Optimizing Antibiotic Treatment Strategies for Neonates and Children: Does Implementing Extended or Prolonged Infusion Provide any Advantage?
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Data Collection
3. Results and Discussion
3.1. Glycopeptides
3.2. Vancomycin
3.3. Pharmacokinetic/Pharmacodynamic Data
3.4. Clinical Outcome
3.5. B-Lactams Antibiotics
3.6. Piperacillin/Tazobactam
3.7. Pharmacokinetic/Pharmacodynamic Data
3.8. Clinical Outcome
3.9. Ceftazidime
3.10. Pharmacokinetic/Pharmacodynamic Data
3.11. Clinical Outcome
3.12. Cefepime
3.13. Pharmacokinetic/Pharmacodynamic Data
3.14. Clinical Outcomes
3.15. Meropenem
3.16. Pharmacokinetic/Pharmacodynamic Data
3.17. Clinical Outcomes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hsu, A.J.; Tamma, P.D. Treatment of Multidrug-Resistant Gram-Negative Infections in Children. Clin. Infect. Dis. 2014, 58, 1439–1448. [Google Scholar] [CrossRef] [Green Version]
- Shiu, J.; Wang, E.; Tejani, A.M.; Wasdell, M. Continuous versus intermittent infusions of antibiotics for the treatment of severe acute infections. Cochrane Database Syst. Rev. 2013, 28, CD008481. [Google Scholar] [CrossRef]
- Chen, C.-H.; Chen, Y.-M.; Chang, Y.-J.; Wang, S.-H.; Chang, C.-Y.; Yen, H.-C. Continuous versus intermittent infusions of antibiotics for the treatment of infectious diseases. Medicine 2019, 98, e14632. [Google Scholar] [CrossRef]
- Dulhunty, J.M.; Roberts, J.A.; Davis, J.S.; Webb, S.A.R.; Bellomo, R.; Gomersall, C.; Shirwadkar, C.; Eastwood, G.M.; Myburgh, J.; Paterson, D.L.; et al. Continuous infusion of beta-lactam antibiotics in severe sepsis: A multicenter double-blind, randomized controlled trial. Clin. Infect. Dis. 2013, 56, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Pang, X.; Wu, X.; Shan, C.; Jiang, S. Clinical outcomes of prolonged infusion (extended infusion or continuous infusion) versus intermittent bolus of meropenem in severe infection: A meta-analysis. PLoS ONE 2018, 13, e0201667. [Google Scholar] [CrossRef]
- Roberts, J.A.; Abdul-Aziz, M.H.; Davis, J.S.; Dulhunty, J.M.; Cotta, M.O.; Myburgh, J.; Bellomo, R.; Lipman, J. Continuous versus intermittent β-lactam infusion in severe sepsis: A meta-analysis of individual patient data from randomized trials. Am. J. Respir. Crit. Care Med. 2016, 194, 681–691. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.H.; Sulaiman, H.; Mat-Nor, M.-B.; Rai, V.; Wong, K.K.; Hasan, M.S.; Rahman, A.N.A.; Jamal, J.A.; Wallis, S.C.; Lipman, J.; et al. Beta-Lactam Infusion in Severe Sepsis (BLISS): A prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016, 42, 1535–1545. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Voulgaris, G.L.; Maliaros, A.; Samonis, G.; Falagas, M.E. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: A systematic review and meta-analysis of randomised trials. Lancet Infect. Dis. 2018, 18, 108–120. [Google Scholar] [CrossRef]
- Pea, F.; Viale, P. The antimicrobial therapy puzzle: Could pharmacokinetic-pharmacodynamic relationships be helpful in addressing the issue of appropriate pneumonia treatment in critically ill patients? Clin. Infect. Dis. 2006, 42, 1764–1771. [Google Scholar] [CrossRef]
- Bartelink, I.H.; Rademaker, C.M.A.; Schobben, A.F.A.M.; van den Anker, J.N. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin. Pharmacokinet. 2006, 45, 1077–1097. [Google Scholar] [CrossRef]
- Blot, S.I.; Pea, F.; Lipman, J. The effect of pathophysiology on pharmacokinetics in the critically ill patient-Concepts appraised by the example of antimicrobial agents. Adv. Drug Deliv. Rev. 2014, 77, 3–11. [Google Scholar] [CrossRef]
- Pea, F.; Viale, P.; Furlanut, M. Antimicrobial therapy in critically ill patients: A review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability. Clin. Pharmacokinet. 2005, 44, 1009–1034. [Google Scholar] [CrossRef]
- Nicolau, D.P.; Nightingale, C.H.; Banevicius, M.A.; Fu, Q.; Quintiliani, R. Serum bactericidal activity of ceftazidime: Continuous infusion versus intermittent injections. Antimicrob. Agents Chemother. 1996, 40, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Rybak, M.J. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin. Infect. Dis. 2006, 42 (Suppl. S1), S35–S39. [Google Scholar] [CrossRef]
- Mouton, J.W.; Vinks, A.A. Continuous infusion of beta-lactams. Curr. Opin. Crit. Care 2007, 13, 598–606. [Google Scholar] [CrossRef]
- Lodise, T.P.; Lomaestro, B.M.; Drusano, G.L. Application of antimicrobial pharmacodynamic concepts into clinical practice: Focus on β-lactam antibiotics-Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy 2006, 26, 1320–1332. [Google Scholar] [CrossRef]
- De Hoog, M.; Mouton, J.W.; van den Anker, J.N. New dosing strategies for antibacterial agents in the neonate. Semin. Fetal Neonatal Med. 2005, 10, 185–194. [Google Scholar] [CrossRef]
- Moriyama, B.; Henning, S.A.; Childs, R.; Holland, S.M.; Anderson, V.L.; Morris, J.C.; Wilson, W.H.; Drusano, G.L.; Walsh, T.J. High-dose continuous infusion beta-lactam antibiotics for the treatment of resistant Pseudomonas aeruginosa infections in immunocompromised patients. Ann. Pharmacother. 2010, 44, 929–935. [Google Scholar] [CrossRef] [Green Version]
- Walker, M.C.; Lam, W.M.; Manasco, K.B. Continuous and extended infusions of beta-lactam antibiotics in the pediatric population. Ann. Pharmacother. 2012, 46, 1537–1546. [Google Scholar] [CrossRef]
- Butler, M.S.; Hansford, K.A.; Blaskovich, M.A.T.; Halai, R.; Cooper, M.A. Glycopeptide antibiotics: Back to the future. J. Antibiot. 2014, 67, 631–644. [Google Scholar] [CrossRef]
- Butterfield, J.M.; Patel, N.; Pai, M.P.; Rosano, T.G.; Drusano, G.L.; Lodise, T.P. Refining vancomycin protein binding estimates: Identification of clinical factors that influence protein binding. Antimicrob. Agents Chemother. 2011, 55, 4277–4282. [Google Scholar] [CrossRef] [Green Version]
- Taketomo, C.K.; Hodding, J.H.K.D. Pediatric Dosage Handbook, 14th ed.; Lexi-Comp: Hudson, OH, USA, 2007. [Google Scholar]
- Jacqz-Aigrain, E.; Leroux, S.; Zhao, W.; van den Anker, J.N.; Sharland, M. How to use vancomycin optimally in neonates: Remaining questions. Expert Rev. Clin. Pharmacol. 2015, 8, 635–648. [Google Scholar] [CrossRef]
- Frymoyer, A.; Hersh, A.L.; Benet, L.Z.; Guglielmo, J. Current recommended dosing of vancomycin for children with invasive methicillin-resistant Staphylococcus aureus infections is inadequate. Pediatr. Infect. Dis. J. 2009, 28, 398–402. [Google Scholar] [CrossRef] [Green Version]
- Lilley, L.; Legge, D.; Parkville, V. Paediatric Injectable Guidelines. Aust. Prescr. 2017, 40, 158. [Google Scholar] [CrossRef] [Green Version]
- Gomez, D.S.; Campos, E.V.; de Azevedo, R.P.; da Silva-Jr, J.M.; Ferreira, M.C.; Sanches-Giraud, C.; Vieira Silva, C., Jr.; Santos, S.R.C.J. Individualised vancomycin doses for paediatric burn patients to achieve PK/PD targets. Burns 2013, 39, 445–450. [Google Scholar] [CrossRef]
- Le, J.; Bradley, J.S.; Murray, W.; Romanowski, G.L.; Tran, T.T.; Nguyen, N.; Cho, S.; Natale, S.; Bui, I.; Tran, T.M.; et al. Improved vancomycin dosing in children using area under the curve exposure. Pediatr. Infect. Dis. J. 2013, 32, e155–e163. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Lopez, E.; Biran, V.; Durrmeyer, X.; Fakhoury, M.; Jacqz-Aigrain, E. Vancomycin continuous infusion in neonates: Dosing optimisation and therapeutic drug monitoring. Arch. Dis. Child. 2013, 98, 449–453. [Google Scholar] [CrossRef]
- Genuini, M.; Oualha, M.; Bouazza, N.; Moulin, F.; Treluyer, J.-M.; Lesage, F.; Renolleau, S.; Benaboud, S. Achievement of therapeutic vancomycin exposure with continuous infusion in critically Ill children. Pediatr. Crit. Care Med. 2018, 19, e263–e269. [Google Scholar] [CrossRef]
- Germovsek, E.; Osborne, L.; Gunaratnam, F.; Lounis, S.A.; Busquets, F.B.; Standing, J.F.; Sinha, A.K. Development and external evaluation of a population pharmacokinetic model for continuous and intermittent administration of vancomycin in neonates and infants using prospectively collected data. J. Antimicrob. Chemother. 2019, 74, 1003–1011. [Google Scholar] [CrossRef]
- Cataldo, M.A.; Tacconelli, E.; Grilli, E.; Pea, F.; Petrosillo, N. Continuous versus intermittent infusion of vancomycin for the treatment of gram-positive infections: Systematic review and meta-analysis. J. Antimicrob. Chemother. 2012, 67, 17–24. [Google Scholar] [CrossRef]
- Wysocki, M.; Delatour, F.; Faurisson, F.; Rauss, A.; Pean, Y.; Misset, B.; Thomas, F.; Timsit, J.F.; Similowski, T.; Mentec, H.; et al. Continuous versus intermittent infusion of vancomycin in severe Staphylococcal infections: Prospective multicenter randomized study. Antimicrob. Agents Chemother. 2001, 45, 2460–2467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, J.-J.; Chen, H.; Zhou, J.-X. Continuous versus intermittent infusion of vancomycin in adult patients: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2016, 47, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Zylbersztajn, B.L.; Chicco, P.; Vega, L.; Centeno, M.; Filippini, S.; Ruvinsky, S. Continuous infusion of vancomycin in pediatric critical care. Arch. Argent Pediatr. 2013, 111, e31–e34. [Google Scholar] [CrossRef]
- Gwee, A.; Cranswick, N.; McMullan, B.; Perkins, E.; Bolisetty, S.; Gardiner, K.; Daley, A.; Ward, M.; Chiletti, R.; Donath, S.; et al. Continuous versus intermittent Vancomycin infusions in infants: A randomized controlled trial. Pediatrics 2019, 143, e20182179. [Google Scholar] [CrossRef] [Green Version]
- Demirel, B.; Imamoglu, E.; Gursoy, T.; Demirel, U.; Topcuoglu, S.; Karatekin, G.; Ovali, F. Comparison of intermittent versus continuous vancomycin infusion for the treatment of late-onset sepsis in preterm infants. J. Neonatal Perinatal Med. 2015, 8, 149–155. [Google Scholar] [CrossRef]
- Hurst, A.L.; Baumgartner, C.; MacBrayne, C.E.; Child, J. Experience with continuous infusion vancomycin dosing in a large pediatric hospital. J. Pediatric Infect. Dis. Soc. 2019, 8, 174–179. [Google Scholar] [CrossRef]
- Voumard, R.; Gardiol, C.; André, P.; Arensdorff, L.; Cochet, C.; Boillat-Blanco, N.; Decosterd, L.; Buclin, T.; de Valliere, S. Efficacy and safety of continuous infusions with elastomeric pumps for outpatient parenteral antimicrobial therapy (OPAT): An observational study. J. Antimicrob. Chemother. 2018, 73, 2540–2545. [Google Scholar] [CrossRef] [Green Version]
- Verrall, A.J.; Llorin, R.; Tam, V.H.; Lye, D.C.; Sulaiman, Z.; Zhong, L.; Archuleta, S.; Fisher, D.A. Efficacy of continuous infusion of vancomycin for the outpatient treatment of methicillin-resistant Staphylococcus aureus infections. J. Antimicrob. Chemother. 2012, 67, 2970–2973. [Google Scholar] [CrossRef] [Green Version]
- Mandell, G.; Dolin, R.; Bennett, J. Principles and Practice of Infectious Diseases, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2015; Available online: https://www.sciencedirect.com/book/9781455748013/mandell-douglas-and-bennetts-principles-and-practice-of-infectious-diseases (accessed on 18 November 2019).
- Craig, W.A. Pharmacokinetic/Pharmacodynamic parameters: Rationale for antibacterial dosing of mice and men. Clin. Infect. Dis. 1998, 26, 1–10. [Google Scholar] [CrossRef]
- Drusano, G.L. Antimicrobial pharmacodynamics: Critical interactions of ‘bug and drug’. Nat. Rev. Microbiol. 2004, 2, 289–300. [Google Scholar] [CrossRef]
- Lodise, T.P.; Lomaestro, B.; Drusano, G.L. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: Clinical implications of an extended-infusion dosing strategy. Chin. J. Infect. Chemother. 2008, 2004, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of adults with hospital-acquired and ventilator-associated Pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign. Crit. Care Med. 2017, 45, 486–552. [Google Scholar] [CrossRef]
- Stevens, D.L.; Bisno, A.L.; Chambers, H.F.; Dellinger, E.P.; Goldstein, E.J.C.; Gorbach, S.L.; Hirschmann, J.V.; Kaplan, S.L.; Montoya, J.G.; Wade, J.C.; et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2014, 59, e10–e52. [Google Scholar] [CrossRef] [Green Version]
- Solomkin, J.S.; Mazuski, J.E.; Bradley, J.S.; Rodvold, K.A.; Goldstein, E.J.C.; Baron, E.J.; O’Neill, P.J.; Chow, A.W.; Dellinger, E.P.; Eachempati, S.R.; et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 133–164. [Google Scholar] [CrossRef] [Green Version]
- Bonkat, G.; Pickard, R.; Bartoletti, R.; Bruyère, F.; Geerlings, S.E.; Wagenlehner, F.; Wullt, B. EAU Guidelines on Urological Infections. 2018. Available online: https://uroweb.org/wp-content/uploads/EAU-Guidelines-on-Urological-Infections-2018-large-text.pdf (accessed on 14 June 2019).
- De Cock, P.A.J.G.; van Dijkman, S.C.; de Jaeger, A.; Willems, J.; Carlier, M.; Verstraete, A.G.; Delanghe, J.R.; Robays, H.; Walle, J.V.; Pasqua, O.E.D.; et al. Dose optimization of piperacillin/tazobactam in critically ill children. J. Antimicrob. Chemother. 2017, 72, 2002–2011. [Google Scholar] [CrossRef]
- Masterton, R.G.; Kuti, J.L.; Turner, P.J.; Nicolau, D.P. The OPTAMA programme: Utilizing MYSTIC (2002) to predict critical pharmacodynamic target attainment against nosocomial pathogens in Europe. J. Antimicrob. Chemother. 2005, 55, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Cies, J.J.; Shankar, V.; Schlichting, C.; Kuti, J.L. Population pharmacokinetics of piperacillin/tazobactam in critically ill young children. Pediatr. Infect. Dis. J. 2014, 33, 168–173. [Google Scholar] [CrossRef]
- Nichols, K.; Chung, K.; Knoderer, C.A.; Buenger, L.E.; Healy, D.P.; Dees, J.; Crumby, A.S.; Kays, M.B. Population pharmacokinetics and pharmacodynamics of extended- infusion Piperacillin and Tazobactam in critically Ill children. Antimicrob. Agents Chemother. 2016, 60, 522–531. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Lu, J.; Dong, M.; Wu, D.; Zhu, Y.; Li, Q.; Chen, C.; Li, Z. Target attainment analysis and optimal sampling designs for population pharmacokinetic study on piperacillin/tazobactam in neonates and young infants. Eur. J. Clin. Pharmacol. 2016, 72, 1479–1488. [Google Scholar] [CrossRef]
- Maarbjerg, S.F.; Thorsted, A.; Kristoffersson, A.; Friberg, L.E.; Nielsen, E.I.; Wang, M.; Brock, B.; Schroder, H. Piperacillin pharmacokinetics and target attainment in children with cancer and fever: Can we optimize our dosing strategy? Pediatr. Blood Cancer 2019, 66, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Courter, J.D.; Kuti, J.L.; Girotto, J.E.; Nicolau, D.P. Optimizing bactericidal exposure for β-lactams using prolonged and continuous infusions in the pediatric population. Pediatr. Blood Cancer 2009, 53, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Delvallée, M.; Mazingue, F.; Abouchahla, W.; Delebarre, M.; Wallet, F.; Courcol, R.; Kipnis, E.; Dessein, R. Optimization of continuous infusion of piperacillin-tazobactam in children with fever and neutropenia. Pediatr. Infect. Dis. J. 2013, 32, 962–964. [Google Scholar] [CrossRef]
- Thibault, C.; Lavigne, J.; Litalien, C.; Kassir, N.; Théorêt, Y.; Autmizguine, J. Population pharmacokinetics and safety of Piperacillin-Tazobactam extended infusions in infants and children. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef]
- Solórzano-Santos, F.; Quezada-Herrera, A.; Fuentes-Pacheco, Y.; Rodriguez-Coella, G.; Aguirre-Morales, C.E.; Izelo-Flores, D.; Munoz-Hernandez, O.; Miranda-Novales, M.G.; Labra-Zamora, M.G. Piperacillin/Tazobactam in continuous infusion versus intermittent infusion in children with febrile neutropenia. Rev. Investig. Clín. 2019, 71, 10–12. [Google Scholar] [CrossRef] [Green Version]
- Knoderer, C.A.; Karmire, L.C.; Andricopulos, K.L.; Nichols, K.R. Extended infusion of Piperacillin/Tazobactam in children. J. Pediatr. Pharmacol. Ther. 2017, 22, 212–217. [Google Scholar] [CrossRef] [Green Version]
- American Academy of Pediatrics (AAP). Red Book: 2015 Report of the Committee on Infectious Diseases, 30th ed.; Kimberlin, D.W., Brady, M.T., Jackson, M.A., Long, S.A.E., Eds.; Elk Grove Village IAA of P: Elk Grove Village, IL, USA, 2015. [Google Scholar]
- Tunkel, A.R.; Hartman, B.J.; Kaplan, S.L.; Kaufman, B.A.; Roos, K.L.; Scheld, W.M.; Whitley, R.J. Practice Guidelines for the Management of Bacterial Meningitis. Clin. Infect. Dis. 2004, 39, 1267–1284. [Google Scholar] [CrossRef]
- Rains, C.P.; Bryson, H.M.; Peters, D.H. Ceftazidime. An update of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1995, 49, 577–617. [Google Scholar] [CrossRef]
- David, T.J.; Devlin, J. Continuous infusion of ceftazidime in cystic fibrosis. Lancet 1989, 1, 1454–1455. [Google Scholar] [CrossRef]
- Cojutti, P.G.; Maximova, N.; Schillani, G.; Hope, W.; Pea, F. Population pharmacokinetics of continuous-infusion ceftazidime in febrile neutropenic children undergoing HSCT: Implications for target attainment for empirical treatment against Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2019, 74, 1648–1655. [Google Scholar] [CrossRef]
- Dalle, J.H.; Gnansounou, M.; Husson, M.-O.; Lambilliotte, A.; Mazingue, F.; Nelken, B. Continuous infusion of ceftazidime in the empiric treatment of febrile neutropenic children with cancer. J. Pediatr. Hematol. Oncol. 2002, 24, 714–716. [Google Scholar] [CrossRef] [PubMed]
- Rappaz, I.; Decosterd, L.A.; Bille, J.; Pilet, M.; Belaz, N.; Roulet, M. Continuous infusion of ceftazidime with a portable pump is as effective as thrice-a-day bolus in cystic fibrosis children. Eur. J. Pediatr. 2000, 159, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Hubert, D.; Le Roux, E.; Lavrut, T.; Wallaert, B.; Scheid, P.; Manach, D.; Grenet, D.; Sermet-Gaudelus, I.; Ramel, S.; Cracowski, C.; et al. Continuous versus intermittent infusions of ceftazidime for treating exacerbation of cystic fibrosis. Antimicrob. Agents Chemother. 2009, 53, 3650–3656. [Google Scholar] [CrossRef] [Green Version]
- Jones, T.E.; Selby, P.R.; Mellor, C.S.; Cheam, D.B. Ceftazidime stability and pyridine toxicity during continuous i.v. infusion. Am. J. Health Syst. Pharm. 2019, 76, 200–205. [Google Scholar] [CrossRef]
- Johns Hopkins. Johns Hopkins Antibiotics Guide; Unbound Medicine: Charlottesville, VA, USA, 2019. [Google Scholar]
- Blumer, J.L.; Reed, M.D.; Knupp, C. Review of the pharmacokinetics of cefepime in children. Pediatr. Infect. Dis. J. 2001, 20, 337–342. [Google Scholar] [CrossRef]
- Shoji, K.; Bradley, J.S.; Reed, M.D.; van den Anker, J.N.; Domonoske, C.; Capparelli, E.V. Population pharmacokinetic assessment and pharmacodynamic implications of pediatric cefepime dosing for susceptible-dose-dependent organisms. Antimicrob. Agents Chemother. 2016, 60, 2150–2156. [Google Scholar] [CrossRef] [Green Version]
- Nichols, K.R.; Karmire, L.C.; Cox, E.G.; Kays, M.B.; Knoderer, C.A. Implementing extended-infusion Cefepime as standard of care in a children’s hospital: A prospective descriptive study. Ann. Pharmacother. 2015, 49, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Condon, R.E.; Walker, A.P.; Hanna, C.B.; Greenberg, R.N.; Broom, A.; Pitkin, D. Penetration of meropenem in plasma and abdominal tissues from patients undergoing intraabdominal surgery. Clin. Infect. Dis. 1997, 24 (Suppl. S2), S181–S183. [Google Scholar] [CrossRef] [Green Version]
- Bradley, J.S.; Sauberan, J.B.; Ambrose, P.G.; Bhavnani, S.M.; Rasmussen, M.R.; Capparelli, E.V. Meropenem pharmacokinetics, pharmacodynamics, and Monte Carlo simulation in the neonate. Pediatr. Infect. Dis. J. 2008, 27, 794–799. [Google Scholar] [CrossRef]
- Yatsyk, G.V. Use of meropenem in the treatment of severe infections in newborns. Antibiot. Chemoterapy 1998, 43, 32–33. [Google Scholar]
- Bradley, J.S.; Nelson, J.D.; Barnett, E.D.; Cantey, J.B.; Kimberlin, D.W.; Palumbo, P.E.; Sauberan, J.; Howard Smart, J.; Steinbach, W.J. Nelson’s Pediatric Antimicrobial Therapy, 23rd ed.; American Academy of Pediatrics: Itasca, IL, USA, 2017. [Google Scholar]
- Zobell, J.T.; Young, D.C.; Waters, D.C.; Stockmann, C.; Ampofo, K.; Sherwin, C.M.T.; Spigarelli, M.G. Optimization of anti-pseudomonal antibiotics for cystic fibrosis pulmonary exacerbations: I. aztreonam and carbapenems. Pediatr. Pulmonol. 2012, 47, 1147–1158. [Google Scholar] [CrossRef] [PubMed]
- Surveillance of Antimicrobial Resistance in Europe 2018. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018 (accessed on 18 November 2019).
- Tacconelli, E.; Cataldo, M.A.; Dancer, S.J.; De Angelis, G.; Falcone, M.; Frank, U.; Kahlmeter, G.; Pan, A.; Petrosillo, N.; Rodríguez-Baño, J.; et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin. Microbiol. Infect. 2014, 20, 1–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthoin, K.; Le Duff, C.S.; Marchand-Brynaert, J.; Carryn, S.; Tulkens, P.M. Stability of meropenem and doripenem solutions for administration by continuous infusion. J. Antimicrob. Chemother. Engl. 2010, 65, 1073–1075. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.R.; Cook, S.E. Stability of meropenem in intravenous solutions. Am. J. Health Syst. Pharm. 1997, 54, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.A. Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect. Dis. Clin. 2003, 17, 479–501. [Google Scholar] [CrossRef]
- Drusano, G.L. Prevention of resistance: A goal for dose selection for antimicrobial agents. Clin. Infect. Dis. 2003, 36 (Suppl. S1), S42–S50. [Google Scholar] [CrossRef]
- Mattoes, H.M.; Kuti, J.L.; Drusano, G.L.; Nicolau, D.P. Optimizing antimicrobial pharmacodynamics: Dosage strategies for meropenem. Clin. Ther. 2004, 26, 1187–1198. [Google Scholar] [CrossRef]
- Van den Anker, J.N.; Pokorna, P.; Kinzig-Schippers, M.; Martinkova, J.; de Groot, R.; Drusano, G.L.; Sorgel, F. Meropenem pharmacokinetics in the newborn. Antimicrob. Agents Chemother. 2009, 53, 3871–3879. [Google Scholar] [CrossRef] [Green Version]
- Pettit, R.S.; Neu, N.; Cies, J.J.; Lapin, C.; Muhlebach, M.S.; Novak, K.J.; Nguyen, S.T.; Saiman, L.; Nicolau, D.P.; Kuti, J.L.; et al. Population pharmacokinetics of meropenem administered as a prolonged infusion in children with cystic fibrosis. J. Antimicrob. Chemother. 2016, 71, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Cies, J.J.; Moore, W.S.; Enache, A.; Chopra, A. Population pharmacokinetics and pharmacodynamic target attainment of meropenem in critically ill young children. J. Pediatr. Pharmacol. Ther. 2017, 22, 276–285. [Google Scholar] [CrossRef] [Green Version]
- Rapp, M.; Urien, S.; Foissac, F.; Béranger, A.; Bouazza, N.; Benaboud, S.; Bille, E.; Zheng, Y.; Gana, I.; Moulin, F.; et al. Population pharmacokinetics of meropenem in critically ill children with different renal functions. Eur. J. Clin. Pharmacol. 2020, 76, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Shabaan, A.E.; Nour, I.; Eldegla, H.E.; Nasef, N.; Shouman, B.; Abdel-Hady, H. Conventional versus prolonged infusion of Meropenem in neonates with gram-negative late-onset Sepsis. Pediatr. Infect. Dis. J. 2017, 36, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Padari, H.; Metsvaht, T.; Korgvee, L.-T.; Germovsek, E.; Ilmoja, M.-L.; Kipper, K.; Herodes, K.; Standing, J.F.; Oselin, K.; Lutsar, I. Short versus long infusion of Meropenem in Very-Low-Birth-Weight neonates. Antimicrob. Agents Chemother. 2012, 56, 4760–4764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Included Studies | Study Design | Setting | Antibiotic and Dose | Population | Primary Outcome | Toxicity | Other Secondary Outcomes | ||
---|---|---|---|---|---|---|---|---|---|
Total (Analyzed) | Standard | Prolonged/Continuous | |||||||
Zylbersztajn, Arch Argent Pediatr 2013 [34] | Case series | Spain, PICU | Vancomycin IIV 40 and 60 mg/kg/day every 8–6 h, shifted to CIV at 50 mg/kg/day | 6 children 2 months–7 years | 6 | 6 | Clinical cure (all had a favourable outcome, with negativization of cultures) | No nephrotoxicity | All patients achieved levels between 10 and 25 ug/mL |
Gwee, Pediatrics 2019 [35] | RCT | Australia, NICU and PICU | Vancomycin IIV 15mg/kg/dose every 24, 12, 8 or 6 h or CIV 15 mg/kg loading dose followed by 20–50 mg/kg/day | 111 infants | 54 | 57 | 21 of 51 (41%) infants of IIV group achieved target concentrations at the first steady-state level compared with 45/53 (85%) of CIV group. | No clinically relevant adverse effects were observed in either regimen | The mean times to bacteremia clearance were 55.3 h in IIV group and 46.1 h in CIV group |
Demirel, Journal of Neonatal Perinatal Medicine 2015 [36] | Retrospective observational | Turkey, NICU | Vancomycin IIV 20mg/kg/die Or CIV 10 mg/kg loading dose followed by 20 mg/kg/day | 77 preterm infants | 41 | 36 | At 48 h, 52.8% of infants of CIV group achieved vancomycin therapeutic levels, compared to 34.1% of patients in IIV group | No nephrotoxicity | No significant differences between groups, in terms of microbiological and clinical outcomes |
Hurst et al., Journal of the Pediatric Infectious Diseases Societ, 2018 [37] | Retrospective study | USA | 240 children | Overall: TDD of CIV required to attain therapeutic SVCs according to age. 76/240 had a goal SVC of 10 to 15 μg/mL 164/240 had a goal of 15 to 20 μg/mL | A total of 19 patients had a 25% to 49% decrease in creatine clearance (CrCl) | ||||
Vancomycin Goal SVC of 10–15 μg/mL: final TDD on IIV 79.5 mg/kg/day, shifted to CIV 46.2 mg/kg/day Goal SVC of 15–20 μg/mL: final TDD on IIV 77.9 mg/kg/day, shifted to CIV 47 mg/kg/day | 54 children >31 days to <2 years | 54 | Goal SVC of 10–15 μg/mL: 17 Goal SVC of 15–20 μg/mL: 37 | Goal SVC of 10–15 μg/mL: 82% of patients achieved a therapeutic SVC Goal SVC of 15–20 μg/mL: 51% of patients achieved a therapeutic SVC | Frequency of attaining goal SVCs on CIV Time to attainment of a therapeutic SVC on CIV Safety of CIV | ||||
Vancomycin Goal SVC of 10–15 μg/mL: final TDD on IIV 79.1 mg/kg/day, shifted to CIV 44.5 mg/kg/day Goal SVC of 15–20 μg/mL: final TDD on IIV 78.7 mg/kg/day, shifted to CIV 45.6 mg/kg/day | 94 children 2 to < 8 years | 94 | Goal SVC of 10–15 μg/mL: 38 Goal SVC of 15–20 μg/mL: 56 | Goal SVC of 10–15 μg/mL: 82% of patients achieved a therapeutic SVC Goal SVC of 15–20 μg/mL: 41% of patients achieved a therapeutic SVC | |||||
Vancomycin Goal SVC of 10–15 μg/mL: final TDD on IIV 72.5 mg/kg/day, shifted to CIV 41.5 mg/kg/dayGoal SVC of 15–20 μg/mL: final TDD on IIV 72.9 mg/kg/day, shifted to CIV 43.1 mg/kg/day | 92 children 8 to < 18 years | 92 | Goal SVC of 10–15 μg/mL: 21 Goal SVC of 15–20 μg/mL: 71 | Goal SVC of 10–15 μg/mL: 67% of patients achieved a therapeutic SVC Goal SVC of 15–20 μg/mL: 76% of patients achieved a therapeutic SVC | Goal SVC of 10–15 μg/mL: renal failure in a 10-year-old Goal SVC of 15–20 μg/mL: renal injury in a 17-year-old | ||||
Solórzano-Santos et al., Rev Invest Clin 2019 [58] | Non-blinded RCT | Mexico, third-level paediatric hospital | Piperacillin/tazobactam, 300 mg/kg/day IA (4 doses) versus CI of 300 mg/kg/day over 24 h (after loading dose of 75 mg/kg over 30 min) | 176 episodes of febrile neutropenia in children | 100(Group 1) | 76 (Group 2) | Clinical cure (fever decreased in the first 48 after therapy start in 45% of patients; improvement of signs and symptoms at 72h in 80% and 73% of patients in the two groups respectively) Treatment failure (13/100 failures in Group 1 and 16/76 in Group 2) | / | No differences in fever resolution, clinical cure rate or mortality (2 patients died, one for each group). |
Knoderer et al., JPPT Clin Inv 2017 [59] | Retrospective case series | USA (general surgery, oncology) | Piperacillin/tazobactam, 112.5 mg/kg intravenously (IV) every 8 h, infused by EI (over 4 h) | 39 children with Enterobacteriaceae related infection (mostly E. coli & Klebsiella) | / | 39 | Clinical cure (29/39 (74%) met clinical cure, at 21 days after TZP initiation) | / | length of stay duration of TZP treatment30-day readmission (15/39 (38.5%) had a 30 days readmission) 30-day mortality (No deaths) |
Rappaz I, Eur J Pediatr 2000 [66] | Prospective cross over study | Switzerland(Cystic Fibrosis Centre) | Ceftazidime Thrice-a-day 20 min 200 mg/kg/day IA for 14 days versus CI of ceftazidime 100 mg/kg/day for 14 days | 14 children with cystic fibrosis (CF) | 14 | 14 | Clinical cure: efficacy of both regimens assessed by comparing surrogate markers (all patients improved clinically, no differences in terms of variation of several pulmonary, inflammatory and nutritional variable) | No clinically relevant adverse effects were observed in both regimen | Tolerability and feasibility of CI regimen; Positive impact on the quality of life of CF children |
Hubert D, Antimicrobial Agentis and Chemotherapy, 2009 [67] | multicenter, randomized crossover study | France, 15 (Cystic Fibrosis Centers) | Ceftazidime IA (thrice-daily) of 200 mg/kg/day versus CI, after a loading dose of 60 mg/kg | 70 children with CF | 34: thrice-daily ceftazidime short infusions for the first course and ceftazidime CI for the second course (group A) | 36: ceftazidime CI for the first course and short infusions for the second course (group B). | Efficacy: ITT: no difference in FEV 1 (assessed at the end of therapy) between group A and group B, with +7.6% after continuous infusion and + 5.5% after short infusions) (90% CI 2.1 (−0.3 to 5.2), p 0.15) but better clinical outcome after continuous ceftazidime treatment in patients harboring resistant isolates (p < 0.05). | Tolerance: 124 adverse events reported (68 on SIs and 56 on CI) in 50 patients, of those only 2 were considered severe (1 after the SIs 1 after the CI) | Similar quality-of-life scores for both treatments, however 82% of the 57 patients preferred the CI administration, rather than short infusions |
Shabaan AE, Pediatr Infect Dis J 2017 [89] | Single center, open-label RCT | Egypt, NICU | Meropenem 60 mg/Kg/day (120 mg/kg/day if meningitis/P.aeruginosa), IA (over 30 min) in group1 versus EI (over 4 h) in group2 | 102 neonates (< 28 days) with late-onset sepsis due to GNB | 51 | 51 | Clinical success: 31/51 (61%) EI vs. 17/51 (33%) IA, p = 0.009 Odds Ratio: 3.10 (1.38, 6.96) Microbiologic success: eradication at MER 7th day (82% prolong vs. 56.8% conv, p = 0.009) -shorter duration of respiratory support [4 days in prolong (0–18) versus 12.5 days in conv (5.7–17.2) vs., p = 0.03] | Reduced risk of AKI with EI (3/51, 6%) compared to IA (12/51, 3.5%), p = 0.02 | Mortality: 7/51 (14%) EI vs. 16/51 (31%) IA, p = 0.03) RR: 0.44 (0.20–0.47) * |
Padari et al., AAC, 2012 [90] | Prospective, open label study | Estonia, NICU | Meropenem 20 mg/kg bid over 30 min vs. 4h infusion | 19 neonates (< 23w, BW < 1.2 kg) | 9 | 10 | Steady-state PK: higher C max in the short-infusion group and a higher time to drug C max in serum (T max) in the prolonged-infusion group. All other PK parameters were similar. - All of the patients in the short-infusion group and 8/10 in the long-infusion group achieved an fT MIC of 100% for an MIC of 2 mg/L. Safety of meropenem given via short or prolonged infusion | None | Mortality: 1/9 in IA vs. 1/10 in EI (> 7 days after completion of therapy) In VLBW neonates, meropenem infusions of 30 min are optimal |
Antibiotic | Spectrum of Activity Infection Types | Adverse Effects | Antimicrobial Resistance |
---|---|---|---|
Glycopeptides | |||
Vancomycin | Bactericidal for several aerobic and anaerobic gram-positive bacteria, including coagulase-negative Staphylococcus and S. aureus. Bacteriostatic for enterococci. Skin and soft tissue infections, bone and joint infections, bloodstream infections and endocarditis, CNS infections, C. difficile colitis (if administered orally) 10.14. | Infusion-related adverse effects: “red man syndrome”; pain in the area of injection; allergic reactions. Drug-related toxicity: neutropenia, thrombocytopenia, eosinophilia, thrombophlebitis, chills, fever, rash, nephrotoxicity, and ototoxicity [60,82,83] | VRE: selection pressure by indiscriminate use of vancomycin, linked to at least 4 genes (Van A-D); VISA/VRSA: thickened and aggregated cell walls Resistance of S. epidermidis: biofilm [82,83] |
β-lactams | |||
Piperacillin/Tazobactam | Wide spectrum of activity against Gram-positive/Gram-negative aerobic and anaerobic pathogens, P. aeruginosa. Moderate to severe infections, including community and hospital acquired pneumonia, complicated pelvic and urinary tract infections, complicated skin and soft tissue infections, intra-abdominal infection, severe sepsis and septic shock. Piperacillin is largely used for the treatment of sensitive strains of P. aeruginosa [10,57,58,59,60]. | Anaphylactic/anaphylactoid reactions; Stevens–Johnson syndrome and toxic epidermal necrolysis, drug reaction with eosinophilia; antibiotic-induced pseudomembranous colitis; bleeding, abnormalities of coagulation tests, such as clotting time, platelet aggregation and prothrombin time; leukopenia, neutropenia; nephrotoxicity [53,83]. | Resistance in E. coli: inhibitor-resistant variants within the TEM and SHV β -lactamase families; overexpression of inhibitor-sensitive enzymes, such as BlaTEM-1 [82,83]. |
Ceftazidime | Gram-negative germs, such as P. aeruginosa, E. cloacae, E. coli, H. influenzae, K. pneumoniae. Febrile neutropenia in children, respiratory tract infections, especially in children with CF that present chronic infections by P. aeruginosa [60,61,62,63]. | Maculopapular or morbilliform skin eruptions, drug fever, and a positive Coombs test; anaphylaxis; granulocytopenia; renal toxicity; disulfiram-like reactions [83]. | Inactivation by bacterial β-lactamases, alteration of PBPs, and alteration of bacterial permeability to cephalosporins: susceptible to hydrolysis by the inducible, chromosomally encoded β-lactamases and the plasmid extended-spectrum β-lactamases [83]. |
Cefepime | Enterobacteriaceae, E. coli, Proteus spp, Klebsiella spp, S. pneumoniae, MSSA strains, multidrug-resistant Gram-negative bacteria, such as AmpC β -lactamase-producing strains and several strains of ESBL-producing organisms. Urinary tract and lower respiratory infections in children [66,70]. | Maculopapular or morbilliform skin eruptions, drug fever, and a positive Coombs test; anaphylaxis; granulocytopenia; renal toxicity; disulfiram-like reactions [83]. | inactivation by bacterial β-lactamases, alteration of PBPs, and alteration of bacterial permeability to cephalosporins; poor inducer of type I β-lactamases and less susceptible to hydrolysis [83]. |
Meropenem | Gram-negative and Gram-positive microorganisms Enterobacteriaceae, P.aeruginosa, Bacteroides spp, H. influenzae, N, gonorrheae, S. aureus, s. epidermidis, S.saprophiticus, coagulase negative streptococci. In combination with other antibacterial agents: MSSA, S. pyogenes, S. agalactiae, S, pneumonia. E. faecium strains are resistant. Meningitis, intra-abdominal infections, lower respiratory infections, bacteremia and sepsis [75]. | Seizures, CNS adverse events, diarrhea, rash, nausea, and vomiting [83]. | Hydrolyzed by the β-lactamases of S. maltophilia. Does not bind to the PBPs of E. faecium. Resistance due to decreased permeability is uncommon [83]. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costenaro, P.; Minotti, C.; Cuppini, E.; Barbieri, E.; Giaquinto, C.; Donà, D. Optimizing Antibiotic Treatment Strategies for Neonates and Children: Does Implementing Extended or Prolonged Infusion Provide any Advantage? Antibiotics 2020, 9, 329. https://doi.org/10.3390/antibiotics9060329
Costenaro P, Minotti C, Cuppini E, Barbieri E, Giaquinto C, Donà D. Optimizing Antibiotic Treatment Strategies for Neonates and Children: Does Implementing Extended or Prolonged Infusion Provide any Advantage? Antibiotics. 2020; 9(6):329. https://doi.org/10.3390/antibiotics9060329
Chicago/Turabian StyleCostenaro, Paola, Chiara Minotti, Elena Cuppini, Elisa Barbieri, Carlo Giaquinto, and Daniele Donà. 2020. "Optimizing Antibiotic Treatment Strategies for Neonates and Children: Does Implementing Extended or Prolonged Infusion Provide any Advantage?" Antibiotics 9, no. 6: 329. https://doi.org/10.3390/antibiotics9060329
APA StyleCostenaro, P., Minotti, C., Cuppini, E., Barbieri, E., Giaquinto, C., & Donà, D. (2020). Optimizing Antibiotic Treatment Strategies for Neonates and Children: Does Implementing Extended or Prolonged Infusion Provide any Advantage? Antibiotics, 9(6), 329. https://doi.org/10.3390/antibiotics9060329