Species Distribution, Antimicrobial Resistance, and Enterotoxigenicity of Non-aureus Staphylococci in Retail Chicken Meat
Abstract
:1. Introduction
2. Results
2.1. Profiles of NAS Isolated from Retail Chicken Meat
2.2. Occurrence of mecA in NAS Isolated from Retail Chicken Meat
2.3. Antimicrobial Resistance Profiles of NAS Isolated from Retail Chicken Meat
2.4. Fluoroquinolone Resistance and Mutations in the QRDR
2.5. Occurrence and Distribution of SE Genes in NAS
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Isolation and Identification of Staphylococci
4.3. Antimicrobial Susceptibility Tests
4.4. Detection of Antimicrobial Resistance Genes and SCCmec Typing
4.5. Detection of Mutations in QRDRs
4.6. Detection of SE Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Huebner, J.M.; Donald, A.; Goldmann, M. Coagulase-negative staphylococci: Role as pathogens. Annu. Rev. Med. 1999, 50, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Von Eiff, C.; Peters, G.; Heilmann, C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect. Dis. 2002, 2, 677–685. [Google Scholar] [CrossRef]
- Udo, E.; Al-Bustan, M.; Jacob, L.; Chugh, T. Enterotoxin production by coagulase-negative staphylococci in restaurant workers from Kuwait city may be a potential cause of food poisoning. J. Med. Microbiol. 1999, 48, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Veras, J.F.; do Carmo, L.S.; Tong, L.C.; Shupp, J.W.; Cummings, C.; dos Santos, D.A.; Cerqueira, M.M.O.P.; Cantini, A.; Nicoli, J.R.; Jett, M. A study of the enterotoxigenicity of coagulase-negative and coagulase-positive staphylococcal isolates from food poisoning outbreaks in Minas Gerais, Brazil. Int. J. Infect. Dis. 2008, 12, 410–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairbrother, R. Coagulase production as a criterion for the classification of the staphylococci. J. Pathol. Bacteriol. 1940, 50, 83–88. [Google Scholar] [CrossRef]
- Martins, P.D.; de Almeida, T.T.; Basso, A.P.; de Moura, T.M.; Frazzon, J.; Tondo, E.C.; Frazzon, A.P.G. Coagulase-positive staphylococci isolated from chicken meat: Pathogenic potential and vancomycin resistance. Foodborne Pathog. Dis. 2013, 10, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Osman, K.; Alvarez-Ordóñez, A.; Ruiz, L.; Badr, J.; ElHofy, F.; Al-Maary, K.S.; Moussa, I.M.I.; Hessain, A.M.; Orabi, A.; Saad, A.; et al. Antimicrobial resistance and virulence characterization of Staphylococcus aureus and coagulase-negative staphylococci from imported beef meat. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 35. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [Green Version]
- Fisher, E.L.; Otto, M.; Cheung, G.Y.C. Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Front. Microbiol. 2018, 9, 436. [Google Scholar] [CrossRef]
- Bhargava, K.; Zhang, Y. Characterization of methicillin-resistant coagulase-negative staphylococci (MRCoNS) in retail meat. Food Microbiol. 2014, 42, 56–60. [Google Scholar] [CrossRef]
- Yang, T.-Y.; Hung, W.-W.; Lin, L.; Hung, W.-C.; Tseng, S.-P. mecA-related structure in methicillin-resistant coagulase-negative staphylococci from street food in Taiwan. Sci. Rep. 2017, 7, 42205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolo, J.; Worning, P.; Nielsen, J.B.; Bowden, R.; Bouchami, O.; Damborg, P.; Guardabassi, L.; Perreten, V.; Tomasz, A.; Westh, H.; et al. Evolutionary origin of the staphylococcal cassette chromosome (SCCmec). Antimicrob. Agents. Chemother. 2017, 61, e02302-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loncaric, I.; Kübber-Heiss, A.; Posautz, A.; Stalder, G.L.; Hoffmann, D.; Rosengarten, R.; Walzer, C. Characterization of methicillin-resistant Staphylococcus spp. carrying the mecC gene, isolated from wildlife. J. Antimicrob. Chemother. 2013, 68, 2222–2225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, K.; Van Alen, S.; Idelevich, E.A.; Schleimer, N.; Seggewiß, J.; Mellmann, A.; Kaspar, U.; Peters, G. Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus. Emerg. Infect. Dis. 2018, 24, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Sanz, E.; Schwendener, S.; Thomann, A.; Brawand, S.G.; Perreten, V. First staphylococcal cassette chromosome mec containing a mecB-carrying gene complex independent of transposon Tn6045 in a Macrococcus caseolyticus isolate from a canine infection. Antimicrob. Agents Chemother. 2015, 59, 4577–4583. [Google Scholar] [CrossRef] [Green Version]
- International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC), Classification of staphylococcal cassette chromosome mec (SCCmec): Guidelines for reporting novel SCCmec elements. Antimicrob. Agents. Chemother. 2009, 53, 4961–4967. [CrossRef] [Green Version]
- Tsubakishita, S.; Kuwahara-Arai, K.; Sasaki, T.; Hiramatsu, K. Origin and molecular evolution of the determinant of methicillin resistance in staphylococci. Antimicrob. Agents. Chemother. 2010, 54, 4352–4359. [Google Scholar] [CrossRef] [Green Version]
- Sreedharan, S.; Peterson, L.R.; Fisher, L. Ciprofloxacin resistance in coagulase-positive and-negative staphylococci: Role of mutations at serine 84 in the DNA gyrase A protein of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob. Agents. Chemother. 1991, 35, 2151–2154. [Google Scholar] [CrossRef] [Green Version]
- Takahata, M.; Yonezawa, M.; Matsubara, N.; Watanabe, Y.; Narita, H.; Matsunaga, T.; Igarashi, H.; Kawahara, M.; Onodera, S.; Oishi, Y. Antibacterial activity of quinolones against coagulase-negative staphylococci and the quinolone resistance-determining region of the gyrA genes from six species. J. Antimicrob. Chemother. 1997, 40, 383–386. [Google Scholar] [CrossRef]
- Takahashi, H.; Kikuchi, T.; Shoji, S.; Fujimura, S.; Lutfor, A.B.; Tokue, Y.; Nukiwa, T.; Watanabe, A. Characterization of gyrA, gyrB, grlA and grlB mutations in fluoroquinolone-resistant clinical isolates of Staphylococcus aureus. J. Antimicrob. Chemother. 1998, 41, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, N.; Pereira, V.; Araújo Júnior, J.; da Cunha, M.d.L. Molecular detection of enterotoxins E, G, H and I in Staphylococcus aureus and coagulase--negative staphylococci isolated from clinical samples of newborns in Brazil. J. Appl. Microbiol. 2011, 111, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Crass, B.A.; Bergdoll, M.S. Involvement of coagulase-negative staphylococci in toxic shock syndrome. J. Clin. Microbiol. 1986, 23, 43–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ünal, N.; Çinar, O.D. Detection of stapylococcal enterotoxin, methicillin-resistant and Panton–Valentine leukocidin genes in coagulase-negative staphylococci isolated from cows and ewes with subclinical mastitis. Trop. Animal Health Prod. 2012, 44, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Orden, J.A.; Goyache, J.; Hernandez, J.; Domenech, A.; Suarez, G.; Gomez-Lucia, E. Production of staphylococcal enterotoxins and TSST-1 by coagulase negative staphylococci Isolated from ruminant mastitis. J. Vet. Med. 1992, 39, 144–148. [Google Scholar] [CrossRef]
- Blaiotta, G.; Ercolini, D.; Pennacchia, C.; Fusco, V.; Casaburi, A.; Pepe, O.; Villani, F. PCR detection of staphylococcal enterotoxin genes in staphylococcus spp. strains isolated from meat and dairy products. Evidence for new variants of seG and seI in S. aureus AB--8802. J. Appl. Microbiol. 2004, 97, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Heo, S.; Jeong, M.; Jeong, D.W. Transfer of a mobile Staphylococcus saprophyticus plasmid isolated from fermented seafood that confers tetracycline resistance. PLoS ONE 2019, 14, e0213289. [Google Scholar] [CrossRef]
- Nemati, M.; Hermans, K.; Lipinska, U.; Denis, O.; Deplano, A.; Struelens, M.; Devriese, L.A.; Pasmans, F.; Haesebrouck, F. Antimicrobial resistance of old and recent Staphylococcus aureus isolates from poultry: First detection of livestock-associated methicillin-resistant strain ST398. Antimicrob. Agents Chemother. 2008, 52, 3817–3819. [Google Scholar] [CrossRef] [Green Version]
- Waters, A.E.; Contente-Cuomo, T.; Buchhagen, J.; Liu, C.M.; Watson, L.; Pearce, K.; Foster, J.T.; Bowers, J.; Driebe, E.M.; Engelthaler, D.M. Multidrug-resistant Staphylococcus aureus in US meat and poultry. Clin. Infect. Dis. 2011, 52, 1227–1230. [Google Scholar] [CrossRef]
- Bergdoll, M.S. Importance of staphylococci that produce nanogram quantities of enterotoxin. Zbl. Bakt. 1995, 282, 1–6. [Google Scholar] [CrossRef]
- Thorberg, B.M.; Danielsson-Tham, M.L.; Emanuelson, U.; Persson Waller, K. Bovine subclinical mastitis caused by different types of coagulase-negative staphylococci. J. Dairy Sci. 2009, 92, 4962–4970. [Google Scholar] [CrossRef] [Green Version]
- Devriese, L.A.; Hàjek, V.; Oeding, P.; Meyer, S.A.; Schleifer, K.H. Staphylococcus hyicus (Sompolinsky 1953) comb. nov. and Staphylococcus hyicus subsp. chromogenes subsp. nov. Int. J. Syst. Evol. Microbiol. 1978, 28, 482–490. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, D.C.; Lange, C.C.; Avellar-Costa, P.; dos Santos, K.R.N.; Brito, M.A.V.P.; Giambiagi-deMarval, M. Staphylococcus chromogenes, a coagulase-negative staphylococcus species that can clot plasma. J. Clin. Microbiol. 2016, 54, 1372–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adkins, P.R.F.; Middleton, J.R.; Calcutt, M.J.; Stewart, G.C.; Fox, L.K. Species identification and strain typing of Staphylococcus agnetis and Staphylococcus hyicus isolates from bovine milk by use of a novel multiplex PCR assay and pulsed-field gel electrophoresis. J. Clin. Microbiol. 2017, 55, 1778–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speer, B.S.; Shoemaker, N.B.; Salyers, A.A. Bacterial resistance to tetracycline: Mechanisms, transfer, and clinical significance. Clin. Microbiol. Rev. 1992, 5, 387–399. [Google Scholar] [CrossRef] [PubMed]
- de Boer, E.; Zwartkruis-Nahuis, J.T.M.; Wit, B.; Huijsdens, X.W.; de Neeling, A.J.; Bosch, T.; van Oosterom, R.A.A.; Vila, A.; Heuvelink, A.E. Prevalence of methicillin-resistant Staphylococcus aureus in meat. Int. J. Food Microbiol. 2009, 134, 52–56. [Google Scholar] [CrossRef]
- Dhup, V.; Kearns, A.M.; Pichon, B.; Foster, H.A. First report of identification of livestock-associated MRSA ST9 in retail meat in England. Epidemiol. Infect. 2015, 143, 2989–2992. [Google Scholar] [CrossRef] [Green Version]
- Yurdakul, N.E.; ErgiNkaYa, Z.; ÜNal, E. Antibiotic resistance of enterococci, coagulase negative staphylococci and Staphylococcus aureus isolated from chicken meat. Czech J. Food Sci. 2013, 31, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Osman, K.; Badr, J.; Al-Maary, K.S.; Moussa, I.M.I.; Hessain, A.M.; Girah, Z.M.S.A.; Abo-shama, U.H.; Orabi, A.; Saad, A. Prevalence of the antibiotic resistance genes in coagulase-positive-and negative-staphylococcus in chicken meat retailed to consumers. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Wang, Y.; Schwarz, S. Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J. Antimicrob. Chemother. 2013, 68, 1697–1706. [Google Scholar] [CrossRef]
- Feßler, A.T.; Wang, Y.; Wu, C.; Schwarz, S. Mobile macrolide resistance genes in staphylococci. Plasmid 2018, 99, 2–10. [Google Scholar] [CrossRef]
- Feßler, A.; Kadlec, K.; Wang, Y.; Zhang, W.-J.; Wu, C.; Shen, J.; Schwarz, S. Small antimicrobial resistance plasmids in livestock-associated methicillin-resistant Staphylococcus aureus CC398. Front. Microbiol. 2018, 9, 2063. [Google Scholar] [CrossRef] [PubMed]
- Cuny, C.; Arnold, P.; Hermes, J.; Eckmanns, T.; Mehraj, J.; Schoenfelder, S.; Ziebuhr, W.; Zhao, Q.; Wang, Y.; Feßler, A.T.; et al. Occurrence of cfr-mediated multiresistance in staphylococci from veal calves and pigs, from humans at the corresponding farms, and from veterinarians and their family members. Vet. Microbiol. 2017, 200, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Urushibara, N.; Paul, S.K.; Hossain, M.A.; Kawaguchiya, M.; Kobayashi, N. Analysis of staphylococcal cassette chromosome mec in Staphylococcus haemolyticus and Staphylococcus sciuri: Identification of a novel ccr gene complex with a newly Identified ccrA Allotype (ccrA7). Microb. Drug Resist. 2011, 17, 291–297. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; VET09; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Hussain, Z.; Stoakes, L.; Massey, V.; Diagre, D.; Fitzgerald, V.; El Sayed, S.; Lannigan, R. Correlation of oxacillin MIC with mecA gene carriage in coagulase-negative staphylococci. J. Clin. Microbiol. 2000, 38, 752–754. [Google Scholar] [CrossRef] [Green Version]
- El-Razik, K.A.A.; Arafa, A.A.; Hedia, R.H.; Ibrahim, E.S. Tetracycline resistance phenotypes and genotypes of coagulase-negative staphylococcal isolates from bubaline mastitis in Egypt. Vet. World 2017, 10, 702–710. [Google Scholar] [CrossRef] [Green Version]
- Korea Animal Health Products Association (KAHPA), National Sales of Antimicrobials and Monitoring of Antimicrobial Resistance on the Domestic and Imported Meat and Fishery Products, Seoul, Korea. 2018. Available online: http://www.kahpa.or.kr/main.asp (accessed on 12 November 2020).
- Wang, Y.; He, T.; Schwarz, S.; Zhao, Q.; Shen, Z.; Wu, C.; Shen, J. Multidrug resistance gene cfr in methicillin-resistant coagulase-negative staphylococci from chickens, ducks, and pigs in China. Int. J. Med. Microbiol. 2013, 303, 84–87. [Google Scholar] [CrossRef]
- Lazaris, A.; Coleman, D.C.; Kearns, A.M.; Pichon, B.; Kinnevey, P.M.; Earls, M.R.; Boyle, B.; O’Connell, B.; Brennan, G.I.; Shore, A.C. Novel multiresistance cfr plasmids in linezolid-resistant methicillin-resistant Staphylococcus epidermidis and vancomycin-resistant Enterococcus faecium (VRE) from a hospital outbreak: Co-location of cfr and optrA in VRE. J. Antimicrob. Chemother. 2017, 72, 3252–3257. [Google Scholar] [CrossRef]
- Severin, A.; Tabei, K.; Tenover, F.; Chung, M.; Clarke, N.; Tomasz, A. High level oxacillin and vancomycin resistance and altered cell wall composition in Staphylococcus aureus carrying the staphylococcal mecA and the enterococcal vanA gene complex. J. Biol. Chem. 2004, 279, 3398–3407. [Google Scholar] [CrossRef] [Green Version]
- Valle, J.; Gomez-Lucia, E.; Piriz, S.; Goyache, J.; Orden, J.A.; Vadillo, S. Enterotoxin production by staphylococci isolated from healthy goats. Appl. Environ. Microbiol. 1990, 56, 1323–1326. [Google Scholar] [CrossRef] [Green Version]
- Hájek, V. Identification of enterotoxigenic staphylococci from sheep and sheep cheese. Appl. Environ. Microbiol. 1978, 35, 264–268. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, H.J.; Mathisen, T.; Løvseth, A.; Omoe, K.; Qvale, K.S.; Loncarevic, S. An outbreak of staphylococcal food poisoning caused by enterotoxin H in mashed potato made with raw milk. FEMS Microbiol. Lett. 2005, 252, 267–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johler, S.; Giannini, P.; Jermini, M.; Hummerjohann, J.; Baumgartner, A.; Stephan, R. Further evidence for staphylococcal food poisoning outbreaks caused by egc-encoded enterotoxins. Toxins 2015, 7, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, M.; Meugnier, H.; Bes, M.; Etienne, J.; Freney, J. Identification of staphylococcus species by 16S-23S rDNA intergenic spacer PCR analysis. Int. J. Syst. Evol. Microbiol. 1998, 48, 1049–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geha, D.J.; Uhl, J.R.; Gustaferro, C.A.; Persing, D.H. Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory. J. Clin. Microbiol. 1994, 32, 1768–1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, Y.; Ito, T.; Ma, X.X.; Watanabe, S.; Kreiswirth, B.N.; Etienne, J.; Hiramatsu, K. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: Rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob. Agents Chemother. 2007, 51, 264–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, L.K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 2001, 15, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry 2014, 53, 1565–1574. [Google Scholar] [CrossRef]
- Lee, H.H.; Lee, G.Y.; Eom, H.S.; Yang, S.-J. Occurrence and characteristics of methicillin-resistant and -susceptible Staphylococcus aureus isolated from the beef production chain in Korea. Food. Sci. Anim. Resour. 2020, 40, 401. [Google Scholar] [CrossRef]
- Park, J.Y.; Fox, L.K.; Seo, K.S.; McGuire, M.A.; Park, Y.H.; Rurangirwa, F.R.; Sischo, W.M.; Bohach, G.A. Detection of classical and newly described staphylococcal superantigen genes in coagulase-negative staphylococci isolated from bovine intramammary infections. Vet. Microbiol. 2011, 147, 149–154. [Google Scholar] [CrossRef] [Green Version]
NAS | No. of mecA- Positive Strains (%, Type of SCCmec) |
---|---|
CoVS (n = 29, 50%) | |
S. agnetis (n = 12, 20.7%) | - |
S. chromogenes (n = 9, 15.5%) | - |
S. hyicus (n = 8, 13.8%) | - |
CoVS Total | - |
CoNS (n = 29, 50%) | |
S. saprophyticus (n = 11, 19%) | - |
S. sciuri (n = 8, 13.8%) | 2 (25, NT, NT) |
S. simulans (n = 5, 8.6%) | - |
S. lentus (n = 2, 3.4%) | 1 (50, NT) |
S. warneri (n = 2, 3.4%) | - |
S. epidermidis (n = 1, 1.7%) | - |
CoNS Total | 3 (10.3) |
TOTAL | 3 (5.2) |
NAS (n = Isolates) | No. of Antimicrobial Resistance (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMP | FOX | PEN | CHL | FQN | CLI | ERY | GEN | MUP | RIF | SXT | SYN | TET | MDR 1 | ||
CoVS | |||||||||||||||
S. agnetis (12) | 6 (50) | - | 6 (50) | 3 (25) | 7 (58.3) | 4 (33.3) | 4 (33.3) | 3 (25) | - | - | - | - | - | 5 (41.7) | |
S. chromogenes (9) | 4 (44.4) | - | 4 (44.4) | 3 (33.3) | 9 (100) | 8 (88.9) | 8 (88.9) | - | - | - | 2 (22.2) | - | 6 (66.7) | 9 (100) | |
S. hyicus (8) | - | - | - | - | - | - | - | - | - | - | - | - | 8 (100) | 0 | |
CoVS Total (29) | 10 (34.5) | - | 10 (34.5) | 6 (20.7) | 16 (55.2) | 12 (41.4) | 12 (41.4) | 3 (10.3) | - | - | 2 (6.9) | - | 14 (48.3) | 14 (48.3) | |
CoNS | |||||||||||||||
S. saprophyticus (11) | - | - | - | - | - | - | - | - | - | - | - | - | 7 (63.6) | - | |
S. sciuri (8) | - | - | 1 (12.5) | - | - | - | - | - | - | - | - | - | 1 (12.5) | - | |
S. simulans (5) | - | - | - | 2 (40) | 1 (20) | 1 (20) | - | - | - | 1 (20) | 1 (20) | - | 1 (20) | - | |
S. lentus (2) | 1 (50) | - | 1 (50) | 1 (50) | 1 (50) | 1 (50) | 1 (50) | - | - | - | - | - | 1 (50) | 1 (50) | |
S. warneri (2) | 1 (50) | - | 1 (50) | - | - | 1 (50) | - | - | 1 (50) | - | - | - | 0 | 1 (50) | |
S. epidermidis (1) | 1 (100) | - | 1 (100) | - | - | - | - | 1 (100) | 1 (100) | - | - | - | 0 | 1 (100) | |
CoNS Total (29) | 3 (10.3) | - | 4 (13.8) | 3 (10.3) | 2 (6.9) | 3 (10.3) | 1 (3.4) | 1 (3.4) | 2 (6.9) | 1 (3.4) | 1 (3.4) | - | 10 (34.5) | 3 (10.3) | |
TOTAL | 13 (22.4) | - | 14 (24.1) | 9 (15.5) | 18 (31) | 15 (25.9) | 13 (22.4) | 4 (6.9) | 2 (3.4) | 1 (1.7) | 3 (5.2) | - | 24 (41.4) | 17 (29.3) |
Strains | Isolates ID | Antimicrobial Resistance Profiles | TET-Resistance Genes | MICs (μg/mL) | Staphylococcal Enterotoxin Genes | |||
---|---|---|---|---|---|---|---|---|
TET | OXA | VAN | LZD | |||||
CoVS | ||||||||
S. agnetis | SA1 | AMP-PEN -FQN-CLI-ERY-GEN | - | 0.5 | 0.25 | 1 | 1 | seh, selj, sem, sep |
SA2 | - | - | 0.5 | 0.25 | 1 | 1 | selj, sep, seh | |
SA3 | CHL-FQN | - | 0.125 | 0.25 | 1.5 | 0.75 | selj, sep, seh | |
SA4 | CHL-FQN | - | 0.125 | 0.25 | 1.5 | 0.75 | selj | |
SA5 | - | - | 1 | 0.125 | 1 | 1 | tst1, sep, seh, seo | |
SA6 | AMP-PEN-FQN | - | 0.125 | 0.25 | 1.5 | 0.75 | sep, seh, sek | |
SA7 | AMP-PEN-FQN-GEN | - | 0.25 | 0.5 | 1 | 0.5 | sep, seh, seo, sek | |
SA8 | AMP-PEN-CLI-ERY | - | 0.5 | 0.25 | 0.75 | 0.5 | sep, seh | |
SA9 | AMP-PEN-CLI-ERY | - | 0.5 | 0.25 | 1 | 0.5 | sep, seh | |
SA10 | AMP-PEN-CLI-ERY-GEN | - | 0.5 | 2 | 1 | 1 | selj, sep, seh | |
SA11 | CHL-FQN | - | 1 | 2 | 1 | 0.5 | selj, sep, seh | |
SA12 | FQN | - | 1 | 2 | 0.75 | 0.75 | sep, seh, seo | |
S. chromogenes | SC1 | FQN-CLI-ERY-TET | tet(L) | 32 | 0.25 | 1 | 0.38 | tst1, seh, selj, sem, sep |
SC2 | FQN-CLI-ERY-TET | tet(L) | 32 | 0.25 | 1 | 0.5 | selj, sek | |
SC3 | FQN-CLI-ERY-TET | tet(L) | 32 | 0.25 | 1 | 0.5 | sea, selj, sek | |
SC4 | AMP-PEN-FQN-CLI-ERY-SXT-TET | tet(L) | 16 | 0.25 | 1 | 0.5 | tst1, sek | |
SC5 | FQN-CLI-ERY-TET | tet(L) | 32 | 0.5 | 1 | 1 | tst1, selj, seh | |
SC6 | FQN-CLI-ERY-TET | tet(L) | 32 | 0.25 | 0.75 | 0.5 | tst1, seh, seo | |
SC7 | AMP-PEN-CHL-FQN-CLI-ERY-SXT | - | 0.125 | 0.25 | 0.75 | 0.5 | tst1, seh, sei, selj | |
SC8 | AMP-PEN-CHL-FQN | - | 0.125 | 0.5 | 0.75 | 0.5 | tst1, seh, sei, selj, seo | |
SC9 | AMP-PEN-CHL-FQN-CLI-ERY | - | 0.125 | 0.25 | 0.38 | 0.5 | seh, sei, selj, seo | |
S. hyicus | SH1 | TET | tet(L) | 16 | 0.25 | 1.5 | 0.75 | sep, seh, seo, sek |
SH2 | TET | tet(L) | 16 | 0.25 | 1.5 | 0.75 | tst1, seh, seo | |
SH3 | TET | tet(L) | 16 | 0.25 | 1 | 0.75 | tst1, seh | |
SH4 | TET | tet(L) | 16 | 0.25 | 1.5 | 0.5 | tst1 | |
SH5 | TET | tet(L) | 16 | 0.25 | 1 | 0.75 | - | |
SH6 | TET | tet(L) | 16 | 0.25 | 1 | 0.75 | sem | |
SH7 | TET | tet(L) | 16 | 0.25 | 1 | 0.5 | sem | |
SH8 | TET | tet(L) | 16 | 0.25 | 1 | 1 | sem | |
CoNS | ||||||||
S. saprophyticus | SS1 | TET | tet(K) | 32 | 1 | 1 | 0.5 | - |
SS2 | TET | tet(K) | 32 | 1 | 1.5 | 1 | - | |
SS3 | TET | tet(K) | 32 | 1 | 1 | 0.5 | - | |
SS4 | - | - | 0.5 | 1 | 1 | 0.5 | - | |
SS5 | - | - | 0.25 | 0.5 | 1.5 | 0.75 | - | |
SS6 | TET | tet(K) | 32 | 0.5 | 1.5 | 0.5 | see | |
SS7 | TET | tet(K) | 32 | 0.5 | 1 | 0.5 | see | |
SS8 | - | - | 0.25 | 0.5 | 1 | 0.5 | - | |
SS9 | TET | tet(K) | 32 | 1 | 1 | 0.5 | - | |
SS10 | TET | tet(K) | 16 | 0.5 | 1 | 0.5 | - | |
SS11 | - | - | 0.5 | 0.25 | 1 | 0.5 | - | |
S. sciuri | SI1 | - | - | 1 | 1 | 0.5 | 0.5 | sell, seo |
SI2 | PEN | - | 1 | 1 | 0.75 | 0.5 | sell, seo | |
SI3 | - | - | 0.25 | 1 | 0.5 | 0.75 | seo | |
SI4 | - | - | 0.5 | 0.5 | 0.5 | 1 | - | |
SI5 | - | - | 0.5 | 0.25 | 0.75 | 0.75 | - | |
SI6 | TET | tet(K) | 16 | 0.25 | 0.5 | 0.5 | - | |
SI7 | - | - | 0.5 | 1 | 0.5 | 0.5 | - | |
SI8 | - | - | 0.25 | 0.5 | 0.5 | 0.5 | sell, seo | |
S. simulans | SM1 | RIF-TET | tet(M), tet(K) | 32 | 0.125 | 0.5 | 0.5 | tst1, selj |
SM2 | - | - | 0.25 | 0.25 | 0.38 | 0.5 | - | |
SM3 | CHL-CLI | - | 0.5 | 0.125 | 0.38 | 0.5 | sep, seh | |
SM4 | CHL-FQN | - | 0.25 | 0.125 | 0.5 | 0.75 | sep | |
SM5 | SXT | - | 0.5 | 0.25 | 0.5 | 0.5 | - | |
S. lentus | SL1 | TET | tet(K) | 16 | 1 | 1 | 0.5 | seh, sell |
SL2 | AMP-PEN-CHL-FQN-CLI-ERY | - | 1 | 16 | 1 | 0.75 | sell | |
S. warneri | SW1 | - | - | 0.25 | 0.75 | 1.5 | 0.5 | tst1, sei, selj |
SW2 | AMP-PEN-CLI-MUP | - | 0.5 | 0.5 | 0.5 | 0.5 | seq | |
S. epidermidis | SE1 | AMP-PEN-GEN-MUP | - | 0.25 | 0.125 | 0.5 | 0.75 | sep |
Strains | Isolates ID | MICs (μg/mL) | Mutations in QRDRs | ||||
---|---|---|---|---|---|---|---|
CIP | ENR | gyrA | gyrB | parC | parE | ||
CoVS | |||||||
S. agnetis | SA1 | 16 | 8 | S84L | - | S80L | - |
SA3 | 8 | 8 | S84L | - | S80L | - | |
SA4 | 16 | 8 | S84L | - | S80L | K465H N488T | |
SA6 | 64 | 8 | S84L | K467R | S80F D84E | D424E K465R N488T N491K | |
SA7 | 32 | 8 | S84L | - | S80L | - | |
SA11 | 4 | 4 | S84L | - | S80L | D424E K465R N488T N491K | |
SA12 | 4 | 4 | S84L | - | S80L | D424E N426K K465R N488T D489E | |
S. chromogenes | SC1 | 32 | 128 | S84L | - | S80L D84H | - |
SC2 | 64 | 128 | S84L | - | S80L D84H | - | |
SC3 | 128 | 128 | S84L | - | S80L D84H | - | |
SC4 | 128 | 128 | S84L A132T S162A | - | S80L D84G | - | |
SC5 | 32 | 128 | S84L | - | S80L D84H | - | |
SC6 | 64 | 128 | S84L | - | S80L D84H | - | |
SC7 | 32 | 128 | S84L | - | S80L D84Y | - | |
SC8 | 64 | 128 | S84L | - | S80L D84Y | - | |
SC9 | 32 | 128 | S84L | - | S80L D84Y | - | |
CoNS | |||||||
S. simulans | SM4 | 256 | 256 | S84L A173S | - | D84N | - |
S. lentus | SL2 | 32 | 16 | S84L T172A | - | S80L | - |
NAS (n = Isolates) | No. of SE Genes | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tst1 | sea | seb | sec | sed | see | seg | seh | sei | selj | sek | sell | sem | sen | seo | sep | seq | ser | selu | ND | |
CoVS | ||||||||||||||||||||
S. agnetis (12) | 1 | - | - | - | - | - | - | 11 | - | 6 | 2 | - | 1 | - | 3 | 11 | - | - | - | - |
S. chromogenes (9) | 6 | 1 | - | - | - | - | - | 6 | 3 | 7 | 3 | - | 1 | - | 3 | 1 | - | - | - | - |
S. hyicus (8) | 3 | - | - | - | - | - | - | 3 | - | - | 1 | - | 3 | - | 2 | 1 | - | - | - | 1 |
CoVS Total (%) | 10 (34.5) | 1 (3.4) | - | - | - | - | - | 20 (69) | 3 (10.3) | 13 (44.8) | 6 (20.7) | - | 5 (17.2) | - | 8 (27.6) | 13 (44.8) | - | - | - | 1 (3.4) |
CoNS | ||||||||||||||||||||
S. saprophyticus (11) | - | - | - | - | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | 9 |
S. sciuri (8) | - | - | - | - | - | - | - | - | - | - | - | 3 | - | - | 4 | - | - | - | - | 4 |
S. simulans (5) | 1 | - | - | - | - | - | - | 1 | - | 1 | - | - | - | - | - | 2 | - | - | - | 2 |
S. lentus (2) | - | - | - | - | - | - | - | 1 | - | - | - | 2 | - | - | - | - | - | - | - | - |
S. warneri (2) | 1 | - | - | - | - | - | - | - | 1 | 1 | - | - | - | - | - | - | 1 | - | - | - |
S. epidermidis (1) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - | - |
CoNS Total (%) | 2 (6.9) | - | - | - | - | 2 (6.9) | - | 2 (6.9) | 1 (3.4) | 2 (6.9) | - | 5 (17.2) | - | - | 4 (13.8) | 3 (10.3) | 1 (3.4) | - | - | 15 (51.7) |
TOTAL | 12 (20.7) | 1 (1.7) | - | - | - | 2 (3.4) | - | 22 (37.9) | 4 (6.9) | 15 (25.9) | 6 (10.3) | 5 (8.6) | 5 (8.6) | - | 12 (20.7) | 16 (27.6) | 1 (1.7) | - | - | 16 (27.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.I.; Kim, S.D.; Park, J.H.; Yang, S.-J. Species Distribution, Antimicrobial Resistance, and Enterotoxigenicity of Non-aureus Staphylococci in Retail Chicken Meat. Antibiotics 2020, 9, 809. https://doi.org/10.3390/antibiotics9110809
Lee SI, Kim SD, Park JH, Yang S-J. Species Distribution, Antimicrobial Resistance, and Enterotoxigenicity of Non-aureus Staphylococci in Retail Chicken Meat. Antibiotics. 2020; 9(11):809. https://doi.org/10.3390/antibiotics9110809
Chicago/Turabian StyleLee, Soo In, Sun Do Kim, Ji Heon Park, and Soo-Jin Yang. 2020. "Species Distribution, Antimicrobial Resistance, and Enterotoxigenicity of Non-aureus Staphylococci in Retail Chicken Meat" Antibiotics 9, no. 11: 809. https://doi.org/10.3390/antibiotics9110809
APA StyleLee, S. I., Kim, S. D., Park, J. H., & Yang, S. -J. (2020). Species Distribution, Antimicrobial Resistance, and Enterotoxigenicity of Non-aureus Staphylococci in Retail Chicken Meat. Antibiotics, 9(11), 809. https://doi.org/10.3390/antibiotics9110809