Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications
Abstract
:1. Introduction
2. Reinforcement and Polymer Matrix of Biocomposites
2.1. Plant-Based Natural Fibres
2.2. Polymer Matrix
3. Fabrication of Biocomposites
4. Mechanical Properties of the Biocomposites
Factors Affecting the Mechanical Properties of Biocomposites
5. Biodegradability of the Biocomposites
6. Challenges Associated with the Biocomposites and Probable Fibre Modifications
7. Potential Application Areas of Biocomposites
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
NFRCs | Natural Fibre Reinforced Composites |
PLA | Polylactic Acid |
PE | Polyethylene |
PP | Polypropylene |
PAN | Polyacrylonitrile |
PC | Polycarbonates |
RTM | Resin Transfer Moulding |
UD | Unidirectional |
PF | Palm fibre |
PBS | Polybutylene succinate |
PBAT | Polybutylene adipate-co-terephthalate |
PES | Polyethylene sebacate |
PS | Polystyrene |
PMMA | Polymethyl methacrylate |
PVC | Polyvinyl chloride |
PVA | Polyvinyl acetate |
PET | Polyethylene terephthalate |
RFI | Resin Film Infusion |
VaRTM | Vacuum-assisted resin transfer moulding |
CP | Cross ply |
PHA | Polyhydroxyalkanoate |
SRF | Sugarcane rind fibre |
DDGS | Distillers dried grains with soluble |
References
- Faruque, M.A.A.; Remadevi, R.; Razal, J.; Wang, X.; Naebe, M. Investigation on structure and characteristics of alpaca-based wet-spun polyacrylonitrile composite fibres by utilizing natural textile waste. J. Appl. Polym. Sci. 2020, 137, 48370. [Google Scholar] [CrossRef]
- Faruque, A.; Remadevi, R.; Wang, X.; Naebe, M. Preparation and characterisation of mechanically milled particles from waste alpaca fibres. Powder Technol. 2019, 342, 848–855. [Google Scholar] [CrossRef]
- Cai, Z.; Remadevi, R.; Al Faruque, A.; Setty, M.; Fan, L.; Haque, A.N.M.A.; Naebe, M. Fabrication of a cost-effective lemongrass (Cymbopogon citratus) membrane with antibacterial activity for dye removal. RSC Adv. 2019, 9, 34076–34085. [Google Scholar] [CrossRef] [Green Version]
- Faruque, M.A.A.; Remadevi, R.; Razal, J.; Wang, X.; Naebe, M. Impact of the wet spinning parameters on the alpaca-based polyacrylonitrile composite fibres: Morphology and enhanced mechanical properties study. J. Appl. Polym. Sci. 2020, 137, 49264. [Google Scholar] [CrossRef]
- Safri, S.N.A.; Sultan, M.T.H.; Jawaid, M.; Jayakrishna, K. Impact behaviour of hybrid composites for structural applications: A review. Compos. Part B Eng. 2018, 133, 112–121. [Google Scholar] [CrossRef]
- Khan, S.; Malik, A. Environmental and Health Effects of Textile Industry Wastewater. In Environmental Deterioration and Human Health; Springer Science and Business Media LLC: New York, NY, USA, 2013; pp. 55–71. [Google Scholar]
- Mishra, S.; Charan Rath, C.; Das, A.P. Marine microfibre pollution: A review on present status and future challenges. Mar. Pollut. Bull. 2019, 140, 188–197. [Google Scholar] [CrossRef]
- Katip, A.; İnce, Z. Green chemistry applications in textile industry. Sci. Ecol. Eng. Res. Glob. World 2018, 31, 384. [Google Scholar]
- Mohammed, L.; Ansari, M.M.N.; Pua, G.; Jawaid, M.; Islam, M.S. A review on natural fibre reinforced polymer composite and its applications. Int. J. Polym. Sci. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A review of natural fibres used in biocomposites: Plant, animal and regenerated cellulose fibres. Polym. Rev. 2015, 55, 107–162. [Google Scholar] [CrossRef]
- Väisänen, T.; Das, O.; Tomppo, L. A review on new bio-based constituents for natural fibre-polymer composites. J. Clean. Prod. 2017, 149, 582–596. [Google Scholar] [CrossRef]
- Remadevi, R.; Al Faruque, A.; Zhang, J.; Naebe, M. Electrically conductive honeycomb structured graphene composites from natural protein fibre waste. Mater. Lett. 2020, 264, 127311. [Google Scholar] [CrossRef]
- Pico, D.; Steinmann, W. Synthetic fibres for composite applications. In Fibrous and Textile Materials for Composite Applications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 135–170. [Google Scholar]
- Pickering, S.J. Recycling technologies for thermoset composite materials—Current status. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1206–1215. [Google Scholar] [CrossRef]
- Henshaw, J.M.; Han, W.; Owens, A.D. An Overview of Recycling Issues for Composite Materials. J. Thermoplast. Compos. Mater. 1996, 9, 4–20. [Google Scholar] [CrossRef]
- Huda, M.S.; Drzal, L.T.; Mohanty, A.K.; Misra, M. Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: A comparative study. Compos. Sci. Technol. 2006, 66, 1813–1824. [Google Scholar] [CrossRef]
- Mitra, B.C. Environment Friendly Composite Materials: Biocomposites and Green Composites. Def. Sci. J. 2014, 64, 244–261. [Google Scholar] [CrossRef]
- Maghsoudi-Ganjeh, M.; Lin, L.; Wang, X.; Zeng, X. Bioinspired design of hybrid composite materials. Int. J. Smart Nano Mater. 2018, 10, 90–105. [Google Scholar] [CrossRef]
- Subramani, N.; Murali, J.G.; Suresh, P.; Sankar, V.V.A. Review on hybrid composite materials and its applications. Int. Res. J. Eng. Technol. 2017, 4, 1921. [Google Scholar]
- Kanitkar, Y.M.; Kulkarni, A.P.; Wangikar, K.S. Characterization of Glass Hybrid composite: A Review. Mater. Today Proc. 2017, 4, 9627–9630. [Google Scholar] [CrossRef]
- Peças, P.; Carvalho, H.; Salman, H.; Leite, M. Natural Fibre Composites and Their Applications: A Review. J. Compos. Sci. 2018, 2, 66. [Google Scholar] [CrossRef] [Green Version]
- Witayakran, S.; Smitthipong, W.; Wangpradid, R.; Chollakup, R.; Clouston, P.L. Natural Fibre Composites: Review of Recent Automotive Trends; Elsevier: London, UK, 2017; pp. 166–174. [Google Scholar]
- Toldy, A.; Niedermann, P.; Rapi, Z.; Szolnoki, B. Flame retardancy of glucofuranoside based bioepoxy and carbon fibre reinforced composites made thereof. Polym. Degrad. Stab. 2017, 142, 62–68. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, A.K.; Misra, M.; Drzal, L.T. Natural Fibres, Biopolymers, and Biocomposites; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Lampke, T.; Mishra, S.; Bismarck, A. Plant fibres as reinforcement for green composites. In Natural Fibres, Biopolymers, and Biocomposites; CRC Press: Boca Raton, FL, USA, 2005; pp. 52–128. [Google Scholar]
- Khan, M.Z.; Srivastava, S.K.; Gupta, M. Tensile and flexural properties of natural fiber reinforced polymer composites: A review. J. Reinf. Plast. Compos. 2018, 37, 1435–1455. [Google Scholar] [CrossRef]
- Shinoj, S.; Visvanathan, R.; Panigrahi, S.; Kochubabu, M. Oil palm fibre (OPF) and its composites: A review. Ind. Crops Prod. 2011, 33, 7–22. [Google Scholar] [CrossRef]
- La Mantia, F.; Morreale, M. Green composites: A brief review. Compos. Part A Appl. Sci. Manuf. 2011, 42, 579–588. [Google Scholar] [CrossRef]
- Mukherjee, T.; Kao, N. PLA Based Biopolymer Reinforced with Natural Fibre: A Review. J. Polym. Environ. 2011, 19, 714–725. [Google Scholar] [CrossRef]
- Shah, A.U.R.; Prabhakar, M.N.; Song, J.-I. Current advances in the fire retardancy of natural fibre and bio-based composites–A review. Int. J. Precis. Eng. Manuf. Technol. 2017, 4, 247–262. [Google Scholar] [CrossRef]
- Wang, X.; Wang, D.-Y. Fire-retardant polylactic acid-based materials. In Novel Fire Retardant Polymers and Composite Materials; Elsevier: Amsterdam, The Netherlands, 2017; pp. 93–116. [Google Scholar]
- Sanjay, M.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2018, 172, 566–581. [Google Scholar] [CrossRef]
- Sanjay, M.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Pruncu, C.I.; Khan, A. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydr. Polym. 2019, 207, 108–121. [Google Scholar] [CrossRef]
- Kerni, L.; Singh, S.; Patnaik, A.; Kumar, N. A review on natural fiber reinforced composites. Mater. Today Proc. 2020, 28, 1616–1621. [Google Scholar] [CrossRef]
- Li, M.; Pu, Y.; Thomas, V.M.; Yoo, C.G.; Ozcan, S.; Deng, Y.; Nelson, K.; Ragauskas, A.J. Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos. Part B Eng. 2020, 200, 108254. [Google Scholar] [CrossRef]
- Scaffaro, R.; Lopresti, F.; Botta, L. PLA based biocomposites reinforced with Posidonia oceanica leaves. Compos. Part B Eng. 2018, 139, 1–11. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, D.; Wan, G.; Li, B.; Zhao, G. Glass fibre reinforced PLA composite with enhanced mechanical properties, thermal behavior, and foaming ability. Polymer 2019, 181, 121803. [Google Scholar] [CrossRef]
- Koronis, G.; Silva, A.; Fontul, M. Green composites; A review of adequate materials for automotive applications. Compos. Part B Eng. 2013, 39, 120–127. [Google Scholar] [CrossRef]
- Dinesh, S.; Kumaran, P.; Mohanamurugan, S.; Vijay, R.; Singaravelu, D.L.; Vinod, A.; Sanjay, M.R.; Siengchin, S.; Bhat, K.S. Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fibre epoxy composites. J. Polym. Res. 2020, 27, 9. [Google Scholar] [CrossRef]
- Barbero, E.J. Introduction to Composite Materials Design, 3rd ed.; CRC Press: London, UK, 2017. [Google Scholar]
- Akovali, G. Handbook of Composite Fabrication; Rapra Technology Limited: Shorpshire, UK, 2001; pp. 3–181. [Google Scholar]
- Bunsell, A.; Renard, J. Fundamentals of Fibre Reinforced Composite Materials. Ser. Mater. Sci. Eng. 2005. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Sultan, M.T.; Rajeswari, N. Manufacturing Techniques of Composites for Aerospace Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 55–67. [Google Scholar]
- Boisse, P. Advances in Composites Manufacturing and Process Design; Woodhead Publishing: Cambridge, UK, 2015. [Google Scholar]
- Chung, D.D.L. Carbon Composites: Composites with Carbon Fibres, Nanofibres, and Nanotubes; Butterworth-Heinemann: Oxford, UK, 2016. [Google Scholar]
- Nurazzi, M.; Laila, D. A Review: Fibres, Polymer Matrices and Composites science & technology. Polym. Matrices Compos. 2017, 25, 1085–1102. [Google Scholar]
- Tridico, S.R. Natural animal textile fibres: Structure, characteristics and identification. In Woodhead Publishing Series in Textiles; Houck, M., Ed.; Woodhead Publishing: Cambridge, UK, 2009; pp. 27–67. [Google Scholar]
- Naebe, M.; McGregor, B.A.; Swan, P.; Tester, D. Associations between the physiological basis of fabric-evoked prickle, fibre and yarn characteristics and the Wool ComfortMeter value. Text. Res. J. 2015, 85, 1122–1130. [Google Scholar] [CrossRef]
- Muthuraj, R.; Misra, M.; Mohanty, A.K. Studies on mechanical, thermal, and morphological characteristics of biocomposites from biodegradable polymer blends and natural fibres. In Biocomposites; Elsevier: Amsterdam, The Netherlands, 2015; pp. 93–140. [Google Scholar]
- Shah, D.U.; Porter, D.; Vollrath, F. Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites. Compos. Sci. Technol. 2014, 101, 173–183. [Google Scholar] [CrossRef]
- Akil, H.M.; Omar, M.F.; Mazuki, A.A.M.; Safiee, S.; Ishak, Z.A.M.; Bakar, A. Kenaf fibre reinforced composites: A review. Mater. Des. 2011, 32, 4107–4121. [Google Scholar] [CrossRef]
- Haque, A.N.M.A.; Remadevi, R.; Naebe, M. Lemongrass (Cymbopogon): A review on its structure, properties, applications and recent developments. Cellulose 2018, 25, 5455–5477. [Google Scholar] [CrossRef]
- Hori, K.; Flavier, M.E.; Kuga, S.; Lam, T.B.T.; Iiyama, K. Excellent oil absorbent kapok [Ceiba pentandra (L.) Gaertn.] fibre: Fibre structure, chemical characteristics, and application. J. Wood Sci. 2000, 46, 401–404. [Google Scholar] [CrossRef]
- Huda, M.S.; Drzal, L.T.; Ray, D.; Mohanty, A.K.; Mishra, M. Natural-fibre composites in the automotive sector. In Properties and Performance of Natural-Fibre Composites; Elsevier: Amsterdam, The Netherlands, 2008; pp. 221–268. [Google Scholar]
- Gholampour, A.; Ozbakkaloglu, T. A Review of Natural Fibre Composites: Properties, Modification and Processing Techniques, Characterization, Applications. J. Mater. Sci. 2020, 55, 829–892. [Google Scholar] [CrossRef]
- Pothan, L.A. Natural Fibre Reinforced Polymer Composite from Macro to Nanoscale; Old City Publishing: Philadelphia, PA, USA, 2009. [Google Scholar]
- UNCTAD United Nations Conference on Trade and Development; Trust Fund on Market Information on Agricultural Commodities. Banana An Infocom Commodity Profile UNCTAD Trust Fund on Market Information on Agricultural Commodities; United Nations (UN): New York, NY, USA; Geneva, Switzerland, 2016; pp. 1–21. [Google Scholar]
- Reddy, N.; Yang, Y. Fibres from sugarcane bagasse. In Innovative Biofibres from Renewable Resources; Springer: Berlin/Heidelberg, Germany, 2015; pp. 29–30. [Google Scholar]
- Todkar, S.S.; Patil, S.A. Review on mechanical properties evaluation of Pineapple Leaf Fibre (PALF) reinforced polymer composites. Compos. Part B Eng. 2019, 174, 106927. [Google Scholar] [CrossRef]
- Balasubramanian, M. Introduction to composite materials. In Fibrous and Textile Materials for Composite Applications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–38. [Google Scholar]
- Yao, S.S.; Jin, F.L.; Rhee, K.Y.; Hui, D.; Park, S.J. Recent advances in carbon-fibre-reinforced thermoplastic composites: A review. Compos. Part B Eng. 2018, 142, 241–250. [Google Scholar] [CrossRef]
- Gouzman, I.; Atar, N.; Grossman, E.; Verker, R.; Bolker, A.; Pokrass, M.; Sultan, S.; Sinwani, O.; Wagner, A.; Lück, T.; et al. 3D Printing of Bismaleimides: From New Ink Formulation to Printed Thermosetting Polymer Objects. Adv. Mater. Technol. 2019, 4, 1900368. [Google Scholar] [CrossRef]
- Yun, I.S.; Hwang, S.W.; Shim, J.K.; Seo, K.H. A study on the thermal and mechanical properties of poly (butylene succinate)/thermoplastic starch binary blends. Int. J. Precis. Eng. Manuf. Technol. 2016, 3, 289–296. [Google Scholar] [CrossRef]
- Ke, C.-H.; Li, J.; Fang, K.-Y.; Zhu, Q.-L.; Zhu, J.; Yan, Q.; Wang, Y.-Z. Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polym. Degrad. Stab. 2010, 95, 763–770. [Google Scholar] [CrossRef]
- Stapulionienė, R.; Vaitkus, S.; Vėjelis, S.; Sankauskaitė, A. Investigation of thermal conductivity of natural fibres processed by different mechanical methods. Int. J. Precis. Eng. Manuf. 2016, 17, 1371–1381. [Google Scholar] [CrossRef]
- Marques, A. Fibrous aterials reinforced composites production techniques. In Fibrous and Composite Materials for Civil Engineering Applications; Elsevier: Amsterdam, The Netherlands, 2011; pp. 191–215. [Google Scholar]
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [Green Version]
- Hollaway, L. Handbook of Polymer Composites for Engineers; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Crutchlow, R. Changing from open to closed moulding. Reinf. Plast. 2004, 48, 40–41. [Google Scholar] [CrossRef]
- Leong, Y.W.; Thitithanasarn, S.; Yamada, K.; Hamada, H. 8-Compression and Injection Molding Techniques for Natural Fibre Composites; Hodzic, A., Shanks, R.T.B.N.F.C., Eds.; Woodhead Publishing: Cambridge, UK, 2014; pp. 216–232. [Google Scholar]
- Fabrication Methods. Available online: https://www.compositesworld.com/articles/fabrication-methods (accessed on 25 August 2020).
- Summerscales, J.; Grove, S. Manufacturing Methods for Natural Fibre Composites; Elsevier: Amsterdam, The Netherlands, 2014; pp. 176–215. [Google Scholar]
- Open Molding Processes Composites Lab. Available online: http://compositeslab.com/composites-manufacturing-processes/open-molding/ (accessed on 8 September 2020).
- Idicula, M.; Boudenne, A.; Umadevi, L.; Ibos, L.; Candau, Y.; Thomas, S. Thermophysical properties of natural fibre reinforced polyester composites. Compos. Sci. Technol. 2006, 66, 2719–2725. [Google Scholar] [CrossRef]
- Mazumdar, S. Composites Manufacturing; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Cripps, D.; Searle, T.; Summerscales, J. Open Mold Techniques for Thermoset Composites; Elsevier: Amsterdam, The Netherlands, 2000; pp. 737–761. [Google Scholar]
- Brouwer, W.; Van Herpt, E.; Labordus, M. Vacuum injection moulding for large structural applications. Compos. Part A: Appl. Sci. Manuf. 2003, 34, 551–558. [Google Scholar] [CrossRef]
- Loff, A. Choosing the right closed moulding process. Reinf. Plast. 2004, 48, 46–48. [Google Scholar] [CrossRef]
- Cawood, M.; Smith, G. A compression moulding technique for thick sheets of thermoplastics. Polym. Test. 1980, 1, 3–7. [Google Scholar] [CrossRef]
- Oksman, K.; Skrifvars, M.; Selin, J.-F. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 2003, 63, 1317–1324. [Google Scholar] [CrossRef]
- Breukelaar, A.H. Introduction: On method. Hist. Episcop. Auth. Sixth-Century Gaul 1994, 2, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Saleem, Z.; Rennebaum, H.; Pudel, F.; Grimm, E. Treating bast fibres with pectinase improves mechanical characteristics of reinforced thermoplastic composites. Compos. Sci. Technol. 2008, 68, 471–476. [Google Scholar] [CrossRef] [Green Version]
- Thomason, J.L. Interfacial strength in thermoplastic composites-At last an industry friendly measurement method? Compos. Part A Appl. Sci. Manuf. 2002, 33, 1283–1288. [Google Scholar] [CrossRef] [Green Version]
- Rudd, C.D.; Long, A.C.; Kendall, K.N.; Mangin, C.G.E. Liquid Moulding Technologies; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Gunge, A.; Koppad, P.G.; Nagamadhu, M.; Kivade, S.; Murthy, K.S. Study on mechanical properties of alkali treated plain woven banana fabric reinforced biodegradable composites. Compos. Commun. 2019, 13, 47–51. [Google Scholar] [CrossRef]
- Elkington, M.; Bloom, D.; Ward, C.; Chatzimichali, A.; Potter, K. Hand layup: Understanding the manual process. Adv. Manuf. Polym. Compos. Sci. 2015, 1, 138–151. [Google Scholar] [CrossRef] [Green Version]
- Sozer, E.; Simacek, P.; Advani, S. Resin transfer molding (RTM) in polymer matrix composites. In Manufacturing Techniques for Polymer Matrix Composites (PMCs); Elsevier: Amsterdam, The Netherlands, 2012; pp. 245–309. [Google Scholar]
- Hsiao, K.-T.; Heider, D. Vacuum Assisted Resin Transfer Molding (VARTM) in Polymer Matrix Composites; Elsevier: Amsterdam, The Netherlands, 2012; pp. 310–347. [Google Scholar]
- Qi, B.; Raju, J.; Kruckenberg, T.; Stanning, R. A resin film infusion process for manufacture of advanced composite structures. Compos. Struct. 1999, 47, 471–476. [Google Scholar] [CrossRef]
- Sidewell, D.R. Hand lay-up and bag molding. In Handbook of Composites; Springer Science and Business Media LLC: New York, NY, USA, 1998; pp. 352–377. [Google Scholar]
- Zweben, C. Composite materials. Mech. Eng. Handb. 2006, 1, 380–417. [Google Scholar] [CrossRef]
- Awan, F.S.; Fakhar, M.A.; Khan, L.A.; Zaheer, U.; Khan, A.F.; Subhani, T. Interfacial mechanical properties of carbon nanotube-deposited carbon fiber epoxy matrix hierarchical composites. Compos. Interfaces 2018, 25, 681–699. [Google Scholar] [CrossRef]
- Bender, D.; Schuster, J.; Heider, D. Flow rate control during vacuum-assisted resin transfer molding (VARTM) processing. Compos. Sci. Technol. 2006, 66, 2265–2271. [Google Scholar] [CrossRef]
- Yoon, M.K.; Baidoo, J.; Gillespie, J.W.; Heider, D.J.; Hsiao, K.-T. Vacuum Assisted Resin Transfer Molding (VARTM) Process Incorporating Gravitational Effects: A Closed-form Solution. J. Compos. Mater. 2005, 39, 2227–2242. [Google Scholar] [CrossRef]
- Kedari, V.R.; Farah, B.I.; Hsiao, K.-T. Effects of vacuum pressure, inlet pressure, and mold temperature on the void content, volume fraction of polyester/e-glass fiber composites manufactured with VARTM process. J. Compos. Mater. 2011, 45, 2727–2742. [Google Scholar] [CrossRef]
- Yalcinkaya, M.A.; Sozer, E.M.; Altan, M.C. Fabrication of high quality composite laminates by pressurized and heated-VARTM. Compos. Part A Appl. Sci. Manuf. 2017, 102, 336–346. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Pinheiro, I.F.; Mariano, M.; Cividanes, L.S.; Costa, J.C.; Nascimento, N.R.; Kimura, S.P.; Neto, J.C.; Lona, L.M. Environmentally friendly polymer composites based on PBAT reinforced with natural fibers from the amazon forest. Polym. Compos. 2019, 40, 3351–3360. [Google Scholar] [CrossRef]
- Gassan, J. A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites. Compos. Part A Appl. Sci. Manuf. 2002, 33, 369–374. [Google Scholar] [CrossRef]
- Cha, Y.-H.; Kim, K.-S.; Kim, D.-J. Evaluation on the fracture toughness and strength of fiber reinforced brittle matrix composites. KSME Int. J. 1998, 12, 370–379. [Google Scholar] [CrossRef]
- Shetty, M.R.; Kumar, K.R.V.; Sudhir, S.; Raghu, P.; Madhuranath, A.D.; Rao, R.M.V.G.K. Effect of Fibre Orientation on Mode-I Interlaminar Fracture Toughness of Glass Epoxy Composites. J. Reinf. Plast. Compos. 2000, 19, 606–620. [Google Scholar] [CrossRef] [Green Version]
- Bilisik, K.; Karaduman, N.S.; Sapanci, E. Flexural characterization of 3D prepreg/stitched carbon/epoxy/multiwalled carbon nanotube preforms and composites. J. Compos. Mater. 2018, 53, 563–577. [Google Scholar] [CrossRef]
- Bilisik, K.; Karaduman, N.S.; Sapanci, E. Tensile properties of nanoprepreg/nanostitched 3D carbon/epoxy MWCNTs composites. Mech. Mater. 2019, 128, 11–23. [Google Scholar] [CrossRef]
- Bilisik, K.; Karaduman, N.; Sapanci, E. Short-beam shear of nanoprepreg/nanostitched three-dimensional carbon/epoxy multiwall carbon nanotube composites. J. Compos. Mater. 2019, 54, 311–329. [Google Scholar] [CrossRef]
- Tan, C.; Peng, J.; Lin, W.; Xing, Y.; Xu, K.; Wu, J.; Chen, M. Role of surface modification and mechanical orientation on property enhancement of cellulose nanocrystals/polymer nanocomposites. Eur. Polym. J. 2015, 62, 186–197. [Google Scholar] [CrossRef]
- Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479–3500. [Google Scholar] [CrossRef]
- Henrique, M.A.; Neto, W.P.F.; Silvério, H.A.; Martins, D.F.; Gurgel, L.V.A.; Barud, H.D.S.; De Morais, L.C.; Pasquini, D. Kinetic study of the thermal decomposition of cellulose nanocrystals with different polymorphs, cellulose I and II, extracted from different sources and using different types of acids. Ind. Crop. Prod. 2015, 76, 128–140. [Google Scholar] [CrossRef] [Green Version]
- Azwa, Z.N.; Yousif, B.F.; Manalo, A.C.; Karunasena, W. A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 2013, 47, 424–442. [Google Scholar] [CrossRef] [Green Version]
- Juntaro, J.; Pommet, M.; Mantalaris, A.; Shaffer, M.; Bismarck, A. Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites. Compos. Interfaces 2007, 14, 753–762. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Aravinthan, T.; Cardona, F.; Lau, K.-T. Effects of natural fibre surface on composite properties: A review. In Proceedings of the 1st International Postgraduate Conference on Engineering, Designing and Developing the Built Environment for Sustainable Wellbeing, Brisbane, Australia, 27–29 April 2011; pp. 94–99. [Google Scholar]
- El-Sabbagh, A. Effect of coupling agent on natural fibre in natural fibre/polypropylene composites on mechanical and thermal behaviour. Compos. Part B Eng. 2014, 57, 126–135. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B Eng. 2012, 43, 2883–2892. [Google Scholar] [CrossRef]
- Rokbi, M.; Osmani, H.; Imad, A.; Benseddiq, N. Effect of Chemical treatment on Flexure Properties of Natural Fiber-reinforced Polyester Composite. Procedia Eng. 2011, 10, 2092–2097. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Yuan, X. Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. J. Reinf. Plast. Compos. 2012, 31, 425–437. [Google Scholar] [CrossRef]
- Boopathi, L.; Sampath, P.; Mylsamy, K. Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Compos. Part B Eng. 2012, 43, 3044–3052. [Google Scholar] [CrossRef]
- Cai, M.; Takagi, H.; Nakagaito, A.N.; Li, Y.; Waterhouse, G.I. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2016, 90, 589–597. [Google Scholar] [CrossRef]
- Reddy, K.O.; Maheswari, C.U.; Shukla, M.; Jung-Il, S.; Rajulu, A.V. Tensile and structural characterization of alkali treated Borassus fruit fine fibers. Compos. Part B Eng. 2013, 44, 433–438. [Google Scholar] [CrossRef]
- Thamae, T.; Baillie, C. Influence of fibre extraction method, alkali and silane treatment on the interface of Agave americana waste HDPE composites as possible roof ceilings in Lesotho. Compos. Interfaces 2007, 14, 821–836. [Google Scholar] [CrossRef]
- Asumani, O.; Reid, R.; Paskaramoorthy, R. The effects of alkali–silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1431–1440. [Google Scholar] [CrossRef]
- Goriparthi, B.K.; Suman, K.; Rao, N.M. Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1800–1808. [Google Scholar] [CrossRef]
- Herrera-Franco, P.J.; Valadez-Gonzalez, A. Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 339–345. [Google Scholar] [CrossRef]
- Bisanda, E.; Ansell, M. The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites. Compos. Sci. Technol. 1991, 41, 165–178. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, X.; Bao, J.; Xie, J.; Tang, X.; Che, J.; Ma, Y.H.; Tong, J. Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites. Carbohydr. Polym. 2019, 218, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Tserki, V.; Zafeiropoulos, N.; Simon, F.; Panayiotou, C. A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1110–1118. [Google Scholar] [CrossRef]
- Naik, J.; Mishra, S. Esterification Effect of Maleic Anhydride on Surface and Volume Resistivity of Natural Fiber/Polystyrene Composites. Polym. Technol. Eng. 2007, 46, 537–540. [Google Scholar] [CrossRef]
- Pasquini, D.; Teixeira, E.D.M.; Curvelo, A.A.D.S.; Belgacem, M.N.; Dufresne, A. Surface esterification of cellulose fibres: Processing and characterisation of low-density polyethylene/cellulose fibres composites. Compos. Sci. Technol. 2008, 68, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Dantas, L.G.; Motta, L.A.D.C.; Pasquini, D.; Vieira, J.G. Surface Esterification of Sisal Fibres for use as Reinforcement in Cementitious Matrix. Mater. Res. 2019, 22. [Google Scholar] [CrossRef]
- Wirawan, R.; Zainudin, E.S.; Sapuan, S.M. Mechanical properties of natural fibre reinforced PVC composites: A review. Sains Malays. 2009, 38, 531–535. [Google Scholar]
- Ramnath, B.V.; Kokan, S.J.; Raja, R.N.; Sathyanarayanan, R.; Elanchezhian, C.; Prasad, A.R.; Manickavasagam, V. Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Mater. Des. 2013, 51, 357–366. [Google Scholar] [CrossRef]
- Abu Bakar, M.A.; Ahmad, S.; Kuntjoro, W.; Kasolang, S. Effect of carbon fibre ratio to the impact properties of hybrid kenaf/carbon fibre reinforced epoxy composites. Appl. Mech. Mater. 2013, 393, 136–139. [Google Scholar] [CrossRef]
- Aslan, M.; Tufan, M.; Küçükömeroğlu, T. Tribological and mechanical performance of sisal-filled waste carbon and glass fibre hybrid composites. Compos. Part B Eng. 2018, 140, 241–249. [Google Scholar] [CrossRef]
- Khanam, P.N.; Khalil, H.P.S.A.; Jawaid, M.; Reddy, G.R.; Narayana, C.S.; Naidu, S.V. Sisal/carbon fibre reinforced hybrid composites: Tensile, flexural and chemical resistance properties. J. Polym. Environ. 2010, 18, 727–733. [Google Scholar] [CrossRef]
- Goud, G.; Rao, R.N. Mechanical and electrical performance of roystonea regia/glass fibre reinforced epoxy hybrid composites. Bull. Mater. Sci. 2012, 35, 595–599. [Google Scholar] [CrossRef] [Green Version]
- Bharat, K.R.; Abhishek, S.; Palanikumar, K. Mechanical property analysis on sandwich structured hybrid composite made from natural fibre, glass fibre and ceramic fibre wool reinforced with epoxy resin. IOP Conf. Ser. Mater. Sci. Eng. 2017, 205, 12015. [Google Scholar] [CrossRef]
- Atiqah, A.; Jawaid, M.; Jawaid, M.; Ishak, M.; Ansari, M.; Ilyas, R. Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites. J. Mater. Res. Technol. 2019, 8, 3726–3732. [Google Scholar] [CrossRef]
- Misri, S.; Leman, Z.; Sapuan, S.M.; Ishak, M.R. Mechanical properties and fabrication of small boat using woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite. IOP Conf. Ser. Mater. Sci. Eng. 2010, 11, 012015. [Google Scholar] [CrossRef] [Green Version]
- Wambua, P.; Ivens, J.; Verpoest, I. Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 2003, 63, 1259–1264. [Google Scholar] [CrossRef]
- Cavalcanti, D.; Banea, M.D.; Neto, J.; Lima, R.; Da Silva, L.; Carbas, R. Mechanical characterization of intralaminar natural fibre-reinforced hybrid composites. Compos. Part B Eng. 2019, 175, 107149. [Google Scholar] [CrossRef]
- Singh, J.I.P.; Singh, S.; Dhawan, V. Effect of curing temperature on mechanical properties of natural fiber reinforced polymer composites. J. Nat. Fibers 2017, 15, 687–696. [Google Scholar] [CrossRef]
- Baghaei, B.; Skrifvars, M.; Salehi, M.; Bashir, T.; Rissanen, M.; Nousiainen, P. Novel aligned hemp fibre reinforcement for structural biocomposites: Porosity, water absorption, mechanical performances and viscoelastic behaviour. Compos. Part A Appl. Sci. Manuf. 2014, 61, 1–12. [Google Scholar] [CrossRef]
- Dhakal, H.; Zhang, Z.; Guthrie, R.; Mac Mullen, J.; Bennett, N. Development of flax/carbon fibre hybrid composites for enhanced properties. Carbohydr. Polym. 2013, 96, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Torres, F.G.; Cubillas, M. Study of the interfacial properties of natural fibre reinforced polyethylene. Polym. Test. 2005, 24, 694–698. [Google Scholar] [CrossRef]
- Rao, K.M.M.; Prasad, A.R. Fabrication and testing of natural fibre composites: Vakka, sisal, bamboo and banana. Mater. Des. 2010, 31, 508–513. [Google Scholar] [CrossRef]
- Prasad, A.R.; Rao, K.M. Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Mater. Des. 2011, 32, 4658–4663. [Google Scholar] [CrossRef]
- Arrakhiz, F.; Elachaby, M.; Bouhfid, R.; Vaudreuil, S.; Essassi, M.; Qaiss, A.E.K. Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment. Mater. Des. 2012, 35, 318–322. [Google Scholar] [CrossRef]
- Sreenivasan, V.; Ravindran, D.; Manikandan, V.; Narayanasamy, R. Influence of fibre treatments on mechanical properties of short Sansevieria cylindrica/polyester composites. Mater. Des. 2012, 37, 111–121. [Google Scholar] [CrossRef]
- Arrakhiz, F.; El Achaby, M.; Kakou, A.; Vaudreuil, S.; Benmoussa, K.; Bouhfid, R.; Fassi-Fehri, O.; Qaiss, A.E.K. Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: Impact of chemical treatments. Mater. Des. 2012, 37, 379–383. [Google Scholar] [CrossRef]
- Gironès, J.; López, J.; Mutjé, P.; Carvalho, A.J.F.; Curvelo, A.; Vilaseca, F. Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Compos. Sci. Technol. 2012, 72, 858–863. [Google Scholar] [CrossRef]
- Wu, Y.; Xia, C.; Cai, L.; Garcia, A.C.; Shi, S.Q. Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound. J. Clean. Prod. 2018, 184, 92–100. [Google Scholar] [CrossRef]
- Jawaid, M.; Khalil, H.A.; Hassan, A.; Dungani, R.; Hadiyane, A. Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Compos. Part B Eng. 2013, 45, 619–624. [Google Scholar] [CrossRef]
- Boopalan, M.; Niranjanaa, M.; Umapathy, M.J. Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos. Part B Eng. 2013, 51, 54–57. [Google Scholar] [CrossRef]
- Sreekala, M.S.; Kumaran, M.G.; Joseph, S.; Jacob, M.; Thomas, S. Oil palm fibre reinforced phenol formaldehyde composites: Influence of fibre surface modifications on the mechanical performance. Appl. Compos. Mater. 2000, 7, 295–329. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Huang, L.; Kasal, B. Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Constr. Build. Mater. 2016, 112, 168–182. [Google Scholar] [CrossRef]
- Kandola, B.K.; Mistik, S.; Pornwannachai, W.; Anand, S. Natural fibre-reinforced thermoplastic composites from woven-nonwoven textile preforms: Mechanical and fire performance study. Compos. Part B Eng. 2018, 153, 456–464. [Google Scholar] [CrossRef]
- Singh, J.I.P.; Dhawan, V.; Singh, S.; Jangid, K. Study of effect of surface treatment on mechanical properties of natural fiber reinforced composites. Mater. Today Proc. 2017, 4, 2793–2799. [Google Scholar] [CrossRef]
- Abdulkareem, S.A.; Adeniyi, A.G. Tensile and water absorbing properties of natural fibre reinforced plastic composites from waste polystyrene and rice husk. ABUAD J. Eng. Res. Dev. 2018, 1, 199–204. [Google Scholar]
- Chandramohan, D.; Murali, B.; Vasantha-Srinivasan, P.; Kumar, S.D. Mechanical, moisture absorption, and abrasion resistance properties of bamboo–jute–glass fiber composites. J. Bio-Tribo-Corrosion 2019, 5, 66. [Google Scholar] [CrossRef]
- Reddy, K.H.; Reddy, R.M.; Ramesh, M.; Krishnudu, D.M.; Reddy, B.M.; Rao, H.R. Impact of alkali treatment on characterization of Tapsi (Sterculia Urens) natural bark fiber reinforced polymer composites. J. Nat. Fibers 2019, 1–12. [Google Scholar] [CrossRef]
- Gunti, R.; Prasad, A.R.; Gupta, A. Mechanical and degradation properties of natural fiber-reinforced PLA composites: Jute, sisal, and elephant grass. Polym. Compos. 2016, 39, 1125–1136. [Google Scholar] [CrossRef]
- Gassan, J. Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Compos. Sci. Technol. 2000, 60, 2857–2863. [Google Scholar] [CrossRef]
- Marais, S.; Gouanvé, F.; Bonnesoeur, A.; Grenet, J.; Poncin-Epaillard, F.; Morvan, C.; Métayer, M. Unsaturated polyester composites reinforced with flax fibers: Effect of cold plasma and autoclave treatments on mechanical and permeation properties. Compos. Part A Appl. Sci. Manuf. 2005, 36, 975–986. [Google Scholar] [CrossRef]
- Beg, M.D.H.; Pickering, K. Mechanical performance of kraft fibre reinforced polypropylene composites: Influence of fibre length, fibre beating and hygrothermal ageing. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1748–1755. [Google Scholar] [CrossRef]
- Ray, D.; Sarkar, B.; Rana, A.; Bose, N. The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres. Compos. Part A Appl. Sci. Manuf. 2001, 32, 119–127. [Google Scholar] [CrossRef]
- Suardana, N.P.G.; Piao, Y.; Lim, J.K. Mechanical properties of HEMP fibres and HEMP/PP composites: Effects of chemical surface treatment. Mater. Phys. Mech. 2011, 11, 1–8. [Google Scholar]
- Bledzki, A.K.; Mamun, A.A.; Lucka-Gabor, M.; Gutowski, V.S. The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym. Lett. 2008, 2, 413–422. [Google Scholar] [CrossRef]
- Manikandan Nair, K.C.; Diwan, S.M.; Thomas, S. Tensile properties of short sisal fibre reinforced polystyrene composites. J. Appl. Polym. Sci. 1996, 60, 1483–1497. [Google Scholar] [CrossRef]
- Hong, C.K.; Kim, N.; Kang, S.L.; Nah, C.; Lee, Y.-S.; Cho, B.-H.; Ahn, J.-H. Mechanical properties of maleic anhydride treated jute fibre/polypropylene composites. Plast. Rubber Compos. 2008, 37, 325–330. [Google Scholar] [CrossRef]
- Pickering, K.L.; Li, Y.; Farrell, R.L.; Lay, M. Interfacial modification of hemp fibre reinforced composites using fungal and alkali treatment. J. Biobased Mater. Bioenergy 2007, 1, 109–117. [Google Scholar] [CrossRef]
- Agarwal, B.D.; Broutman, L.J.; Chandrashekhara, K. Analysis and Performance of Fibre Composites; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Nair, A.B.; Joseph, R. Eco-friendly bio-composites using natural rubber (NR) matrices and natural fibre reinforcements. In Chemistry, Manufacture and Applications of Natural Rubber; Elsevier: Amsterdam, The Netherlands, 2014; pp. 249–283. [Google Scholar]
- Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667. [Google Scholar] [CrossRef]
- Ozbakkaloglu, T.; Vincent, T. Axial compressive behavior of circular high-strength concrete-filled FRP tubes. J. Compos. Constr. 2014, 18, 04013037. [Google Scholar] [CrossRef]
- Ozbakkaloglu, T. Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters. Eng. Struct. 2013, 51, 188–199. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.Q.; Zhou, Y.; Huang, Z.-M.; Batra, R. Experimental and micromechanical investigation of T300/7901 unidirectional composite strength. Polym. Compos. 2018, 40, 2639–2652. [Google Scholar] [CrossRef]
- Abdellaoui, H.; Raji, M.; Essabir, H.; Bouhfid, R.; el kacem Qaiss, A. 6-Mechanical behavior of carbon/natural fibre-based hybrid composites. In Woodhead Publishing Series in Composites Science and Engineering; Jawaid, M., Thariq, M., Saba Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 103–122. [Google Scholar]
- Ghalia, M.A.; Abdelrasoul, A. 7-Compressive and fracture toughness of natural and synthetic fibre-reinforced polymer. In Woodhead Publishing Series in Composites Science and Engineering; Jawaid, M., Thariq, M., Saba Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 123–140. [Google Scholar]
- Rajak, D.K.; Pagar, D.D.; Kumar, R.; Pruncu, C.I. Recent progress of reinforcement materials: A comprehensive overview of composite materials. J. Mater. Res. Technol. 2019, 8, 6354–6374. [Google Scholar] [CrossRef]
- Battegazzore, D.; Abt, T.; Maspoch, M.L.; Frache, A. Multilayer cotton fabric bio-composites based on PLA and PHB copolymer for industrial load carrying applications. Compos. Part B Eng. 2019, 163, 761–768. [Google Scholar] [CrossRef]
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef] [Green Version]
- Goud, G.; Rao, R.N. Effect of fibre content and alkali treatment on mechanical properties of Roystonea regia-reinforced epoxy partially biodegradable composites. Bull. Mater. Sci. 2011, 34, 1575–1581. [Google Scholar] [CrossRef]
- Mokhothu, T.H.; John, M.J. Review on hygroscopic aging of cellulose fibres and their biocomposites. Carbohydr. Polym. 2015, 131, 337–354. [Google Scholar] [CrossRef]
- Sreekala, M.; Thomas, S. Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Compos. Sci. Technol. 2003, 63, 861–869. [Google Scholar] [CrossRef]
- Bismarck, A.; Aranberri-Askargorta, I.; Lampke, T.; Wielage, B.; Stamboulis, A.; Shenderovich, I.; Limbach, H.-H. Surface characterization of flax, hemp and cellulose fibers; Surface properties and the water uptake behavior. Polym. Compos. 2002, 23, 872–894. [Google Scholar] [CrossRef]
- Matthews, F.L.; Rawlings, R.D. Composite Materials: Engineering and Science; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Sumaila, M.; Amber, I.; Bawa, M. Effect of fibre length on the physical and mechanical properties of random oreinted, nonwoven short banana (musa balbisiana) fibre/epoxy composite. Asian J. Nat. Appl. Sci. 2013, 2, 39–49. [Google Scholar]
- Young, R. Composite Micromechanics; Elsevier: Amsterdam, The Netherlands, 2015; pp. 3–23. [Google Scholar]
- Ferreira, F.V.; Menezes, B.R.C.; Franceschi, W.; Lozano, K.; Cividanes, L.S.; Coutinho, A.R.; Thim, G.P. Influence of carbon nanotube concentration and sonication temperature on mechanical properties of HDPE/CNT nanocomposites. Full-Nanotub. Carbon Nanostruct. 2017, 25, 531–539. [Google Scholar] [CrossRef]
- Ho, M.P.; Wang, H.; Lee, J.H.; Ho, C.K.; Lau, K.T.; Leng, J.; Hui, D. Critical factors on manufacturing processes of natural fibre composites. Compos. Part B Eng. 2012, 43, 3549–3562. [Google Scholar] [CrossRef]
- Sinha, E.; Panigrahi, S. Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J. Compos. Mater. 2009, 43, 1791–1802. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Drzal, L.T. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Compos. Interfaces 2001, 8, 313–343. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Fangueiro, R. Physical modification of natural fibers and thermoplastic films for composites—A review. J. Thermoplast. Compos. Mater. 2009, 22, 135–162. [Google Scholar] [CrossRef]
- Thakur, V.K.; Singha, A.S. (Eds.) Surface Modification of Biopolymers; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Gulati, D.; Sain, M. Fungal-modification of natural fibers: A novel method of treating natural fibers for composite reinforcement. J. Polym. Environ. 2006, 14, 347–352. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Panigrahi, S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Edalatmanesh, M.; Sain, M.; Liss, S.N.; Kucharczyk, P.; Sedlarik, V.; Miskolczi, N.; Szakacs, H.; Kitano, T. Enzymatic modification of secondary sludge by lipase and laccase to improve the nylon/sludge composite properties. J. Reinf. Plast. Compos. 2012, 31, 179–188. [Google Scholar] [CrossRef]
- Medina, L.; Schledjewski, R.; Schlarb, A.K. Process related mechanical properties of press molded natural fiber reinforced polymers. Compos. Sci. Technol. 2009, 69, 1404–1411. [Google Scholar] [CrossRef]
- Epstein, W.M. Book Review: Quixote’s Ghost: The Right, the Liberati, and the Future of Social Policy. Res. Soc. Work. Pract. 2006, 16, 238–240. [Google Scholar] [CrossRef]
- Rao, S.; Bhattacharyya, D.; Jayaraman, K.; Fernyhough, A. Influence of material parameters on the mechanical properties of extruded sisal fibre-polypropylene composites. Int. SAMPE Symp. Exhib. 2008, 52, 1625–1640. [Google Scholar]
- Shih, Y.F.; Huang, C.C. Polylactic acid (PLA)/banana fibre (BF) biodegradable green composites. J. Polym. Res. 2011, 18, 2335–2340. [Google Scholar] [CrossRef]
- Fazita, M.N.; Jayaraman, K.; Bhattacharyya, D.; Haafiz, M.M.; Saurabh, C.K.; Hussin, M.H.; Khalil, H.A. Green composites made of bamboo fabric and poly (lactic) acid for packaging applications—A review. Materials 2016, 9, 435. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Tao, J.; Yang, C.; Song, C.; Geng, W.; Li, Q.; Wang, Y.; Kong, M.; Wang, S. Introduction of environmentally degradable parameters to evaluate the biodegradability of biodegradable polymers. PLoS ONE 2012, 7, e38341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, P.; Shen, T.; Wang, F.; Wang, X.; Zhang, Z. Study on biodegradable starch/OMMT nanocomposites for packaging applications. J. Polym. Environ. 2009, 17, 203–207. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P. Biodegradability and biodegradation of poly(lactide). Appl. Microbiol. Biotechnol. 2006, 72, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Muniyasamy, S.; Reddy, M.M.; Misra, M.; Mohanty, A.K. Biodegradable green composites from bioethanol co-product and poly(butylene adipate-co-terephthalate). Ind. Crop. Prod. 2013, 43, 812–819. [Google Scholar] [CrossRef]
- Way, C.; Dean, K.; Wu, D.Y.; Palombo, E.A. Biodegradation of sequentially surface treated lignocellulose reinforced polylactic acid composites: Carbon dioxide evolution and morphology. Polym. Degrad. Stab. 2012, 97, 430–438. [Google Scholar] [CrossRef]
- Chattopadhyay, S.K.; Singh, S.; Pramanik, N.; Niyogi, U.K.; Khandal, R.K.; Uppaluri, R.; Ghosal, A.K. Biodegradability studies on natural fibres reinforced polypropylene composites. J. Appl. Polym. Sci. 2011, 121, 2226–2232. [Google Scholar] [CrossRef]
- Shibata, M.; Oyamada, S.; Kobayashi, S.-I.; Yaginuma, D. Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric. J. Appl. Polym. Sci. 2004, 92, 3857–3863. [Google Scholar] [CrossRef]
- Ochi, S. Mechanical properties of kenaf fibres and kenaf/PLA composites. Mech. Mater. 2008, 40, 446–452. [Google Scholar] [CrossRef]
- Wu, C.-S.; Liao, H.-T.; Cai, Y.-X. Characterisation, biodegradability and application of palm fibre-reinforced polyhydroxyalkanoate composites. Polym. Degrad. Stab. 2017, 140, 55–63. [Google Scholar] [CrossRef]
- Mittal, M.; Chaudhary, R. Biodegradability and mechanical properties of pineapple leaf/coir Fibre reinforced hybrid epoxy composites. Mater. Res. Express 2019, 6, 045301. [Google Scholar] [CrossRef]
- Huang, Z.; Qian, L.; Yin, Q.; Yu, N.; Liu, T.; Tian, D. Biodegradability studies of poly (butylene succinate) composites filled with sugarcane rind fibre. Polym. Test. 2018, 68, 319–326. [Google Scholar] [CrossRef]
- Fernandes, T.F. Preparation and characterization of novel biodegradable composites based on acylated cellulose fibres and poly (ethylene sebacate). Compos. Sci. Technol. 2011, 71, 1908–1913. [Google Scholar] [CrossRef]
- Yussuf, A.A.; Massoumi, I.; Hassan, A. Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: The influence of the natural fibers on the mechanical, thermal and biodegradability properties. J. Polym. Environ. 2010, 18, 422–429. [Google Scholar] [CrossRef]
- Pradhan, R.; Misra, M.; Erickson, L.; Mohanty, A. Compostability and biodegradation study of PLA–wheat straw and PLA–soy straw based green composites in simulated composting bioreactor. Bioresour. Technol. 2010, 101, 8489–8491. [Google Scholar] [CrossRef]
- Zuo, J.; Chung, T.-S.; O’Brien, G.S.; Kosar, W.; Chung, T.-S. Hydrophobic/hydrophilic PVDF/Ultem® dual-layer hollow fiber membranes with enhanced mechanical properties for vacuum membrane distillation. J. Membr. Sci. 2017, 523, 103–110. [Google Scholar] [CrossRef]
- Staiger, M.P.; Tucker, N. 8-Natural-fibre composites in structural applications. In Woodhead Publishing Series in Composites Science and Engineering; Pickering, N.-F.C., Ed.; Woodhead Publishing: Cambridge, UK, 2008; pp. 269–300. [Google Scholar]
- Ferreira, F.V.; Cividanes, L.S.; Gouveia, R.F.; Lona, L.M. An overview on properties and applications of poly(butylene adipate-co-terephthalate)-PBAT based composites. Polym. Eng. Sci. 2017, 59, E7–E15. [Google Scholar] [CrossRef] [Green Version]
- Campilho, R.D.S.G. Natural Fibre Composites; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Kozłowski, R.M. Handbook of Natural Fibres; Elsevier: Amsterdam, The Netherlands, 2012; Volume 1. [Google Scholar]
- Venkatachalam, N.; Navaneethakrishnan, P.; Rajsekar, R.; Shankar, S. Effect of pretreatment methods on properties of natural fiber composites: A review. Polym. Polym. Compos. 2016, 24, 555–566. [Google Scholar] [CrossRef]
- Belgacem, M.N.; Bataille, P.; Sapieha, S. Effect of corona modification on the mechanical properties of polypropylene/cellulose composites. J. Appl. Polym. Sci. 1994, 53, 379–385. [Google Scholar] [CrossRef]
- Dong, S.; Sapieha, S.; Schreiber, H.P. Mechanical properties of corona-modified cellulose/polyethylene composites. Polym. Eng. Sci. 1993, 33, 343–346. [Google Scholar] [CrossRef]
- Hassani, F.O.; Merbahi, N.; Oushabi, A.; Elfadili, M.; Kammouni, A.; Oueldna, N. Effects of corona discharge treatment on surface and mechanical properties of Aloe Vera fibers. Mater. Today: Proc. 2020, 24, 46–51. [Google Scholar] [CrossRef]
- Seki, Y.; Sarikanat, M.; Sever, K.; Erden, S.; Gulec, H.A. Effect of the low and radio frequency oxygen plasma treatment of jute fiber on mechanical properties of jute fiber/polyester composite. Fibers Polym. 2010, 11, 1159–1164. [Google Scholar] [CrossRef]
- Höcker, H. Plasma treatment of textile fibers. Pure Appl. Chem. 2002, 74, 423–427. [Google Scholar] [CrossRef]
- Cordeiro, C.R. Plasma treatment of natural fibres to improve fibre-matrix compatibility rafael. Thesis COPPE/UFRJ 2016, 129. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Hao, J.; Wang, W. Ultraviolet weathering performance of high-density polyethylene/wood-flour composites with a basalt-fiber-included shell. Polymers 2018, 10, 831. [Google Scholar] [CrossRef] [Green Version]
- Lopez, J.L.; Sain, M.; Cooper, P. Performance of natural-fiber-plastic composites under stress for outdoor applications: Effect of moisture, temperature, and ultraviolet light exposure. J. Appl. Polym. Sci. 2005, 99, 2570–2577. [Google Scholar] [CrossRef]
- Kafi, A.-A.; Abedin, M.Z.; Beg, M.D.H.; Pickering, K.L.; Khan, M.A. Study on the mechanical properties of jute/glass fiber-reinforced unsaturated polyester hybrid composites: Effect of surface modification by ultraviolet radiation. J. Reinf. Plast. Compos. 2005, 25, 575–588. [Google Scholar] [CrossRef]
- Mayandi, K.; Rajini, N.; Manojprabhakar, M.; Siengchin, S.; Ayrilmis, N. 1-Recent studies on durability of natural/synthetic fibre reinforced hybrid polymer composites. In Woodhead Publishing Series in Composites Science and Engineering; Jawaid, M., Thariq, M., Saba Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 1–13. [Google Scholar]
- Ilyas, R.A.; Sapuan, S.M.; Kadier, A.; Krishnan, S.; Atikah, M.S.N.; Ibrahim, R.; Nazrin, A.; Syafiq, R.; Misri, S.; Huzaifah, M.R.M.; et al. Mechanical Testing of Sugar Palm Fibre Reinforced Sugar Palm Biopolymer Composites. In Advanced Processing, Properties, and Applications of Starch and other Bio-based Polymers; Elsevier: Amsterdam, The Netherlands, 2020; pp. 89–110. [Google Scholar]
- Dittenber, D.B.; GangaRao, H.V.S. Critical review of recent publications on use of natural composites in infrastructure. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1419–1429. [Google Scholar] [CrossRef]
- Padovani, J.; Legland, D.; Pernes, M.; Gallos, A.; Thomachot-Schneider, C.; Shah, D.U.; Bourmaud, A.; Beaugrand, J. Beating of hemp bast fibres: An examination of a hydro-mechanical treatment on chemical, structural, and nanomechanical property evolutions. Cellulose 2019, 26, 5665–5683. [Google Scholar] [CrossRef]
- Song, W.; Wei, W.; Ren, C.; Zhang, S. Effect of heat treatment or alkali treatment of veneers on the mechanical properties of eucalyptus veneer/polyethylene film plywood composites. BioResources 2017, 12, 8683–8703. [Google Scholar] [CrossRef]
- Koohestani, B.; Darban, A.K.; Mokhtari, P.; Yilmaz, E.; Darezereshki, E. Comparison of different natural fiber treatments: A literature review. Int. J. Environ. Sci. Technol. 2018, 16, 629–642. [Google Scholar] [CrossRef]
- Diani, J.; Gall, K. Finite strain 3D thermoviscoelastic constitutive model. Society 2006. [Google Scholar] [CrossRef]
- Shekar, H.S.; Ramachandra, M. Green Composites: A Review. Mater. Today Proc. 2018, 5, 2518–2526. [Google Scholar] [CrossRef]
- Cao, Y.; Sakamoto, S.; Goda, K. Effects of heat and alkali treatments on mechanical properties of kenaf fibres. In Proceedings of the International Conference on Composite Materials (ICCM), Kyoto, Japan, 8–13 July 2007. [Google Scholar]
- Jiang, A.; Xi, J.; Wu, H. Effect of surface treatment on the morphology of sisal fibers in sisal/polylactic acid composites. J. Reinf. Plast. Compos. 2012, 31, 621–630. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Hashim, M.Y.; Roslan, M.N.; Amin, A.M.; Mujahid, A.; Zaidi, A. Mercerization treatment parameter effect on natural fibre reinforced polymer matrix composite: A brief review. World Acad. Sci. Eng. Technol. 2012, 6, 1638–1644. [Google Scholar]
- Kim, J.T.; Netravali, A.N. Mercerization of sisal fibers: Effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1245–1252. [Google Scholar] [CrossRef]
- Qin, C.; Soykeabkaew, N.; Xiuyuan, N.; Peijs, T. The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydr. Polym. 2008, 71, 458–467. [Google Scholar] [CrossRef]
- Goda, K.; Sreekala, M.; Gomes, A.; Kaji, T.; Ohgi, J. Improvement of plant based natural fibers for toughening green composites—Effect of load application during mercerization of ramie fibers. Compos. Part A Appl. Sci. Manuf. 2006, 37, 2213–2220. [Google Scholar] [CrossRef]
- Kaith, B.S.; Singha, A.S.; Kumar, S.; Kalia, S. Mercerization of flax fiber improves the mechanical properties of fiber-reinforced composites. Int. J. Polym. Mater. 2008, 57, 54–72. [Google Scholar] [CrossRef]
- Khalil, H.; Ismail, H.; Rozman, H.; Ahmad, M. The effect of acetylation on interfacial shear strength between plant fibres and various matrices. Eur. Polym. J. 2001, 37, 1037–1045. [Google Scholar] [CrossRef]
- Tserki, V.; Panayiotou, C.; Zafeiropoulos, N.E. A Study of the effect of acetylation and propionylation on the interface of natural fibre biodegradable composites. Adv. Compos. Lett. 2005, 14, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Kabir, M.; Lau, K.-T. Hemp Reinforced composites with alkalization and acetylation fibre treatments. Polym. Polym. Compos. 2014, 22, 247–252. [Google Scholar] [CrossRef]
- Khalil, H.A.; Ismail, H. Effect of acetylation and coupling agent treatments upon biological degradation of plant fibre reinforced polyester composites. Polym. Test. 2000, 20, 65–75. [Google Scholar] [CrossRef]
- Mokoena, M.A.; Djoković, V.; Luyt, A.S. Composites of linear low density polyethylene and short sisal fibres: The effects of peroxide treatment. J. Mater. Sci. 2004, 39, 3403–3412. [Google Scholar] [CrossRef]
- Joseph, K.; Thomas, S.; Pavithran, C. Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymers 1996, 37, 5139–5149. [Google Scholar] [CrossRef]
- Ahmad, E.; Luyt, A.S. Effects of organic peroxide and polymer chain structure on morphology and thermal properties of sisal fibre reinforced polyethylene composites. Compos. Part A Appl. Sci. Manuf. 2012, 43, 703–710. [Google Scholar] [CrossRef]
- Imoisili, P.E.; Jen, T.-C. Mechanical and water absorption behaviour of potassium permanganate (KMnO4) treated plantain (Musa Paradisiacal) fibre/epoxy bio-composites. J. Mater. Res. Technol. 2020, 9, 8705–8713. [Google Scholar] [CrossRef]
- Zaman, H.U.; Khan, M.A.; Khan, R.A.; Rahman, M.A.; Das, L.R.; Mamun, A. Role of potassium permanganate and urea on the improvement of the mechanical properties of jute polypropylene composites. Fibers Polym. 2010, 11, 455–463. [Google Scholar] [CrossRef]
- Li, W.; Meng, L.; Ma, R. Effect of surface treatment with potassium permanganate on ultra-high molecular weight polyethylene fiber reinforced natural rubber composites. Polym. Test. 2016, 55, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.A.; Bachtiar, D.; Rejab, M.R.M.; Hasany, S.F. Effect of potassium permanganate on tensile properties of sugar palm fibre reinforced thermoplastic polyurethane. Indian J. Sci. Technol. 2017, 10, 1–5. [Google Scholar] [CrossRef]
- Barkoula, N.M.; Alcock, B.; Cabrera, N.O.; Peijs, T. Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polym. Polym. Compos. 2008, 16, 101–113. [Google Scholar] [CrossRef]
- Orue, A.; Jauregi, A.; Unsuain, U.; Labidi, J.; Eceiza, A.; Arbelaiz, A.; Mendizabal, A.O. The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly(lactic acid)/sisal fiber composites. Compos. Part A Appl. Sci. Manuf. 2016, 84, 186–195. [Google Scholar] [CrossRef]
- Pickering, K.; Abdalla, A.; Ji, C.; McDonald, A.; Franich, R. The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Compos. Part A Appl. Sci. Manuf. 2003, 34, 915–926. [Google Scholar] [CrossRef] [Green Version]
- Bilba, k.; Arsene, M.A. Silane treatment of Bagasse fiber for reinforcement of cementitious composites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1488–1495. [Google Scholar] [CrossRef]
- Xie, Y.; Hill, C.A.; Xiao, Z.; Militz, H.; Mai, C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 806–819. [Google Scholar] [CrossRef]
- Zhou, F.; Cheng, G.; Jiang, B. Effect of silane treatment on microstructure of sisal fibers. Appl. Surf. Sci. 2014, 292, 806–812. [Google Scholar] [CrossRef]
- Hong, C.; Hwang, I.; Kim, N.; Park, D.; Hwang, B.; Nah, C. Mechanical properties of silanized jute–polypropylene composites. J. Ind. Eng. Chem. 2008, 14, 71–76. [Google Scholar] [CrossRef]
- Asim, M.; Jawaid, M.; Abdan, K.; Ishak, M.R. The effect of silane treated fibre loading on mechanical properties of pineapple leaf/kenaf fibre filler phenolic composites. J. Polym. Environ. 2017, 26, 1520–1527. [Google Scholar] [CrossRef]
- Kalia, S.; Kumar, A. Surface Modification of sunn hemp fibers using acrylation, peroxide and permanganate treatments: A study of morphology, thermal stability and crystallinity. Polym. Technol. Eng. 2013, 52, 24–29. [Google Scholar] [CrossRef]
- Sampathkumar, D.; Punyamurthy, R.; Bennehalli, B.; Ranganagowda, R.P.; Chikkol Venkateshappa, S. Natural areca fibre: Surface modification and spectral studies type (method/approach) spectral studies council for innovative research. J. Adv. Chem. 2014, 10, 3263–3273. [Google Scholar]
- Qin, L.; Qiu, J.; Liu, M.; Ding, S.; Shao, L.; Lü, S.; Zhang, G.; Zhao, Y.; Fu, X.; Lü, S. Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chem. Eng. J. 2011, 166, 772–778. [Google Scholar] [CrossRef]
- Haque, R.; Saxena, M.; Shit, S.C.; Asokan, P. Fibre-matrix adhesion and properties evaluation of sisal polymer composite. Fibers Polym. 2015, 16, 146–152. [Google Scholar] [CrossRef]
- Jawaid, M.; Othman, A.; Saba, N.; Shekeil, Y.A.; Paridah, M.T.; Abdul Khalil, H.P.S. Effect of chemical modifications of fibers on tensile properties of epoxy hybrid composites. Int. J. Polym. Anal. Charact. 2014, 19, 391–403. [Google Scholar] [CrossRef]
- Mishra, S.; Misra, M.; Tripathy, S.S.; Nayak, S.K.; Mohanty, A.K. Graft copolymerization of acrylonitrile on chemically modified sisal fibres. Macromol. Mater. Eng. 2001, 286, 107–113. [Google Scholar] [CrossRef]
- Thakur, V.K.; Kessler, M.R. Synthesis and characterization of AN-g-SOY for sustainable polymer composites. ACS Sustain. Chem. Eng. 2014, 2, 2454–2460. [Google Scholar] [CrossRef]
- Maniruzzaman, M.; Rahman, M.; Gafur, M.; Fabritius, H.; Raabe, D. Modification of pineapple leaf fibers and graft copolymerization of acrylonitrile onto modified fibers. J. Compos. Mater. 2011, 46, 79–90. [Google Scholar] [CrossRef]
- Ray, D.; Bose, N.; Mohanty, A.K.; Misra, M. Modification of the dynamic damping behaviour of jute/vinylester composites with latex interlayer. Compos. Part B Eng. 2007, 38, 380–385. [Google Scholar] [CrossRef]
- George, J.; Ivens, J.; Verpoest, I. Surface modification to improve the impact performance of natural fibre composites. In Proceedings of the International Conference on Composite Materials (ICCM), Paris, France, 5–9 July 1999. [Google Scholar]
- Lee, J.; Bhattacharyya, D.; Zhang, M.; Yuan, Y. Mechanical properties of a self-healing fibre reinforced epoxy composites. Compos. Part B Eng. 2015, 78, 515–519. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Salazar, V.L.P.; Leão, A.L.; Rosa, D.D.S.; Gomez, J.G.C.; Alli, R.C.P. Biodegradation of coir and sisal applied in the automotive industry. J. Polym. Environ. 2011, 19, 677–688. [Google Scholar] [CrossRef]
- Salimon, J.; Salih, N.; Yousif, E. Biolubricants: Raw materials, chemical modifications and Environmental benefits. Eur. J. Lipid Sci. Technol. 2010, 112, 519–530. [Google Scholar] [CrossRef]
- Nassar, M.M.A.; Arunachalam, R.; Alzebdeh, K.I. Machinability of natural fibre reinforced composites: A review. Int. J. Adv. Manuf. Technol. 2017, 88, 2985–3004. [Google Scholar] [CrossRef]
- Khaldi, N.; Vivet, A.; Bourmaud, A.; Sereir, Z.; Kada, B. Damage analysis of composites reinforced with Alfa fibres: Viscoelastic behavior and debonding at the fibre/matrix interface. J. Appl. Polym. Sci. 2016, 133, 43760. [Google Scholar] [CrossRef]
- Ciccarelli, L.; Cloppenburg, F.; Ramaswamy, S.; Lomov, S.V.; Van Vuure, A.; Hong, N.V.; Thanh, T.C.; Tri, N.M.; Thomas, G. Sustainable composites: Processing of coir fibres and application in hybrid-fibre composites. J. Compos. Mater. 2019, 54, 1947–1960. [Google Scholar] [CrossRef]
- Sassoni, E.; Manzi, S.; Motori, A.; Montecchi, M.; Canti, M. Novel sustainable hemp-based composites for application in the building industry: Physical, thermal and mechanical characterization. Energy Build. 2014, 77, 219–226. [Google Scholar] [CrossRef]
- Rwawiire, S.; Tomkova, B.; Militky, J.; Jabbar, A.; Kale, B.M. Development of a biocomposite based on green epoxy polymer and natural cellulose fabric (bark cloth) for automotive instrument panel applications. Compos. Part B Eng. 2015, 81, 149–157. [Google Scholar] [CrossRef]
- Kumar, R.; Haq, M.I.U.; Raina, A.; Anand, A. Industrial applications of natural fibre-reinforced polymer composites challenges and opportunities. Int. J. Sustain. Eng. 2018, 12, 212–220. [Google Scholar] [CrossRef]
- Davoodi, M.; Sapuan, S.; Ahmad, D.; Aidy, A.; Khalina, A.; Jonoobi, M. Concept selection of car bumper beam with developed hybrid bio-composite material. Mater. Des. 2011, 32, 4857–4865. [Google Scholar] [CrossRef]
- Graupner, N.; Herrmann, A.S.; Müssig, J. Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Compos. Part A Appl. Sci. Manuf. 2009, 40, 810–821. [Google Scholar] [CrossRef]
- Holbery, J.; Houston, D. Natural-fibre-reinforced polymer composites in automotive applications. JOM 2006, 58, 80–86. [Google Scholar] [CrossRef]
- Suddell, B.C. Industrial fibres: Recent and current developments. In Proceedings of the Symposium on Natural Fibres, Rome, Italy, 20 October 2008; Volume 20, pp. 71–82. [Google Scholar]
- Pickering, K. Properties and Performance of Natural-Fibre Composites; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Carus, M.; Eder, A.; Dammer, L.; Korte, H.; Scholz, L.; Essel, R.; Breitmayer, E.; Barth, M. Wood-Plastic Composites (WPC) and Natural Fibre Composites (NFC); Nova-Institute Hürth, Ger.: Hürth, Germany, 2015; p. 16. [Google Scholar]
- GLOBAL HEMP® Automotive Composites. Available online: http://www.globalhemp.com/2011/02/automotive-composites.html?fbclid=IwAR2b9-_29CctnHN2pm9iVWn6rp6X-ET0P_8PjHq1T2nfSTBwtft6LqC0AKQ (accessed on 14 September 2020).
- Fan, M.; Fu, F. Advanced High Strength Natural Fibre Composites in Construction. In Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Uddin, N. Developments in Fibre-Reinforced Polymer (FRP) Composites for Civil Engineering; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- John, M.J.; Thomas, S. Biofibres and biocomposites. Carbohydr. Polym. 2008, 71, 343–364. [Google Scholar] [CrossRef]
- Van De Weyenberg, I.; Ivens, J.; De Coster, A.; Kino, B.; Baetens, E.; Verpoest, I. Influence of processing and chemical treatment of flax fibres on their composites. Compos. Sci. Technol. 2003, 63, 1241–1246. [Google Scholar] [CrossRef]
- Ticoalu, A.; Aravinthan, T.; Cardona, F. A review of current development in natural fibre composites for structural and infrastructure applications. In Proceedings of the Southern Region Engineering Conference (SREC 2010), Toowoomba, Australia, 10–12 November 2010; pp. 113–117. [Google Scholar]
- Sen, T.; Reddy, H.N.J. Various industrial applications of hemp, kinaf, flax and ramie natural fibres. Int. J. Innov. Manag. Technol. 2011, 2, 192–199. [Google Scholar]
- Bongarde, U.S.; Shinde, V.D. Review on natural fibre reinforcement polymer composites. Int. J. Eng. Sci. Innov. Technol. 2014, 3, 431–436. [Google Scholar]
- Mwaikambo, L. Review of the history, properties and application of plant fibres. Afr. J. Sci. Technol. 2006, 7, 120–133. [Google Scholar]
Fibres | Composition | Physical Properties | Mechanical Properties | ||||||
---|---|---|---|---|---|---|---|---|---|
Cellulose (wt.%) | Hemicellulose (wt.%) | Lignin (wt.%) | Moisture Content (wt.%) | Density (g/cm3) | Diameter (µm) | Tensile Strength (MPa) | Young’s Modulus (GPa) | Elongation at Break (%) | |
Abaca | 56–63 | 20–25 | 7–9 | 5–10 | 1.5 | 150–180 | 430–980 | 12 | 3–10 |
Bagasse | 55.2 | 16.8 | 25.3 | 20–28 | 1.2 | 320–400 | 20–290 | 19.7–27.1 | 1.1 |
Bamboo | 26–43 | 30 | 21–31 | 11–17 | 0.9 | 10–30 | 250–850 | 9.8 | 5.6–8.6 |
Banana | 63–64 | 17–19 | 3–5 | 8–10 | 1.35 | 160–200 | 355 | 33.8 | 53 |
Coir | 36–43 | 0.15–0.25 | 40–45 | 8 | 1.15–1.46 | 100–460 | 131–220 | 4–6 | 15–40 |
Cotton | 82–90 | 5.7 | - | 7.85–8.5 | 1.5–1.6 | 12–38 | 287–800 | 5.5–12.5 | 7–8 |
Flax | 71 | 18.6–20.6 | 2.2 | 8–12 | 1.5 | 40–600 | 88–1500 | 27.6 | 2.7–3.2 |
Hemp | 70.4–74.4 | 17.9–22.4 | 3.7–5.7 | 6.2–12 | 1.47 | 25–500 | 550–900 | 70 | 1.6 |
Henequen | 58–60 | 28–30 | 7–8 | 10–12 | 1.4 | 160–180 | 430–580 | 15–20 | 3–4.7 |
Jute | 61–71.5 | 13.6–20.4 | 12–13 | 12.5–13.7 | 1.3–1.49 | 25–200 | 393–800 | 13–26.5 | 1.16–1.8 |
Kapok | 35–50 | 22–45 | 21.5 | 9.86 | 0.29 | 30–36 | 50–90 | 2–5 | 1.8–4.3 |
Kenaf | 35–57 | 21.5 | 15–19 | 6.2–12 | 1.2 | 30–50 | 295–930 | 53 | 1.6–6.9 |
Oil palm | 45–48 | 32–35 | 16–18 | 12–15 | 0.7–1.55 | 150–500 | 248 | 3.2 | 25 |
Pineapple | 70–82 | - | 5–12 | 14 | 1.5 | 105–300 | 170–1672 | 82 | 1–3 |
Sisal | 67–78 | 10–14.2 | 8–11 | 10–22 | 1.45 | 50–200 | 468–700 | 9.4–22 | 3–7 |
Ramie | 68.6–76.2 | 13.1–16.7 | 0.6–0.7 | 7.5–17 | 1.55 | 35–60 | 400–938 | 61.4–128 | 1.2–3.8 |
Rice | 41–57 | 33 | 8–19 | 14 | 0.9–1.5 | 15–25 | 100–160 | 0.3–2.6 | 5.4–10.6 |
Wheat | 39–45 | 15–31 | 13–20 | 18–20 | 1.1–1.3 | 20–40 | 90–150 | 0.2–2.2 | 3.5–6.6 |
Polymer | Density (g/cm3) | Tensile Strength (MPa) | Tensile Modulus (GPa) | Melting Temperature (°C) | Thermal Conductivity (W·m−1·K−1) | Total Heat Release (kJ/g) |
---|---|---|---|---|---|---|
Polyethylene (PE) | 0.93 | 15 | 0.8 | 105–115 | 0.33–0.51 | 41.6 |
Polypropylene (PP) | 0.92 | 40 | 1.9 | 130 | 0.1–0.2 | 41.4 |
Polyacrylonitrile (PAN) | 1.18 | 57 | 2.7 | 300 | 1.0 | 13.3 |
Polycarbonates (PC) | 1.2 | 70 | 2.6 | 157 | 0.19 | 20.3 |
Polystyrene (PS) | 1.1 | 40 | 3 | 240 | 0.03 | 38.8 |
Polymethyl methacrylate (PMMA) | 1.18 | 47 | 2.2 | 130 | 0.20 | 24.3 |
Polyvinyl chloride (PVC) | 1.4 | 51 | 2.4 | 160 | 0.19 | 11.3 |
Polyvinyl acetate (PVA) | 1.19 | 40 | 1.7 | 200 | 0.31 | 21.6 |
Polylactic acid (PLA) | 1.2–1.4 | 50 | 3.5 | 150–160 | 1.13 | 14.2 |
Polyethylene terephthalate (PET) | 1.38 | 55 | 2.7 | 260 | 0.15 | 15.3 |
Composite Moulding | |
---|---|
Open Moulding | Hand layup |
- | Spray-up |
- | Filament winding |
Closed Moulding | Vacuum bag moulding |
- | Resin Transfer Moulding (RTM) |
- | Vacuum-assisted resin transfer moulding (VaRTM) |
- | Resin film infusion, RFI |
- | Compression moulding |
- | Injection moulding |
- | Pultrusion moulding |
Reinforcement Fibre | Fibre Type | Matrix | Treatment (Fibre/Matrix Modification) | Fabrication Technique | Properties | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|
Tensile Properties | Flexural Properties | Impact Strength (KJ/m2) | ||||||||
Strength (MPa) | Modulus (GPa) | Strength (MPa) | Modulus (GPa) | |||||||
Kenaf fibre (30%) | Short fibre nonwoven mats | Polypropylene | Alkali treatment (5%NaOH) | Compression moulding | 25% | 11% | 10% | - | - | [119] |
Alkali–silane treatment (5%NaOH) | 75% | 94% | 50% | - | - | |||||
Hemp fibre (30%) | Aligned fibre | Polylactic acid | Compared to neat polylactic acid | Compression moulding | 76.5% | 201% | 16% | 58% | 39.1% | [140] |
alkali treatment (4 wt.% NaOH) | 6% | 17% | 8% | 14% | 17.5% | |||||
Flax fibre | Uni-directional (UD) | Epoxy | Hybridization with UD carbon fibre | Compression moulding | - | - | 1.7% | 45.1% | [141] | |
Cross-ply (CP) | 282% | 170.5 | 3.3% | 42.9% | ||||||
Sisal fibre | - | Polyethylene | Treated with 3% of stearic acid. | Compression moulding | - | - | - | - | - | [142] |
Vakka fibre | Unidirectional and continuous fibre | Polyester | Compared with sisal/polyester | Hand lay-up method | 32% | 12% | 4.4% | 35% | - | [143] |
Compared with banana/polyester | 8.4% | 66% | 2.6% | 62.7% | - | |||||
Compared with bamboo/polyester | 45.7% | 20% | 26.2% | 9% | - | |||||
Jowar fibre | Unidirectional and continuous fibre | Polyester | Compared with sisal/polyester | Hand-lay-up method | 89.3% | 44.7% | 34.7% | 216.1% | - | [144] |
Compared with bamboo/polyester | 1.8% | 10.9% | 4.3% | 112.7% | - | |||||
Alfa fibre | Crushed fibres | Polypropylene | Fibre esterification treatment | Heated two roll mill mixing and hot press moulding method | - | 35% | - | - | - | [145] |
Sansevieria cylindrica fibres | Chopped fibre | Polyester | Alkali treatment on fibre | Compression moulding | 8.7% | 0.3%↑ | 22.3%↑ | 8.8%↑ | 1.1%↑ | [146] |
Benzoyl peroxide treatment on fibre | 13.8% | 0.7%↑ | 51.9%↑ | 23.8%↑ | 5.8%↑ | |||||
Potassium permanganate treatment on fibre | 87.3% | 11.9%↑ | 79.9%↑ | 37.5%↑ | 147.7%↑ | |||||
Stearic acid treatment on fibre | 11.2% | 0.1%↑ | 63.1%↑ | 25%↑ | 3.2%↑ | |||||
Coir fibre (20 wt.%) | Crushed fibre | Polyethylene | Sodium hydroxide (NaOH) treatment of fibre | Heated two roll mill mixing and hot press moulding method | 6% | 10%↑ | - | - | - | [147] |
Silane treatment of fibre | 16%↑ | 4% | - | - | - | |||||
Dodecane bromide treatment of fibre | 6%↑ | 24%↑ | - | - | - | |||||
Sisal fibre (30 vol.%) | Randomly oriented fibres | Polypropylene | Compared to glass mat polypropylene composites | Compression moulding | 6.7%↑ | 14.5% | 55% | 59% | 50% | [137] |
Kenaf fibre (30 vol.%) | 6.7% | 9.7%↑ | 52% | 50% | 74% | |||||
Hemp fibre (30 vol.%) | 62.5%↑ | 9.7%↑ | 10% | 14%↑ | 52% | |||||
Jute fibre (30 vol.%) | 10% | 42% | 42% | 36% | 72% | |||||
Coir fibre (30 vol.%) | 68.75% | 79% | 53% | 86% | 59% | |||||
Sisal | Long fibre rovings | Polypropylene | Addition of 2 wt.% maleated polypropylene | Long fibre thermoplastics processing and compression moulding | - | - | 63%↑ | 53.3%↑ | - | [75] |
Jute | - | - | 38%↑ | 38.1%↑ | - | |||||
Flax | - | - | 97.5%↑ | 106.7%↑ | - | |||||
Sisal (20 wt.%) | Chopped fibre strands | Glycerol/thermoplastic starch | Compared to neat thermoplastic starch | Roll mill mixing and hot press moulding method | 115%↑ | 1410%↑ | - | - | - | [148] |
Hemp (20 wt.%) | 208%↑ | 1720%↑ | - | - | - | |||||
Sisal (20 wt.%) | Adding latex with thermoplastic starch | 3.6% | 1.3% | - | - | - | ||||
Hemp (20 wt.%) | 30% | 7.7% | - | - | - | |||||
Kenaf fibre | Chopped fibre strands | Polyester | Magnesium hydroxide impregnation with fibre | Vacuum bag resin transfer moulding method | 54.8%↑ | - | - | - | - | [149] |
Magnesium hydroxide impregnation with fibre and compared to the glass-fibre sheet moulding compound | 19.5% | 21.8% | - | - | - | |||||
Oil palm fibres | Fibre mats | Epoxy | Loading jute fibre | Hand lay-up technique | 68%↑ | 48%↑ | - | - | - | [150] |
Jute fibres | Cross-ply (CP) | Epoxy | Loading banana fibre | Hand-lay-up technique | 14%↑ | 9%↑ | 4.6%↑ | 2.4%↑ | 35.7%↑ | [151] |
Oil palm fibres | Chopped fibre strands | Phenol formaldehyde | Fibre chemical modification: mercerisation | Closed and hot press moulding method | 5.4% | 13%↑ | 53.1%↑ | 3.3% | - | [152] |
Fibre chemical modification: acetylation | 48.6% | 30.4% | 26.5% | 37.7% | - | |||||
Fibre chemical modification: peroxide treatment | 5.4% | 2.2% | 44.9%↑ | 29.5%↑ | - | |||||
Fibre chemical modification: permanganate treatment | 8.1%↑ | 4.3%↑ | 12.2%↑ | 23%↑ | - | |||||
Fibre chemical modification: silanization | 59.5% | 39.1% | 53.1% | 60.7% | - | |||||
Fibre chemical modification: acrylation | 51.4% | 47.8% | 40.8% | 41% | - | |||||
Fibre chemical modification: acrylonitrile grafting | 29.7% | 30.4% | 6.1%↑ | 18% | - | |||||
Fibre chemical modification: latex coating | 64.9% | 52.2% | 67.3% | 77% | - | |||||
Peroxide treatment on resin | - | 8.7% | 10.2%↑ | - | - | |||||
Coir fibre | Randomly oriented fibres | Epoxy | Alkali treatment (5 wt.% NaOH solution) | Hand lay-up followed by the vacuum bagging technique | 17.8%↑ | 6.9%↑ | 16.8%↑ | 6.5%↑ | - | [153] |
Jute fibre | Plain woven fabric | Polylactic acid | Compared to Jute/Polypropylene | Hot-press technique | 52.6%↑ | 119%↑ | - | 130.8%↑ | - | [154] |
Sisal | Compared to sisal/polypropylene | 21.6%↑ | 57%↑ | - | 84.4%↑ | - | ||||
Glass | Compared to glass/polypropylene | 29.5%↑ | 47%↑ | - | 133.3%↑ | - | ||||
Jute | Bidirectional woven mat | Epoxy | Alkalization | Hand lay-up technique | - | 4.7%↑ | - | 9% | 19.6%↑ | [138] |
Mixed (alkalization + silanization) | 8.4%↑ | 9.6%↑ | - | 14% | ||||||
Jute + Curaua | Alkalization | 9.2% | 18.8% | 13% | 12% | 25.4% | ||||
Mixed (alkalization + silanization) | 1.3% | - | 22%↑ | 75%↑ | - | |||||
Jute + Sisal | Alkalization | 12%↑ | 54.4%↑ | - | 21%↑ | 77.1%↑ | ||||
Mixed (alkalization + silanization) | 2.4%↑ | 9.1%↑ | - | 18% | - | |||||
Jute | Combed unidirectional fibres | Epoxy | Surface treatment | Hand layup followed by compression moulding method | 141.3%↑ | - | 4.7%↑ | - | 84% | [155] |
Sisal | 55.7%↑ | - | 10.8%↑ | - | 70.6% | |||||
Banana | 182.4%↑ | - | 10.3%↑ | - | 81.4% | |||||
Rice husks (40% w/w) | Particles | Polystyrene | Compared with pure polystyrene | Mechanical stirring and single roller pressing | - | 5114%↑ | - | - | - | [156] |
Jute fibre | Continuous fibre | Polyester | Compared with neat polyester with no reinforcement | Hand lay-up technique | 48%↑ | 100.5%↑ | 18.1%↑ | 110.6%↑ | 49%↑ | [157] |
Bamboo fibre | 81.6%↑ | 99.4%↑ | 34.2%↑ | 118.7%↑ | 108.5%↑ | |||||
Glass-Jute fibre | 118.3%↑ | 121.3%↑ | 61.4%↑ | 171.5%↑ | 245.4%↑ | |||||
Glass-Bamboo fibre | 146.8%↑ | 135%↑ | 70.3%↑ | 183.7%↑ | 360.7%↑ | |||||
Jute fibre | Woven preforms | Epoxy | Effect of curing temperature and compared with neat matrix | Hand lay-up followed by compression moulding technique | 121.2%↑ | 50%↑ | Max 41.8 at 100 °C | - | Max 3.5 J at 80 °C | [139] |
Tapsi fibre (15 gms) | Continuous fibre | Epoxy | Alkali treatment (NaOH) and compared with KOH treatment | Hand lay-up method | 20%↑ | - | 3.6%↑ | - | - | [158] |
Elephant grass fibre (20%) | Chopped fibre strands | Polylactic acid | Untreated and Compared with pure PLA | Injection moulding technique | 21%↑ | 124.8%↑ | 17.5%↑ | - | 129.5%↑ | [159] |
Untreated and compared with Jute/PLA | 15.5%↑ | - | 24.3%↑ | - | - | |||||
Untreated and compared with Sisal/PLA | 5.5%↑ | - | Slightly higher | - | - | |||||
Chemical treatment: mercerization and bleaching and compared with pure PLA | 24%↑ | 149.6%↑ | 22%↑ | - | Slightly higher | |||||
Chemical treatment: mercerization and bleaching and compared with Jute/PLA | 18.14%↑ | - | Slightly higher | - | - | |||||
Chemical treatment: mercerization and bleaching and compared with Sisal/PLA | Slightly higher | - | 4%↑ | - | - | |||||
Chemical treatment: mercerization and bleaching and compared with untreated grass/PLA | - | - | 28%↑ | - | - | |||||
Tossa jute fibre | Commercially available fibre | Epoxy | Fibre corona treatment | Compression moulding | - | - | 30%↑ | - | - | [160] |
Flax fibre | Randomly oriented fibre | Polyester | Fibre plasma treatment | Compression moulding | - | 16.5%↑ | - | - | - | [161] |
kraft fibre | Randomly oriented fibre | Polypropylene | Fibre-beating treatment | Extrusion moulding | 10%↑ | - | - | - | - | [162] |
Jute fibre | Chopped fibre strands | Vinyl ester | Fibre alkaline treatment | Compression moulding | - | - | 35%↑ | 23%↑ | - | [163] |
Hemp fibre | Randomly oriented fibre | Polypropylene | Fibre silane treatment | Compression moulding | 4%↑ | - | 2%↑ | - | - | [164] |
Flax fibre | Randomly oriented fibre | Polypropylene | Fibre acetylation treatment | Injection moulding | 35%↑ | - | 35%↑ | - | - | [165] |
Sisal fibre | Chopped fibre strands | Polystyrene | Fibre benzoylation treatment | Compression moulding | 91%↑ | - | - | - | - | [166] |
Jute fibre | Randomly oriented fibre | Polypropylene | Fibre treated by a maleated coupling agent | Compression moulding | 15.4%↑ | 22.4%↑ | - | - | - | [167] |
Hemp fibre | Randomly oriented fibre | Polypropylene | Fibre fungal treatment | Injection moulding | 22%↑ | - | - | - | -- | [168] |
Fibre fungal and alkaline treatment | 22%↑ | - | - | - | - |
NFRCs Composition (wt.%) | Biodegradability Test Conditions | Outcomes | Ref. |
---|---|---|---|
Polybutylene succinate (PBS)/Sugarcane rind fibre (SRF) (95:5) | Soil burial test (100 days) | Maximum weight loss (~20%) was found with the PBS/SRF composites than that of pure PBS (~5%). | [211] |
Polybutylene adipate-co-terephthalate (PBAT)/Distillers dried grains with soluble (DDGS) (70:30) | Compost (ASTM D5338) | The PBAT/DDGS composite showed higher biodegradability (~98%) compared to the neat PBAT (~92%). | [204] |
Polylactic acid (PLA)/Maple wood fibre (70:30) | Compost (ISO-14855) | Acetyl treatment of the maple wood fibres increased their porosity that enhanced the hydrolytic degradation of PLA. | [205] |
Polypropylene (PP)/Bamboo (50:50) | Soil burial test (ASTM D5988) | 15% biodegradability was observed within 130 days. | [206] |
Polyethylene sebacate (PES)/Acylated cellulose fibre (85:15) | Compost (ASTM D5338) | Within 30 days, the biocomposite products showed 100% biodegradability. | [212] |
Polylactic acid (PLA)/Kenaf (80:20) and Polylactic acid (PLA)/Rice husk (80:20) | Soil Burial Test (90 days) | The PLA/Kenaf and PLA/Rice husk composites showed 3-times and 2-times higher weight loss (%), respectively compared to the neat PLA. | [213] |
Polylactic acid (PLA)/Soy straw (70:30) | Compost (ASTM D5338) | In 60 days, the PLA/Soy straw exhibited 90% degradation while the pure PLA showed 50%. | [214] |
Fibre | Producer | Production Amount (× 103 ton) | Price (US$/ton) a |
---|---|---|---|
Abaca | Philippines (85%), Ecuador | 70 | 345 |
Bagasse | Brazil, China, India, Thailand, Australia, USA | 75,000 | 3.5–11.8 (7.65) |
Coir | India, Sri Lanka, Thailand, Vietnam, Philippines, Indonesia, Brazil | 1200 | 200–500 (350) |
Cotton | China, Brazil, India, Pakistan, USA, Uzbekistan, Turkey | 25,000 | 1500–4200 (2850) |
Flax | France, Belgium, Netherland, Poland, Russian Federation, China | 830 | 2100–4200 (3150) |
Jute | India (60%), Bangladesh, Myanmar, Nepal | 3450 | 400–1500 (950) |
Kapok | Philippine, Malaysia, China, South America, Indonesia, Thailand | 101 | - |
Kenaf | India (45%), China, Malaysia, USA, Mexico, Thailand, Vietnam | 970 | 300–500 (400) |
Bamboo | China, Japan, India, Chile, Ecuador, Indonesia, Myanmar, Nigeria, Sri Lanka, Philippines, Pakistan | 30,000 | 500 |
Hemp | China (80%), Chile, France, Germany, UK | 214 | 1000–2100 (1550) |
Ramie | China, Brazil, Lao PDR, Philippines, India | 280 | 2000 |
Sisal | Brazil (40%), Kenya, Tanzania, China, Cuba, Haiti, Madagascar, Mexico, Sri Lanka, India | 378 | 600–700 (650) |
Banana | India (22%), China, Philippines, Ecuador and Brazil | 134,000 | 890 |
Pineapple | Costa Rica, Philippines, Taiwan, Brazil, Hawaii, India, Indonesia | 1318 | 360–550 (455) |
Car Manufacturer | Model | Application Areas |
---|---|---|
Rover | 2000 and others | Insulations, rear storage panel |
Audi | A2, A3, A4, A6, A8 | Seatback, side and back door panel, spare-tire lining, boot-liner |
Opel | Astra, Vectra, Zafira | Head-liner panel, door panels, instrumental panel |
BMW | 3, 5 and 7 series | Head-liner panel, seatback, door panel, car dashboard |
Toyota | Raum, Harrier, Brevis | Floor mats, door panels, spare tire cover |
Mercedes Benz | C, S, E and A classes | Door panel, glove box, seat backrest panel, trunk panel, sun visor, roof cover |
Volkswagen | Bora, Golf, A4 | Door panel, seatback, boot-liner |
Peugeot | 406 | Parcel shelf, seatback, door panels |
Fiat | Brava, Punto, Marea | Door panels |
Volvo | V70, C70 | Cargo floor tray, seat padding |
Ford | Focus | Floor trays, door inserts, door panels, boot-liner |
Mitsubishi | - | Door panels, instrumental panels |
Citroen | C5 | Interior door panelling |
Renault | Twingo, Cilo | Rear parcel shelf |
Fibres | Industrial Applications |
---|---|
Hemp | Textiles, geotextiles, paper and packaging, electrical, furniture, cordage, construction items, producing banknotes and manufacturing pipes |
Kenaf | Mobile cases, insulation materials, animal bedding and packaging materials |
Coir | Building panels, storage tanks, helmets and post-boxes, mirror casing, paperweights, mats and seat cushions |
Cotton | Textiles, cordage, furniture upholstery and goods |
Jute | Building panels, door frames, chipboards, geotextiles, door shutters, packaging, transport and roofing sheets |
Wood | Window frames, fencing and panels |
Ramie | Packing materials, industrial sewing threads, fishing nets, canvas and paper manufacturing |
Sisal | Panels, doors, paper and pulp |
Stalk | Bricks, pipes and building panels |
Bagasse | Decking, railing system and fencing |
Rice husk | Window frames, doors, panels, decking and fencing |
Oil palm | Building and construction materials |
Flax | Tennis racket, bicycle frames, snowboarding, panels, doors, laptop cases |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syduzzaman, M.; Al Faruque, M.A.; Bilisik, K.; Naebe, M. Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications. Coatings 2020, 10, 973. https://doi.org/10.3390/coatings10100973
Syduzzaman M, Al Faruque MA, Bilisik K, Naebe M. Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications. Coatings. 2020; 10(10):973. https://doi.org/10.3390/coatings10100973
Chicago/Turabian StyleSyduzzaman, Md, Md Abdullah Al Faruque, Kadir Bilisik, and Maryam Naebe. 2020. "Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications" Coatings 10, no. 10: 973. https://doi.org/10.3390/coatings10100973
APA StyleSyduzzaman, M., Al Faruque, M. A., Bilisik, K., & Naebe, M. (2020). Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications. Coatings, 10(10), 973. https://doi.org/10.3390/coatings10100973