alkaloid-Rich Crude Extracts, Fractions and Piperamide Alkaloids of Piper guineense Possess Promising Antibacterial Effects
Abstract
:1. Introduction
2. Results
2.1. Antibacterial Activity
2.1.1. Antibacterial Activity of P. guineense Extracts against Pseudomonas aeruginosa
2.1.2. Antibacterial Activity of P. guineense Extracts against Bacillus Cereus
2.1.3. Antibacterial Activity of P. guineense Extracts against Staphylococcus Aureus
2.1.4. Antibacterial Activity of P. guineense Extracts against Sarcina sp.
2.1.5. Antibacterial Activity of P. guineense Extracts against Proteus Mirabilis
2.1.6. Antibacterial Activity of P. guineense Extracts against Enterobacter aerogenes
2.1.7. Antibacterial Activity of P. guineense Extracts against Escherichia coli
2.1.8. Antibacterial Activity of P. guineense Extracts against Salmonella enterica
2.2. UHPLC/QTOF-MS Results
3. Discussion
4. Materials and Methods
4.1. Plant Material Collection
4.2. Extraction
4.3. Methods of Analytical Chemistry
4.3.1. HPLC-UV/DAD Method
4.3.2. UHPLC/Q-TOF MS Method
4.4. Bacterial Strains
4.4.1. Antibiotics and Pure Compounds
4.4.2. Agar Disk Diffusion Method
4.4.3. Microdilution Method for MIC and MBC Estimation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mulholland, E.K.; Adegbola, R.A. Bacterial infections—A major cause of death among children in Africa. N. Engl. J. Med. 2005, 352, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Palaniappan, K.; Holley, R.A. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int. J. Food Microbiol. 2010, 140, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Irshad, S.; Ashfaq, A.; Muazzam, A.; Yasmeen, A. Antimicrobial and anti-prostate cancer activity of turmeric (Curcuma longa L.) and black pepper (Piper nigrum L.) used in typical Pakistani cuisine. Pak. J. Zool. 2017, 49, 5. [Google Scholar] [CrossRef]
- Alviano, D.; Alviano, C. Plant extracts: Search for new alternatives to treat microbial diseases. Curr. Pharm. Biotechnol. 2009, 10, 106–121. [Google Scholar] [CrossRef] [PubMed]
- Subramani, R.; Narayanasamy, M.; Feussner, K. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech 2017, 7, 172. [Google Scholar] [CrossRef] [PubMed]
- Agyare, C.; Spiegler, V.; Asase, A.; Schulz, M.; Hempel, G.; Hensel, A. An ethnopharmacological survey of medicinal plants traditionally used for cancer treatment in the Ashanti region, Ghana. J. Ethnopharmacol. 2018, 212, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Besong, E.E.; Balogun, M.E.; Djobissie, S.F.; Mbamalu, O.S.; Obimma, J.N. A review of Piper guineense (African Black Pepper). Int. J. Pharm. Pharm. Res. 2016, 6, 368–384. [Google Scholar]
- Mgbeahuruike, E.E.; Yrjönen, T.; Vuorela, H.; Holm, Y. Bioactive compounds from medicinal plants: Focus on Piper species. S. Afr. J. Bot. 2017, 112, 54–69. [Google Scholar] [CrossRef]
- Mgbeahuruike, E.E.; Vuorela, H.; Yrjonen, T.; Holm, Y. Optimization of thin-layer chromatography and high-performance liquid chromatographic method for Piper guineense extracts. Nat. Prod. Commun. 2018, 13, 25–28. [Google Scholar]
- Abila, B.; Richens, A.; Davies, J. Anticonvulsant effects of extracts of the West African black pepper, Piper guineense. J. Ethnopharmacol. 1993, 39, 113–117. [Google Scholar] [CrossRef]
- Freiesleben, S.H.; Soelberg, J.; Jäger, A.K. Medicinal plants used as excipients in the history in Ghanaian herbal medicine. J. Ethnopharmacol. 2015, 174, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Ene-Obong, H.; Onuoha, N.; Aburime, L.; Mbah, O. Chemical composition and antioxidant activities of some indigenous spices consumed in Nigeria. Food Chem. 2018, 238, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Ajibesin, K.; Bala, D.N.; Umoh, U.F. The use of medicinal plants to treat sexually transmitted diseases in Nigeria: Ethnomedicinal survey of Niger Delta Region. Int. J. Green Pharm. 2011, 5, 3. [Google Scholar] [CrossRef]
- Parmar, V.S.; Jain, S.C.; Bisht, K.S.; Jain, R.; Taneja, P.; Jha, A.; Tyagi, O.D.; Prasad, A.K.; Wengel, J.; Olsen, C.E. Phytochemistry of the genus Piper. Phytochemistry 1997, 46, 597–673. [Google Scholar] [CrossRef]
- Adesina, S.K.; Adebayo, A.S.; Adesina, S.K.; Groning, R. New constituents of Piper guineense fruit and leaf. Pharmazie 2003, 58, 423–425. [Google Scholar] [CrossRef] [PubMed]
- Scott, I.M.; Puniani, E.; Jensen, H.; Livesey, J.F.; Poveda, L.; Sánchez-Vindas, P.; Durst, T.; Arnason, J.T. Analysis of Piperaceae germplasm by HPLC and LCMS: A method for isolating and identifying unsaturated amides from Piper spp extracts. J. Agric. Food Chem. 2005, 53, 1907–1913. [Google Scholar] [CrossRef] [PubMed]
- Umadevi, P.; Deepti, K.; Venugopal, D.V. Synthesis, anticancer and antibacterial activities of piperine analogs. Med. Chem. Res. 2013, 22, 5466–5471. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Dada, A.A.; Ifesan, B.O.T.; Fashakin, J.F. Antimicrobial and antioxidant properties of selected local spices used in “Kunun” beverage in Nigeria. Acta Sci. Pol. Technol. Aliment. 2013, 12, 373–378. [Google Scholar]
- Omonigbehin, E.A.; Deji-Agboola, M.A.; Ezeh, A.R.; Smitha, S.I.; Bamidele, M.; Fesobi, T.W.; Adenike, F.M.; Kayode, A.S.; Oluwadun, A. Piper guineense: Apossible alternative treatment for multidrug resistant EHEC. Int. J. Appl. Sci. Technol. 2013, 3, 2. [Google Scholar]
- Ebana, R.; Edet, U.; Ekanemesang, U.; Ikon, G.; Etok, C.; Edet, A. Antimicrobial activity, phytochemical screening and nutrient analysis of Tetrapleura tetraptera and Piper guineense. Asian J. Med. Health 2016, 1, 1–8. [Google Scholar] [CrossRef]
- Tekwu, E.M.; Askun, T.; Kuete, V.; Nkengfack, A.E.; Nyasse, B.; Etoa, F.; Beng, V.P. Antibacterial activity of selected Cameroonian dietary spices ethno-medically used against strains of Mycobacterium tuberculosis. J. Ethnopharmacol. 2012, 142, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Konning, G.; Agyare, C.; Ennison, B. Antimicrobial activity of some medicinal plants from Ghana. Fitoterapia 2004, 75, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Chavarria, D.; Silva, T.; Magalhães e Silva, D.; Remião, F.; Borges, F. Lessons from black pepper: Piperine and derivatives thereof. Expert Opin. Ther. Pat. 2016, 26, 245–264. [Google Scholar] [CrossRef] [PubMed]
- Philipova, I.; Valcheva, V.; Mihaylova, R.; Mateeva, M.; Doytchinova, I.; Stavrakov, G. Synthetic piperine amide analogs with antimycobacterial activity. Chem. Biol. Drug Des. 2018, 91, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Eruteya, O.; Ire, F.; Aneke, C. Evaluation of the Extracts of Piper guineense for Antibacterial activity against spoilage bacteria of Rivers State ‘Native’Soup. J. Environ. Sci. Toxicol. Food Technol. 2017, 11, 68–73. [Google Scholar]
- Naika, R.; Prasanna, K.; Ganapathy, P.S. Antibacterial activity of piperlongumine an alkaloid isolated from methanolic root extract of Piper Longum L. Pharmacophore 2010, 1, 141–148. [Google Scholar]
- Laass, M.W.; Pargac, N.; Fischer, R.; Bernhardt, H.; Knoke, M.; Henker, J. Emphyseamtic gastritis caused by Sarcina ventriculi. Gastrointest. Endosc. 2010, 72, 1101–1103. [Google Scholar] [CrossRef] [PubMed]
- Lam-Himlin, D.; Tsiatis, A.C.; Montgomery, E.; Pai, R.K.; Brown, J.A.; Razavi, M.; Lamps, L.; Eshleman, J.R.; Bhagavan, B.; Anders, R.A. Sarcina organisms in the gastrointestinal tract: A clinicopathologic and molecular study. Am. J. Surg. Pathol. 2011, 35, 1700–1705. [Google Scholar] [CrossRef] [PubMed]
- De Meij, T.G.; Van Wijk, M.P.; Mookhoek, A.; Budding, A.E. Ulcerative Gastritis and esophagitis in two Children with Sarcina ventriculi Infection. Front. Med. 2017, 4, 145. [Google Scholar] [CrossRef] [PubMed]
- Okeke, M.; Iroegbu, C.; Jideofor, C.; Okoli, A.; Esimone, C. Anti-microbial activity of ethanol extracts of two indigenous Nigerian spices. J. Herbs Spices Med. Plants 2001, 8, 39–46. [Google Scholar] [CrossRef]
- Jha, P.; Kim, C.; Kim, D.; Chung, J.; Yoon, N.; Jha, B.; Kim, S.W.; Jang, S.J.; Ahn, Y.; Chung, J.K. Transmission of Enterobacter aerogenes septicemia in healthcare workers. SpringerPlus 2016, 5, 1397. [Google Scholar] [CrossRef] [PubMed]
- Temitope, O.O. Comparative study of antibacterial and phytochemical properties of nigerian medicinal plants on salmonella bongori and salmonella enteritidis isolated from poultry feaces in owo local government. Ondo State, Nigeria. J. Arch. Curr. Res. Int. 2015, 2, 1–11. [Google Scholar] [CrossRef]
- Juliani, H.R.; Koroch, A.; Giordano, L.; Amekuse, L.; Koffa, S.; Asante-Dartey, J.; Simon, J. Piper guineense (Piperaceae): Chemistry, traditional uses and functional properties of West African black pepper. In African Natural Plant Products Volume II: Discoveries and Challenges in Chemistry, Health and Nutrition; ACS Publications: Edison, NJ, USA, 2013; pp. 33–48. [Google Scholar]
- Kotte, S.C.B.; Dubey, P.; Murali, P. Identification and characterization of stress degradation products of piperine and profiling of a black pepper (Piper nigrum L.) extract using LC/Q-TOF-dual ESI-MS. Anal. Methods 2014, 6, 8022–8029. [Google Scholar]
- Liu, H.; Luo, R.; Chen, X.; Ba, Y.; Zheng, L.; Guo, W.; Wu, X. Identification and simultaneous quantification of five alkaloids in Piper longum L. by HPLC–ESI-MS and UFLC–ESI-MS/MS and their application to Piper nigrum L. Food Chem. 2015, 177, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [Google Scholar] [CrossRef] [PubMed]
- Rasamiravaka, T.; Labtani, Q.; Duez, P.; El Jaziri, M. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. BioMed Res. Int. 2015, 2015, 759348. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, S.J.; Mutters, N.T.; Blessing, B.; Günther, F. Natural isothiocyanates express antimicrobial activity against developing and mature biofilms of Pseudomonas aeruginosa. Fitoterapia 2017, 119, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Mirhoseini, A.; Amani, J.; Nazarian, S. Review on pathogenicity mechanism of enterotoxigenic Escherichia coli and vaccines against it. Microb. Pathog. 2018, 117, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Karsha, P.V.; Lakshmi, O.B. Antibacterial activity of black pepper (Piper nigrum Linn.) with special reference to its mode of action on bacteria. Ind. J. Nat. Prod. Res. 2010, 1, 213–215. [Google Scholar]
- Dusane, D.H.; Hosseinidoust, Z.; Asadishad, B.; Tufenkji, N. Alkaloids modulate motility, biofilm formation and antibiotic susceptibility of uropathogenic Escherichia coli. PLoS ONE 2014, 9, e112093. [Google Scholar] [CrossRef] [PubMed]
- Mirza, Z.M.; Kumar, A.; Kalia, N.P.; Zargar, A.; Khan, I.A. Piperine as an inhibitor of the MdeA efflux pump of Staphylococcus aureus. J. Med. Microbiol. 2011, 60, 1472–1478. [Google Scholar] [CrossRef] [PubMed]
- Stavri, M.; Piddock, L.J.; Gibbons, S. Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother. 2006, 59, 1247–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anyanwu, C.; Nwosu, G. Assessment of the antimicrobial activity of aqueous and ethanolic extracts of Piper guineense leaves. J. Med. Plants Res. 2014, 8, 436–440. [Google Scholar] [CrossRef]
- Salih, E.; Kanninen, M.; Sipi, M.; Luukkanen, O.; Hiltunen, R.; Vuorela, H.; Julkunen-Tiitto, R.; Fyhrquist, P. Tannins, flavonoids and stilbenes in extracts of African savanna woodland trees Terminalia brownii, Terminalia laxiflora and Anogeissus leiocarpus showing promising antibacterial potential. S. Afr. J. Bot. 2017, 108, 370–386. [Google Scholar] [CrossRef]
- Taulavuori, K.; Julkunen-Tiitto, R.; Hyöky, V.; Taulavuori, E. Blue mood for superfood. Nat. Prod. Commun. 2013, 8, 791–794. [Google Scholar]
- Fyhrquist, P.; Laakso, I.; Marco, S.G.; Julkunen-Tiitto, R.; Hiltunen, R. Antimycobacterial activity of ellagitannin and ellagic acid derivate rich crude extracts and fractions of five selected species of Terminalia used for treatment of infectious diseases in African traditional medicine. S. Afr. J. Bot. 2014, 90, 1–16. [Google Scholar] [CrossRef]
- Cockerill, F.R.; Wikler, M.; Bush, K.; Dudley, M.; Eliopoulos, G.; Hardy, D. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Second Informational Supplement; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
Extracts/Antibiotics | E. aerogenes | AI Tet. | E. coli | AI Tet. | P. aeruginosa | AI Tet. | S. enterica | AI Tet. | P. mirabilis | AI Tet. |
---|---|---|---|---|---|---|---|---|---|---|
PSMeOH | 49.7 ± 0.33 | 1.10 | 20.7 ± 0.33 | 0.42 | 16.3 ±0.33 | 0.29 | 13.3 ± 0.67 | 0.31 | 13.7± 0.72 | 0.34 |
PSCHCL3 | 11.3 ± 0.33 | 0.25 | 20.3 ± 0.33 | 0.41 | 17.7 ±0.33 | 0.32 | 18.0 ± 0.0 | 0.32 | 11.3 ± 0.33 | 0.28 |
PSHex | 34.7 ± 0.33 | 0.76 | NA | NA | NA | NA | 12.7 ± 0.71 | 0.23 | 11.7 ± 0.33 | 0.29 |
PSH2O * | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
PSHH2O | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
PSEthanol | 30.2 ± 0.17 | 0.67 | 19.8 ± 0.24 | 0.40 | NT | NT | 21.7 ± 0.33 | 0.39 | 16.3 ± 0.32 | 0.40 |
PLMeOH | 29.3 ± 0.33 | 0.65 | 11.3 ± 0.33 | 0.23 | 15.3 ± 0.33 | 0.28 | 12.0 ± 0.00 | 0.22 | 11.3 ± 0.31 | 0.28 |
PLCHCL3 | 11.3 ± 0.33 | 0.25 | 20.3 ± 0.33 | 0.41 | 21.3 ± 0.33 | 0.38 | 11.7 ± 0.33 | 0.21 | 10.7 ± 0.23 | 0.26 |
PLHex | 17.8 ± 0.17 | 0.39 | NA | NA | NA | NA | NA | NA | 11.7 ± 0.33 | 0.29 |
PLH2O * | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
PLHH2O | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
PLEthanol | 25.0 ± 0.00 | 0.55 | 16.3 ± 0.33 | 0.33 | NT | NT | 16.2 ± 0.24 | 0.29 | 13.8 ± 0.2 | 0.34 |
Piperine | 18.7 ± 0.67 | 0.41 | 22.3 ± 0.32 | 0.45 | 15.7 ± 0.73 | 0.28 | 14.7 ± 0.32 | 0.26 | 16.0 ± 0.63 | 0.39 |
Piperlongumine | 12.7 ± 0.65 | 0.28 | 20.0 ± 0.33 | 0.40 | 13.3 ± 0.32 | 0.24 | 11.3 ± 0.33 | 0.20 | NA | NA |
Rifampicin | 38.0 ± 0.00 | 0.84 | 40.3 ± 0.34 | 0.81 | 45.3 ± 0.33 | 0.81 | 39.3 ± 0.33 | 0.71 | 34.3 ± 0.33 | 0.8 |
Tetracycline | 45.3 ± 0.67 | 1.00 | 49.7 ± 0.33 | 1.00 | 55.7 ± 0.33 | 1.00 | 55.7 ± 0.33 | 1.00 | 40.7 ± 0.74 | 1.00 |
Extracts/Antibiotics | Sarcina sp. | AI Tet. | S. aureus | AI Tet. | B. cereus | AI Tet. |
---|---|---|---|---|---|---|
PSMeOH | 29.83 ± 0.17 | 0.72 | 15.7 ± 0.33 | 0.32 | 23.7 ± 0.32 | 0.44 |
PSCHCL3 | 31.67 ± 0.33 | 0.76 | 17.3 ± 0.67 | 0.35 | 15.7 ± 0.33 | 0.29 |
PSHex | 37.67 ± 0.33 | 0.90 | 17.3 ± 0.33 | 0.35 | 19.7 ± 0.33 | 0.36 |
PSH2O * | 10.67 ± 0.33 | 0.26 | NA | NA | NA | NA |
PSHH2O | 17.67 ± 0.33 | 0.42 | NA | NA | NA | NA |
PSEthanol | 28.33 ± 0.33 | 0.68 | 22.67 ± 0.33 | 0.46 | 24.5 ± 0.33 | 0.45 |
PLMeOH | 26.17 ± 0.17 | 0.63 | 14.7 ± 0.33 | 0.30 | 29.3 ± 0.33 | 0.54 |
PLCHCL3 | 25.67 ± 0.33 | 0.62 | 16.7 ± 0.67 | 0.34 | 15.3 ± 0.32 | 0.28 |
PLHex | 33.67 ± 0.33 | 0.81 | 15.0 ± 0.00 | 0.30 | 24.7 ± 0.31 | 0.45 |
PLH2O * | 10.67 ± 0.33 | 0.26 | NA | NA | NA | NA |
PLHH2O | 14.33 ± 0.33 | 0.34 | NA | NA | NA | NA |
PLEthanol | 25.17 ± 0.17 | 0.60 | 17.5 ± 0.29 | 0.35 | 28.2 ± 0.24 | 0.52 |
Piperine | 27.67 ± 0.33 | 0.66 | 18.3 ± 0.33 | 0.37 | 12.7 ± 0.33 | 0.23 |
Piperlongumine | 23.67 ± 0.33 | 0.57 | 15.3 ± 0.33 | 0.31 | 15.7 ± 0.3 | 0.29 |
Rifampicin | 39.33 ± 0.33 | 0.94 | 48.3 ± 0.33 | 0.98 | 50.7 ± 0.33 | 0.93 |
Tetracycline | 41.67 ± 0.33 | 1.00 | 49.3 ± 0.33 | 1.00 | 54.3 ± 0.32 | 1.00 |
Plant Extracts and Antibiotics | Sarcina sp. | S. aureus | B. cereus | P. mirabilis | E. aerogenes | E. coli | P. aeruginosa | S. enterica |
---|---|---|---|---|---|---|---|---|
PSMeOH | ||||||||
MIC | 39 | 625 | 78 | 1250 | 39 | 1250 | 1250 | 625 |
MBC | 78 | 1250 | 156 | 2500 | 78 | 2500 | 2500 | 1250 |
PSCHCL3 | ||||||||
MIC | 156 | 156 | 625 | 2500 | 312 | 312 | 78 | 78 |
MBC | 312 | 312 | 1250 | NT | 625 | 625 | 156 | 156 |
PSHex | ||||||||
MIC | 39 | 78 | 625 | 2500 | 39 | NA | NA | 2500 |
MBC | 78 | 156 | 1250 | NT | 78 | NA | NA | NT |
PSEthanol | ||||||||
MIC | 39 | 78 | 39 | 78 | 78 | 156 | NT | 78 |
MBC | 78 | 156 | 78 | 156 | 156 | 312 | NT | 156 |
PLMeOH | ||||||||
MIC | 39 | 312 | 78 | 1250 | 39 | 1250 | 1250 | 625 |
MBC | 78 | 625 | 156 | 2500 | 78 | 2500 | 2500 | 1250 |
PLCHC3 | ||||||||
MIC | 78 | 625 | 625 | 2500 | 312 | 312 | 78 | 78 |
MBC | 156 | 1250 | 1250 | NT | 625 | 625 | 156 | 156 |
PLHex | ||||||||
MIC | 19 | 78 | 625 | 1250 | 78 | NA | NA | NT |
MBC | 39 | 156 | 1250 | 2500 | 156 | NA | NA | NT |
PLEthanol | ||||||||
MIC | 39 | 78 | 39 | 78 | 78 | 312 | NT | 78 |
MBC | 78 | 156 | 78 | 156 | 156 | 625 | NT | 156 |
Piperine | ||||||||
MIC | 19 | 39 | 625 | 78 | 39 | 19 | 156 | 78 |
MBC | 39 | 78 | 1250 | 156 | 78 | 39 | 312 | 156 |
Piperlongumine | ||||||||
MIC | 9.7 | 156 | 78 | NA | 156 | 39 | 312 | 625 |
MBC | 19 | 312 | 156 | NA | 312 | 78 | 625 | 1250 |
Tetracycline | ||||||||
MIC | 0.48 | 0.97 | 0.48 | 1.95 | 0.48 | 0.48 | 0.48 | 0.97 |
Rifampicin | ||||||||
MIC | 0.97 | 0.97 | 0.48 | 0.97 | 0.48 | 0.48 | 0.48 | 0.48 |
Piper guineense Peak Number and Name of Compound | Molecular Formula | Rt HPLC-DAD (min) | Rt UHPLC (min) | Measured Mass | Calculated Mass | [M + 1]+ | Other Ions m/z | UVλ Absorption Max. | Accuracy (ppm) |
---|---|---|---|---|---|---|---|---|---|
1. Unknown | 11,840 | 2842 | 187,0306 * | 165,0487 | 214, 236 | - | |||
2. Unknown (Ellagitannin?) | 16,383 | 6173 | 312,1211 * | 290,1392 | 210, 270 | - | |||
3. Unknown | 23,461 | 6373 | 390,1516 * | 368,1697 | - | ||||
Unknown | 33,389 | 12,567 | 231,0993 * | 209,1174 | 220, 238, 320, 355 | - | |||
6. Unknown | 36,456 | 13,267 | 187,0277 | 165,0458 | 143,068; 111,0420 | - | |||
7. Dihydropiperylin or piperlonguminine | C16H19NO3 | 36,852 | 12,967 | 296,1250 * | 273.1365 | 274.1431Q | 2(M)+-23: 569,2628 | 210, 235, 284 | −4,2212 |
7.1. Unknown | 13,267 | 187,0277 | 165,0458 | 143,068; 111,0420 | - | ||||
8. Piperylin | C16H17NO3 | 38,563 | 13,567 | 294,1100 * | 271,1208 | 272,1281Q | 2(M)+-23: 565,2321 | 210, 240, 308, 344 | −2,0740 |
9. Piperidine derivative | 39,226 | 13,783 | 326,1374 * | 304,1555 | 2(M)+23:629,2844 | 210, 234, 300 | |||
10. Dihydropiperlonguminine | C16H21NO3 | 41.5 | 14,066 | 298,1337 * | 298,1419 | 276,1518Q | 210, 235, 300 | 27,50 | |
10b. Piperine derivative | 39,249 | 14,432 | 324,1211 * | 302,1392 | 2(M)+-23: 625,2522 | 210, 235, 288 | |||
11. Unknown piperamide alkaloid | 40,447 | 15,049 | 358,1528 * | 336,1709 | 143,0682 | 210, 220, 246, 276, 355 | - | ||
11b. Unknown piperamide alkaloid | 40,447 | 14,832 | 317,1330 * | 295,1511 | 143,0644 | 210, 220, 246, 276, 355 | - | ||
12. Unknown | 16,031 | 247,1612 | 225,1793 | - | |||||
13. 4,5-dihydropiperine | C17H21NO3 | 42,215 | 15,515 | 310,1417 * | 287,1521 | 288,1598Q | 210, 235, 287 | −0,6771 | |
15. Piperine | C17H19NO3 | 44,809 | 16,647 | 308,1245 * | 285,1365 | 286,1426Q | 210, 240, 310, 342 | −5,7119 | |
16. Dihydrowisanine | C18H23NO4 | 45,234 | 16,847 | 340,1530 * | 317,1627 | 318,1711Q | 210, 236, 306, 340 | 1,5581 | |
17. Unknown | 17,197 | 247,1659 | 225,1840 | - | |||||
18. Wisanine | C18H21NO4 | 48,433 | 17,846 | 338,1371 * | 315,1471 | 316,1552Q | 247,1662 | 218, 253, 304, 370, 372 | 0,8281 |
19. Unknown | 18,795 | 243,1299 * | 221,1480 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mgbeahuruike, E.E.; Fyhrquist, P.; Vuorela, H.; Julkunen-Tiitto, R.; Holm, Y. Alkaloid-Rich Crude Extracts, Fractions and Piperamide Alkaloids of Piper guineense Possess Promising Antibacterial Effects. Antibiotics 2018, 7, 98. https://doi.org/10.3390/antibiotics7040098
Mgbeahuruike EE, Fyhrquist P, Vuorela H, Julkunen-Tiitto R, Holm Y. Alkaloid-Rich Crude Extracts, Fractions and Piperamide Alkaloids of Piper guineense Possess Promising Antibacterial Effects. Antibiotics. 2018; 7(4):98. https://doi.org/10.3390/antibiotics7040098
Chicago/Turabian StyleMgbeahuruike, Eunice Ego, Pia Fyhrquist, Heikki Vuorela, Riitta Julkunen-Tiitto, and Yvonne Holm. 2018. "Alkaloid-Rich Crude Extracts, Fractions and Piperamide Alkaloids of Piper guineense Possess Promising Antibacterial Effects" Antibiotics 7, no. 4: 98. https://doi.org/10.3390/antibiotics7040098
APA StyleMgbeahuruike, E. E., Fyhrquist, P., Vuorela, H., Julkunen-Tiitto, R., & Holm, Y. (2018). Alkaloid-Rich Crude Extracts, Fractions and Piperamide Alkaloids of Piper guineense Possess Promising Antibacterial Effects. Antibiotics, 7(4), 98. https://doi.org/10.3390/antibiotics7040098