Photocatalytic Properties of g-C3N4–Supported on the SrAl2O4:Eu,Dy/SiO2
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gupta, S.M.; Tripathi, M. A review of TiO2 nanoparticles. Chin. Sci. Bull. 2011, 56, 1639–1657. [Google Scholar] [CrossRef] [Green Version]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Wu, P.; Wang, J.; Zhao, J.; Guo, L.; Osterloh, F.E. Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J. Mater. Chem. A 2014, 2, 20338–20344. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Zhang, L.; Teng, B.; Fan, M. High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Appl. Catal. B Environ. 2015, 168, 1–8. [Google Scholar] [CrossRef]
- Li, W.; Wang, L.; Zhang, Q.; Chen, Z.; Deng, X.; Feng, C.; Xu, L.; Sun, M. Fabrication of an ultrathin 2D/2D C3N4/MoS2 heterojunction photocatalyst with enhanced photocatalytic performance. J. Alloys Compd. 2019, 808, 151681. [Google Scholar] [CrossRef]
- Ruan, D.; Kim, S.; Fujitsuka, M.; Majima, T. Defects rich g-C3N4 with mesoporous structure for efficient photocatalytic H2 production under visible light irradiation. Appl. Catal. B Environ. 2018, 238, 638–646. [Google Scholar] [CrossRef]
- Jin, Z.; Zhang, Q.; Yuan, S.; Ohno, T. Synthesis high specific surface area nanotube g-C3N4 with two-step condensation treatment of melamine to enhance photocatalysis properties. RSC Adv. 2015, 5, 4026–4029. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Yang, H.G. Facile fabrication of high-yield graphitic carbon nitride with a large surface area using bifunctional urea for enhanced photocatalytic performance. Appl. Catal. B Environ. 2017, 205, 624–630. [Google Scholar] [CrossRef]
- Chen, Q.; Hou, H.; Zhang, D.; Hu, S.; Min, T.; Liu, B.; Yang, C.; Pu, W.; Hu, J.; Yang, J. Enhanced visible-light driven photocatalytic activity of hybrid ZnO/g-C3N4 by high performance ball milling. J. Photochem. Photobiol. A Chem. 2018, 350, 1–9. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, L.; Shi, R.; Zhu, Y. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A 2013, 1, 14766–14772. [Google Scholar] [CrossRef]
- Liao, G.; Gong, Y.; Zhang, L.; Gao, H.; Yang, G.-J.; Fang, B. Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ. Sci. 2019, 12, 2080–2147. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Ho, W.; Zhang, L.L.; Huang, H.; Cai, Q.; Dong, F. Highly enhanced visible-light photocatalytic NOx purification and conversion pathway on self-structurally modified g-C3N4 nanosheets. Sci. Bull. 2018, 63, 609–620. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Hua, X.; Ji, J.; Cai, Z.; Zhao, Y. Facile synthesis of highly efficient mpg-C3N4/TiO2 visible-light-induced photocatalyst and its formaldehyde removal performance in coating application. J. Nanopart. Res. 2019, 21, 187. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, Y.; Li, J.; Wang, Y.; Jiang, G.; Zhao, Z.; Wang, D.; Duan, A.; Liu, J.; Wei, Y. Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO. Appl. Catal. B Environ. 2014, 158, 20–29. [Google Scholar] [CrossRef]
- Peng, L.; Li, Z.-W.; Zheng, R.-R.; Yu, H.; Dong, X.-T. Preparation and characterization of mesoporous g-C3N4/SiO2 material with enhanced photocatalytic activity. J. Mater. Res. 2019, 34, 1785–1794. [Google Scholar] [CrossRef]
- Cai, J.; He, Y.; Wang, X.; Zhang, L.; Dong, L.; Lin, H.; Zhao, L.; Yi, X.; Weng, W.; Wan, H. Photodegradation of RhB over YVO4/g-C3N4 composites under visible light irradiation. RSC Adv. 2013, 3, 20862. [Google Scholar] [CrossRef]
- Peng, L.; Zheng, R.-R.; Feng, D.-W.; Yu, H.; Dong, X. Synthesis of eco-friendly porous g-C3N4/SiO2/SnO2 composite with excellent visible-light responsive photocatalysis. Arab. J. Chem. 2020, 13, 4275–4285. [Google Scholar] [CrossRef]
- Vattikuti, S.P.; Byon, C. Hydrothermally synthesized ternary heterostructured MoS2/Al2O3/g-C3N4 photocatalyst. Mater. Res. Bull. 2017, 96, 233–245. [Google Scholar] [CrossRef]
- Di, L.; Yang, H.; Xian, T.; Chen, X. Construction of Z-Scheme g-C3N4/CNT/Bi2Fe4O9 Composites with Improved Simulated-Sunlight Photocatalytic Activity for the Dye Degradation. Micromachines 2018, 9, 613. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, Y.; Shuai, D.; Shen, Y.; Xiong, W.; Wang, L. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review. Chemosphere 2019, 214, 462–479. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, L.; Shi, J.; Deng, H. Synthesis of Ag3PO4/G-C3N4 Composite with Enhanced Photocatalytic Performance for the Photodegradation of Diclofenac under Visible Light Irradiation. Catalysts 2018, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Zhang, X.; Fan, J.; Xue, D.; Zhang, B.; Yin, S. N-TiO2/g-C3N4/Up-conversion phosphor composites for the full-spectrum light-responsive deNOx photocatalysis. J. Mater. Sci. 2018, 53, 7266–7278. [Google Scholar] [CrossRef]
- Ye, S.; Wang, R.; Wu, M.; Yuan, Y. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl. Surf. Sci. 2015, 358, 15–27. [Google Scholar] [CrossRef]
- Mamba, G.; Mishra, A.K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016, 198, 347–377. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, X.; Zhang, K.; Lu, P.; Zhang, D. Facile fabrication of sandwich-like BiOI/AgI/g-C3N4 composites for efficient photocatalytic degradation of methyl orange and reduction of Cr(VI). J. Nanopart. Res. 2018, 20, 328. [Google Scholar] [CrossRef]
- Li, H.; Yin, S.; Wang, Y.; Sato, T. Persistent luminescence assisted photocatalytic properties of CaAl2O4:(Eu,Nd)/TiO2−xNy and Sr4Al14O25:(Eu,Dy)/TiO2−xNy. J. Mol. Catal. A: Chem. 2012, 129–133. [Google Scholar] [CrossRef]
- Zargoosh, K.; Aliabadi, H.M. SrAl2O4:Eu2+: Dy3+/WO3/polyester nanocomposite as a highly efficient and environmentally friendly photocatalyst for removal of dyes from industrial wastes. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100273. [Google Scholar] [CrossRef]
- Demirci, S.; Gültekin, S.; Akalin, S.A.; Oter, O.; Ertekin, K.; Çelik, E. Synthesis and spectral characterization of Sr4Al14O25:Eu2+/Dy3+ blue–green phosphorous powders by sol–gel method. Mater. Sci. Semicond. Process. 2015, 31, 611–617. [Google Scholar] [CrossRef]
- Sung, H.-J.; Kim, B.-M.; Jung, S.-C.; Kim, J.-S. Photocatalytic Characteristics for The Nanocrystalline TiO2 Supported On Sr4Al14O25: Eu2+, Dy3+ Phosphor Beads. Adv. Mater. Lett. 2016, 7, 36–41. [Google Scholar] [CrossRef]
- Rojas-Hernandez, R.E.; Rubio-Marcos, F.; Rodríguez, M.A.; Fernández, J.F. Long lasting phosphors: SrAl2O4:Eu, Dy as the most studied material. Renew. Sustain. Energy Rev. 2018, 81, 2759–2770. [Google Scholar] [CrossRef]
- Rojas-Hernandez, R.E.; Rodríguez, M.A.; Rubio-Marcos, F.; Serrano, A.; Fernández, J.F. Designing nanostructured strontium aluminate particles with high luminescence properties. J. Mater. Chem. C 2015, 3, 1268–1276. [Google Scholar] [CrossRef]
- Havasi, V.; Vödrédi, B.; Kukovecz, Á. Photocatalytic performance of Sr4Al14O25: Eu,Dy phosphor assisted ZnO:Co+Ag nanocomposite under continuous and pulsed illumination. Catal. Today 2017, 284, 107–113. [Google Scholar] [CrossRef]
- Yuan, Y.; Cao, S.-W.; Liao, Y.; Yin, L.-S.; Xue, C. Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production. Appl. Catal. B Environ. 2013, 140, 164–168. [Google Scholar] [CrossRef]
- Lam, S.-M.; Sin, J.-C.; Mohamed, A.R. A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater. Mater. Sci. Semicond. Process. 2016, 47, 62–84. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, H.; Wu, Z.; Wang, L. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catal. Today 2018, 300, 160–172. [Google Scholar] [CrossRef]
- Foye, C. The Relationship Between Size of Living Space and Subjective Well-Being. J. Happiness Stud. 2016, 18, 427–461. [Google Scholar] [CrossRef] [Green Version]
- Saiful Amran, S.N.B.; Wongso, V.; Abdul Halim, N.S.; Husni, M.K.; Sambudi, N.S.; Wirzal, M.D.H. Immobilized carbon-doped TiO2 in polyamide fibers for the degradation of methylene blue. J. Asian Ceram. Soc. 2019, 7, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Pan, L.; Piao, X.; Sun, Z. Long afterglow SrAl2O4: Eu,Dy phosphors for CdS quantum dot-sensitized solar cells with enhanced photovoltaic performance. J. Mater. Chem. A 2013, 1, 6388. [Google Scholar] [CrossRef]
- Yin, H.; Chen, X.; Hou, R.; Zhu, H.; Li, S.; Huo, Y.; Li, H. Ag/BiOBr Film in a Rotating-Disk Reactor Containing Long-Afterglow Phosphor for Round-the-Clock Photocatalysis. ACS Appl. Mater. Interfaces 2015, 7, 20076–20082. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Li, Y.; Wu, B.; Luo, X.; Ouyang, S.; Luo, S.; Al Kheraif, A.A.; Lin, J. A g-C3N4@Au@SrAl2O4:Eu2+,Dy3+ composite as an efficient plasmonic photocatalyst for round-the-clock environmental purification and hydrogen evolution. J. Mater. Chem. A 2019, 7, 19173–19186. [Google Scholar] [CrossRef]
- Sikandar, M.A.; Ahmad, W.; Khan, M.H.; Ali, F.; Waseem, M. Effect of water resistant SiO2 coated SrAl2O4: Eu2+ Dy3+ persistent luminescence phosphor on the properties of Portland cement pastes. Constr. Build. Mater. 2019, 228, 116823. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Sun, G.; Luo, N.; Zhang, B.; Zhang, Z. Synthesis of a Flower-Like g-C3N4/ZnO Hierarchical Structure with Improved CH4 Sensing Properties. Nanomaterials 2019, 9, 724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wang, S.; Hu, W.; Cai, J.; Zhang, L.; Dong, L.; Zhao, L.; He, Y. Synthesis and photocatalytic activity of SiO2/g-C3N4 composite photocatalyst. Mater. Lett. 2014, 115, 53–56. [Google Scholar] [CrossRef]
- Sudhaik, A.; Raizada, P.; Shandilya, P.; Jeong, D.-Y.; Lim, J.-H.; Singh, P. Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants. J. Ind. Eng. Chem. 2018, 67, 28–51. [Google Scholar] [CrossRef]
- Mavengere, S.; Jung, S.-C.; Kim, J.-S. Visible Light Photocatalytic Activity of NaYF4:(Yb,Er)-CuO/TiO2 Composite. Catalysts 2018, 8, 521. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-S.; Kim, S.-W.; Jung, S.-C. Photocatalytic reaction characteristics of the titanium dioxide supported on the long phosphorescent phosphor by a low pressure chemical vapor deposition. J. Nanosci. Nanotechnol. 2014, 14, 7751–7755. [Google Scholar] [CrossRef] [PubMed]
- Mavengere, S.; Kim, J.-S. UV–visible light photocatalytic properties of NaYF4:(Gd, Si)/TiO2 composites. Appl. Surf. Sci. 2018, 444, 491–496. [Google Scholar] [CrossRef]
- Hu, M.; Xing, Z.; Cao, Y.; Li, Z.; Yan, X.; Xiu, Z.; Zhao, T.; Yang, S.; Zhou, W. Ti3+ self-doped mesoporous black TiO2/SiO2/g-C3N4 sheets heterojunctions as remarkable visible-lightdriven photocatalysts. Appl. Catal. B Environ. 2018, 226, 499–508. [Google Scholar] [CrossRef]
- Yoon, J.-H.; Jung, S.-C.; Kim, J.-S. Photocatalytic effects for the TiO2-coated phosphor materials. Mater. Chem. Phys. 2011, 125, 342–346. [Google Scholar] [CrossRef]
Element | Weight% | Atomic% |
---|---|---|
C | 43.35 | 58.24 |
N | 23.54 | 27.11 |
O | 8.37 | 8.45 |
Al | 4.19 | 2.5 |
Sr | 19.44 | 3.58 |
Eu | 0.88 | 0.09 |
Dy | 0.23 | 0.02 |
Totals | 100 | - |
Element | Weight% | Atomic% |
---|---|---|
C | 55.67 | 71.29 |
N | 21.34 | 23.43 |
O | 0.94 | 0.91 |
Al | 1.08 | 0.62 |
Si | 0.41 | 0.23 |
Sr | 19.51 | 3.42 |
Eu | 0.97 | 0.1 |
Dy | 0.07 | 0.01 |
Totals | 100 | - |
Sample | Surface Area m2/g | Pore Volume cm3/g | Pore Diameter nm |
---|---|---|---|
a. g-C3N4 | 14.9 | 0.14 | 3.81 |
b. SrAl2O4:Eu,Dy | 13.2 | 0.08 | 3.80 |
c. SrAl2O4:Eu,Dy-0.01M SiO2/50 wt% g-C3N4 | 11.7 | 0.09 | 3.82 |
Photocatalyst | Rate Constant, min−1 |
---|---|
SrAl2O4:Eu,Dy | 7.0 × 10−4 |
g-C3N4 | 2.7 × 10−3 |
SrAl2O4:Eu,Dy/g-C3N4 | 1.1 × 10−2 |
SrAl2O4:Eu,Dy/0.005M SiO2-g-C3N4 | 1.2 × 10−2 |
SrAl2O4:Eu,Dy/0.01M SiO2-g-C3N4 | 2.0 × 10−2 |
SrAl2O4:Eu,Dy/0.02M SiO2-g-C3N4 | 1.0 × 10−2 |
SrAl2O4:Eu,Dy/0.1M SiO2-g-C3N4 | 1.1 × 10−2 |
SrAl2O4:Eu,Dy/0.2M SiO2-g-C3N4 | 1.1 × 10−2 |
Photocatalyst | Rate Constant, min−1 |
---|---|
SrAl2O4:Eu,Dy | 1.9 × 10−3 |
g-C3N4 | 1.2 × 10−2 |
SrAl2O4:Eu,Dy/g-C3N4 | 4.0 × 10−2 |
SrAl2O4:Eu,Dy/0.005M SiO2-g-C3N4 | 3.9 × 10−2 |
SrAl2O4:Eu,Dy/0.01M SiO2-g-C3N4 | 4.7 × 10−2 |
SrAl2O4:Eu,Dy/0.02M SiO2-g-C3N4 | 2.9 × 10−2 |
SrAl2O4:Eu,Dy/0.1M SiO2-g-C3N4 | 2.9 × 10−2 |
SrAl2O4:Eu,Dy/0.2M SiO2-g-C3N4 | 2.7 × 10−2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavengere, S.; Kim, J.-S. Photocatalytic Properties of g-C3N4–Supported on the SrAl2O4:Eu,Dy/SiO2. Coatings 2020, 10, 917. https://doi.org/10.3390/coatings10100917
Mavengere S, Kim J-S. Photocatalytic Properties of g-C3N4–Supported on the SrAl2O4:Eu,Dy/SiO2. Coatings. 2020; 10(10):917. https://doi.org/10.3390/coatings10100917
Chicago/Turabian StyleMavengere, Shielah, and Jung-Sik Kim. 2020. "Photocatalytic Properties of g-C3N4–Supported on the SrAl2O4:Eu,Dy/SiO2" Coatings 10, no. 10: 917. https://doi.org/10.3390/coatings10100917
APA StyleMavengere, S., & Kim, J.-S. (2020). Photocatalytic Properties of g-C3N4–Supported on the SrAl2O4:Eu,Dy/SiO2. Coatings, 10(10), 917. https://doi.org/10.3390/coatings10100917