Fluoroquinolone Versus Nonfluoroquinolone Treatment of Bloodstream Infections Caused by Chromosomally Mediated AmpC-Producing Enterobacteriaceae
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design, Setting, Patient Population
4.2. Study Variables and Definitions
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stryjewski, M.E.; Boucher, H.W. Gram-negative bloodstream infections. Int. J. Antimicrob. Agents 2009, 34, S21–S25. [Google Scholar] [CrossRef]
- Albrecht, S.J.; Fishman, N.O.; Kitchen, J.; Nachamkin, I.; Bilker, W.B.; Hoegg, C.; Samel, C.; Barbagallo, S.; Arentzen, J.; Lautenback, E. Reemergence of gram-negative health care-associated bloodstream infections. Arch. Intern. Med. 2006, 166, 1289–1294. [Google Scholar] [CrossRef] [PubMed]
- Munoz, P.; Cruz, A.F.; Rodriguez-Creixems, M.; Bouza, E. Gram-negative bloodstream infections. Int. J. Antimicrob. Agents 2008, 32, S10–S14. [Google Scholar] [CrossRef] [PubMed]
- Laupland, K.B.; Church, D.L. Population-based epidemiology and microbiology of community-onset bloodstream infections. Clin. Microbiol. Rev. 2014, 27, 647–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaye, K.S.; Pogue, J.M. Infections caused by resistant gram-negative bacteria: Epidemiology and management. Pharmacotherapy 2015, 35, 949–962. [Google Scholar] [CrossRef]
- Eichenberger, E.M.; Thaden, J.T. Epidemiology and mechanisms of resistance of extensively drug resistant gram-negative bacteria. Antibiotics 2019, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, N.J.; Liu, J.; McLaughlin, M.M.; Qi, C.; Scheetz, M.H. Evaluation of clinical outcomes in patients with gram-negative bloodstream infections according to cefepime MIC. Diagn. Microbiol. Infect. Dis. 2015, 82, 165–171. [Google Scholar] [CrossRef]
- McLaughlin, M.M.; Miglis, C.; Skoglund, E.; Wagner, J.; Advincula, M.R.; Scheetz, M.H. Effect of elevated imipenem/cilastatin minimum inhibitory concentrations on patient outcomes in gram-negative bloodstream infections. J. Glob. Antimicrob. Resist. 2018, 13, 261–263. [Google Scholar] [CrossRef]
- Esterly, J.S.; Wagner, J.; McLaughlin, M.M.; Postelnick, M.J.; Qi, C.; Scheetz, M.H. Evaluation of clinical outcomes in patients with bloodstream infections due to gram-negative bacteria according to carbapenem MIC stratification. Antimicrob. Agents Chemother. 2012, 56, 4885–4890. [Google Scholar] [CrossRef] [Green Version]
- Defife, R.; Scheetz, M.H.; Feinglass, J.M.; Postelnick, M.J.; Scarsi, K.K. Effect of differences in MIC values on clinical outcomes in patients with bloodstream infections caused by gram-negative organisms treated with levofloxacin. Antimicrob. Agents Chemother. 2009, 53, 1074–1079. [Google Scholar] [CrossRef] [Green Version]
- Nelson, B.C.; Eiras, D.P.; Gomez-Simmonds, A.; Loo, A.S.; Satlin, M.J.; Jenkins, S.G.; Whittier, S.; Calfee, D.P.; Furuya, E.Y.; Kubin, C.J. Clinical outcomes associated with polymyxin B dose in patients with bloodstream infections due to carbapenem-resistant gram-negative rods. Antimicrob. Agents Chemother. 2015, 59, 7000–7006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folgori, L.; Livadiotti, S.; Carletti, M.; Bielicki, J.; Pontrelli, G.; Ciofi Degli Atti, M.L.; Bertaina, C.; Lucignano, B.; Ranno, S.; Carretto, E.; et al. Epidemiology and clinical outcomes of multidrug-resistant, gram-negative bloodstream infections in a European tertiary pediatric hospital during a 12-month period. Pediatr. Infect. Dis. J. 2014, 33, 929–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 2019 AR Threats Report. Centers for Disease Control and Prevention. Updated 13 March 2020. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html (accessed on 10 June 2020).
- Jacoby, G.A. AmpC β-Lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etemadi, S.; Leylabadlo, H.E.; Ghotaslou, R. AmpC β-Lactamase among Enterobacteriaceae: A new insight. Gene Rep. 2020, 19, 100673. [Google Scholar] [CrossRef]
- Polsfuss, S.; Bloemberg, G.V.; Giger, J.; Meyer, V.; Böttger, E.C.; Hombach, M. Practical approach for reliable detection of AmpC beta-lactamase-producing Enterobacteriaceae. J. Clin. Microbiol. 2011, 49, 2798–2803. [Google Scholar] [CrossRef] [Green Version]
- Harris, P.N.A.; Wei, J.Y.; Shen, A.W.; Abdile, A.A.; Paynter, S.; Huxley, R.R.; Pandeya, N.; Doi, Y.; Huh, K.; O’Neal, C.S.; et al. Carbapenems versus alternative antibiotics for the treatment of bloodstream infections caused by Enterobacter, Citrobacter, or Serratia species: A systematic review with meta-analysis. J. Antimicrob. Chemother. 2016, 71, 296–306. [Google Scholar] [CrossRef] [Green Version]
- Huh, K.; Kang, C.I.; Kim, J.; Cho, S.Y.; Ha, Y.E.; Joo, E.J.; Chung, D.R.; Lee, N.Y.; Peck, K.R.; Song, J.H. Risk factors and treatment outcomes of bloodstream infection caused by extended-spectrum cephalosporin-resistant Enterobacter species in adults with cancer. Diagn. Microbiol. Infect. Dis. 2014, 78, 172–177. [Google Scholar] [CrossRef]
- Marcos, M.; Inurrieta, A.; Soriano, A.; Martinez, J.A.; Almela, M.; Marco, F.; Mensa, J. Effect of antimicrobial therapy on mortality in 377 episodes of Enterobacter spp. bacteraemia. J. Antimicrob. Chemother. 2008, 62, 397–403. [Google Scholar] [CrossRef]
- Moy, S.; Sharma, R. Treatment outcomes in infections caused by “SPICE” (Serratia, Pseudomonas, indole-positive Proteus, Citrobacter, and Enterobacter) organisms: Carbapenem versus noncarbapenem regimens. Clin. Ther. 2016, 39, 170–176. [Google Scholar] [CrossRef]
- Chaubey, V.P.; Pitout, J.D.; Dalton, B.; Gregson, D.B.; Ross, T.; Laupland, K.B. Clinical and microbiological characteristics of bloodstream infections due to AmpC β-lactamase-producing Enterobacteriaceae: An active surveillance cohort in a large centralized Canadian region. BMC Infect. Dis. 2014, 14, 647. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Nelson, B.C.; Mehta, M.; Seval, N.; Park, S.; Giddins, M.J.; Shi, Q.; Whittier, S.; Gomez-Simmonds, A.; Uhlemann, A.C. Piperacillin-tazobactam versus other antibacterial agents for treatment of bloodstream infections due to AmpC β-lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2017, 61, e00276-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDougall, C. Beyond susceptible and resistant, part I: Treatment of infections due to gram-negative organisms with inducible β-lactamases. J. Pediatr. Pharmacol. Ther. 2011, 16, 23–30. [Google Scholar] [PubMed]
- Kutob, L.F.; Justo, J.A.; Bookstaver, P.B.; Kohn, J.; Albrecth, H.; Al-Hasan, M.N. Effectiveness of oral antibiotics for definitive therapy of Gram-negative bloodstream infections. Int. J. Antimicrob. Agents 2016, 48, 498–503. [Google Scholar] [CrossRef]
- Derrick, C.; Bookstaver, P.B.; Lu, Z.K.; Bland, C.M.; King, S.T.; Stover, K.R.; Rumley, K.; MacVane, S.H.; Swindler, J.; Kincaid, S.; et al. Multicenter, Observational Cohort Study Evaluating Third-Generation Cephalosporin Therapy for Bloodstream Infections Secondary to Enterobacter, Serratia, and Citrobacter Species. Antibiotics 2020, 9, 254. [Google Scholar] [CrossRef]
- Henderson, H.; Luterbach, C.L.; Cober, E.; Richter, S.S.; Salata, R.A.; Kalayjian, R.C.; Watkins, R.R.; Doi, Y.; Kaye, K.S.; Evans, S.; et al. The Pitt bacteremia score predicts mortality in nonbacteremic infections. Clin. Infect. Dis. 2020, 70, 1826–1833. [Google Scholar] [CrossRef]
- Lee, C.C.; Wang, J.L.; Lee, C.H.; Hiseh, C.C.; Hung, Y.P.; Jong, M.Y.; Tang, H.J.; Ko, W.C. Clinical benefit of appropriate empirical fluoroquinolone therapy for adults with community-onset bacteremia in comparison with third-generation cephalosporin therapy. Antimicrob. Agents Chemother. 2017, 61, e02174-16. [Google Scholar] [CrossRef] [Green Version]
- Vardakas, K.Z.; Tansarli, G.S.; Rafailidis, P.I.; Falagas, M.E. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2012, 67, 2793–2803. [Google Scholar] [CrossRef]
- Hammer, K.L.; Stoessel, A.; Juston, J.A.; Bookstaver, P.B.; Kohn, J.; Derrick, C.D.; Albrecht, H.; Al-Hasan, M.N. Association between chronic hemodialysis and bloodstream infections caused by chromosomally mediated AmpC-producing Enterobacteriaceae. Am. J. Infect. Control. 2016, 44, 1611–1616. [Google Scholar] [CrossRef]
- Livermore, D. Beta-lactamase-mediated resistance and opportunities for its control. J. Antimicrob. Chemother. 1998, 41, 25–41. [Google Scholar] [CrossRef]
Variable, n(%) or Median [IQR 1] | Total (n = 56) | Fluoroquinolone (n = 31) | Beta-Lactam (n = 25) | p-Value |
---|---|---|---|---|
Age, years | 52 [41.25–62] | 50 [41–60] | 55 [42.5–62.5] | 0.360 |
Sex, male | 32 (57.1) | 18 (58.1) | 14 (56) | 0.877 |
Race | ||||
Caucasian | 25 (44.6) | 17 (54.8) | 8(32) | 0.087 |
African American | 29 (51.8) | 13 (41.9) | 16 (64) | 0.100 |
Asian | 1 (1.8) | 1 (3.2) | 0(0) | 1.000 |
Other | 1(1.8) | 0(0) | 1 (4) | 0.446 |
Weight | 81.6 [74.93–97.65] | 81.6 [75.3–96.6] | 81.6 [73.25–98.05] | 0.941 |
Charlson Comorbidity | 2 [1–4] | 2 [0–6] | 2 [1.5–3] | 0.874 |
Pitt Bacteremia Score | 3 [1–5] | 2 [1–3] | 4 [1–7] | 0.038 |
Antibiotic Allergy | 41 (73.2) | 21 (67.7) | 20 (80) | 0.303 |
Penicillins | 11 (19.6) | 8 (25.8) | 3 (12) | 0.312 |
Cephalosporins | 4 (7.1) | 4 (12.9) | 0 (0) | 0.120 |
Aminoglycosides | 2 (3.6) | 2 (6.5) | 0 (0) | 0.497 |
Trimethoprim-Sulfamethoxazole | 4 (7.1) | 2 (6.5) | 2 (8) | 1.000 |
Clindamycin | 1 (1.8) | 1 (3.2) | 0 (0) | 1.000 |
Vancomycin | 2 (3.6) | 2 (6.5) | 0 (0) | 0.497 |
Macrolides | 2 (3.6) | 2 (6.5) | 0 (0) | 0.497 |
Tetracyclines | 1 (1.8) | 1 (3.2) | 0 (0) | 1.000 |
Comorbidities | ||||
Heart Disease | 13 (23.2) | 11 (35.5) | 2 (8) | 0.015 |
Chronic Kidney Disease | 10 (17.9) | 7 (22.6) | 3 (12) | 0.485 |
Diabetes Mellitus | 15 (26.8) | 10 (32.3) | 5 (20) | 0.303 |
Cirrhosis | 1 (1.8) | 1 (3.2) | 0 (0) | 1.000 |
Cancer | 9 (16.1) | 6 (19.4) | 3 (12) | 0.716 |
Immunocompromised | 4 (7.1) | 3 (9.7) | 1 (4) | 0.620 |
Central venous catheter | 22 (39.3) | 12 (38.7) | 10 (40) | 0.922 |
Urologic | 3 (5.4) | 2 (6.5) | 1 (4) | 1.000 |
Variable, n (%) or Median [IQR 1] | Total (n = 56) | Fluoroquinolone (n = 31) | Beta-Lactam (n = 25) | p-Value |
---|---|---|---|---|
Presumed Source of Infection | ||||
Unknown | 17 (30.4) | 9 (29) | 8 (32) | 0.810 |
Urinary Tract | 11 (19.6) | 8 (25.8) | 3 (13) | 0.312 |
Lower Respiratory Tract | 6 (10.7) | 2 (6.5) | 4 (16) | 0.391 |
Skin and Soft Tissue | 4 (7.1) | 2 (6.5) | 2 (8) | 1.000 |
Central Line | 12 (21.4) | 8 (25.8) | 4 (16) | 0.374 |
Intra-Abdominal | 3 (5.4) | 2 (6.5) | 1 (4) | 1.000 |
Source Control | ||||
Not applicable | 36 (64.3) | 21 (67.7) | 15 (60) | 0.548 |
Adequate | 14 (25) | 6 (19.4) | 8 (32) | 0.277 |
Inadequate | 6 (10.7) | 4 (12.9) | 2 (8) | 0.682 |
Development of Resistance | 1 (1.8) | 1 (3.2) | 0 (0) | 1.000 |
Multiple Positive Cultures | 5 (9.1) | 2 (6.7) | 3 (12) | 0.650 |
Duration of Bacteremia, days | 3 [2–4] | 3 [1–3] | 2.5 [2–4.25] | 0.385 |
Persistent Bacteremia | 5 (9.4) | 2 (7.1) | 3 (12) | 0.658 |
Variable, Median [IQR 1] | Total (n = 56) | Fluoroquinolone (n = 31) | Beta-Lactam (n = 25) | p-Value |
---|---|---|---|---|
Amikacin | 2 [2–2] | 2 [2–2] | 2 [2–2] | 0.720 |
Ampicillin | n = 3 32 [32–32] | n = 2 32, 32 | n = 1 32 | 1.000 |
Ampicillin-Sulbactam | n = 3 16 | n = 2 16, 16 | n = 1 16 | 1.000 |
Cefepime | 1 [1–1] | 1 [1–1] | 1 [1–1] | 0.434 |
Cefoxitin | 24 [16–64] | 16 [16–64] | 32 [16–64] | 0.352 |
Ceftazidime | 1 [1–1] | 1 [1–1] | 1 [1–1] | 0.397 |
Ceftriaxone | 1 [1–1] | 1 [1–1] | 1 [1–1] | 0.684 |
Ciprofloxacin | 0.25 [0.25–0.25] | 0.25 [0.25–0.25] | 0.25 [0.25–0.25] | 0.907 |
Gentamicin | 1 [1–1] | 1 [1–1] | 1 [1–1] | 1.000 |
Levofloxacin | 0.12 [0.12–0.12] | 0.12 [0.12–0.12] | 0.12 [0.12–0.12] | 0.745 |
Meropenem | 0.25 [0.25–0.25] | 0.25 [0.25–0.25] | 0.25 [0.25–0.25] | 0.095 |
Tobramycin | 1 [1–2] | 1 [1–2] | 1 [1–1.5] | 0.345 |
Piperacillin-Tazobactam | n = 10 4 [4–25] | n = 5 4 [4–66] | n = 5 4 [4–66] | 1.000 |
Trimethoprim-Sulfamethoxazole | 20 [20–20] | 20 [20–20] | 20 [20–20] | 0.434 |
Variable, n (%) or Median [IQR 1] | Total (n = 56) | Fluoroquinolone (n = 31) | Beta-Lactam (n = 25) | OR (95% CI) p-Value |
---|---|---|---|---|
Primary Endpoint | ||||
Clinical Failure–Composite | 10 (17.9) | 4 (12.9) | 6 (24) | 0.469 (0.116–1.892) 0.315 |
Secondary Endpoints | ||||
90-Day Readmission | 6 (10.9) | 2 (6.5) | 4 (16.7) | 0.345 (0.058–2.066) 0.387 |
Time to First Readmission, days | 26 [12.5–55.5] | 14, 60 | 26 [10.25–49.25] | 1.000 |
Multiple 90-day Readmissions | 1/6 (16.7) | 0/2 (0) | 1/4 (25) | 0.600 (0.293–1.227) 1.000 |
Inpatient Mortality (All-cause) | 1 (1.8) | 0 (0) | 1 (4) | 0.436 (0.323–0.589) 0.446 |
Time to Mortality, days | 11 | - | 11 | - |
Microbiological Cure | 55 (98.2) | 30 (96.8) | 25 (100) | 1.833 (1.440–2.334) 1.000 |
Recurrence | 1 (1.8) | 1 (3.2) | 0 (0) | 0.545 (0.429–0.694) 1.000 |
Length of Stay, days | ||||
Total | 16.5 [7–37] | 9 [6–24] | 23 [13–48.5] | 0.001 |
Infection-Related | 9.5 [6–19.75] | 7 [5–12] | 16 [7–29] | 0.002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunter, S.G.; Barber, K.E.; Wagner, J.L.; Stover, K.R. Fluoroquinolone Versus Nonfluoroquinolone Treatment of Bloodstream Infections Caused by Chromosomally Mediated AmpC-Producing Enterobacteriaceae. Antibiotics 2020, 9, 331. https://doi.org/10.3390/antibiotics9060331
Gunter SG, Barber KE, Wagner JL, Stover KR. Fluoroquinolone Versus Nonfluoroquinolone Treatment of Bloodstream Infections Caused by Chromosomally Mediated AmpC-Producing Enterobacteriaceae. Antibiotics. 2020; 9(6):331. https://doi.org/10.3390/antibiotics9060331
Chicago/Turabian StyleGunter, Sarah Grace, Katie E. Barber, Jamie L. Wagner, and Kayla R. Stover. 2020. "Fluoroquinolone Versus Nonfluoroquinolone Treatment of Bloodstream Infections Caused by Chromosomally Mediated AmpC-Producing Enterobacteriaceae" Antibiotics 9, no. 6: 331. https://doi.org/10.3390/antibiotics9060331
APA StyleGunter, S. G., Barber, K. E., Wagner, J. L., & Stover, K. R. (2020). Fluoroquinolone Versus Nonfluoroquinolone Treatment of Bloodstream Infections Caused by Chromosomally Mediated AmpC-Producing Enterobacteriaceae. Antibiotics, 9(6), 331. https://doi.org/10.3390/antibiotics9060331