Structure and Tribological Properties of AlCrN + CrCN Coating
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lecis, N.; La Vecchia, G.M.; Boniardi, M.; D’Errico, F. Fatigue behavior of duplex-treated samples coated with Cr(C,N) film. Surf. Coat. Technol. 2006, 201, 2335–2340. [Google Scholar] [CrossRef]
- Tong, C.-Y.; Lee, J.-W.; Kuo, C.-C.; Chan, Y.-C.; Chen, H.-W.; Duh, J.-G. Effects of carbon content on the microstructure and mechanical property of cathodic arc evaporation deposited CrCN thin films. Surf. Coat. Technol. 2013, 231, 482–486. [Google Scholar] [CrossRef]
- Lukaszkowicz, K.; Dobrzański, L.A.; Zarychta, A. Structure, chemical and phase compositions of coatings deposited by reactive magnetron sputtering onto the brass substrate. J. Mater. Process. Technol. 2004, 157–158, 380–387. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, Y.; Chen, H.; Li, J.; Zhou, S.; Xue, Q. Influences of bias voltage on the microstructures and tribological performances of Cr-C-N coatings in seawater. Surf. Coat. Technol. 2015, 270, 305–313. [Google Scholar] [CrossRef]
- Gilewicz, A.; Warcholinski, B. Tribological properties of CrCN/CrN multilayer coatings. Tribol. Int. 2014, 80, 34–40. [Google Scholar] [CrossRef]
- Zhou, H.; Zheng, J.; Gui, B.; Geng, D.; Wang, Q. AlTiCrN coatings deposited by hybrid HIPIMS/DC magnetron co-sputtering. Vacuum 2017, 136, 129–136. [Google Scholar] [CrossRef]
- Mo, J.L.; Zhu, M.H.; Leyland, A.; Matthews, A. Impact wear and abrasion resistance of CrN, AlCrN and AlTiN PVD coatings. Surf. Coat. Technol. 2013, 215, 170–177. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, J.; Lin, Y.; Kwon, S.; Zhang, S. Comparison of AlCrN and AlCrTiSiN coatings deposited on the surface of plasma nitrocarburized high carbon steels. Appl. Surf. Sci. 2015, 332, 525–532. [Google Scholar] [CrossRef]
- Forsén, R.; Johansson, M.P.; Odén, M.; Ghafoor, N. Effects of Ti alloying of AlCrN coatings on thermal stability and oxidation resistance. Thin Solid Films 2013, 534, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Reiter, A.E.; Derflinger, V.H.; Hanselmann, B.; Bachmann, T.; Sartory, B. Investigation of the properties of Al1−xCrxN coatings prepared by cathodic arc evaporation. Surf. Coat. Technol. 2005, 200, 2114–2122. [Google Scholar] [CrossRef]
- Sabitzer, C.; Paulitsch, J.; Kolozsvári, S.; Rachbauer, R.; Mayrhofer, P.H. Impact of bias potential and layer arrangement on thermal stability of arc evaporated Al-Cr-N coatings. Thin Solid Films 2016, 610, 26–34. [Google Scholar] [CrossRef]
- Lomello, F.; Sanchette, F.; Schuster, F.; Tabarant, M.; Billard, A. Influence of bias voltage on properties of AlCrN coatings prepared by cathodic arc deposition. Surf. Coat. Technol. 2013, 224, 77–81. [Google Scholar] [CrossRef]
- Endrino, J.L.; Fox-Rabinovich, G.; Reiter, A.; Veldhuis, S.V.; Galindo, R.E.; Albella, J.M.; Marco, J.F. Oxidation tuning in AlCrN coatings. Surf. Coat. Technol. 2007, 201, 4505–4511. [Google Scholar] [CrossRef]
- Franz, F.; Neidhardt, J.; Sartory, B.; Kaindl, R.; Tessadri, R.; Polcik, P.; Derflinger, V.H.; Metterer, C. High-temperature low-friction properties of vanadium-alloyed AlCrN coatings. Tribol. Lett. 2006, 23, 101–107. [Google Scholar] [CrossRef]
- Warcholiński, B.; Gilewicz, A.; Kukliński, Z.; Myśliński, P. Arc-evaporated CrN, CrN and CrCN coatings. Vacuum 2008, 83, 715–718. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, Y.; Wang, C.; Li, J.; Yao, Y. An analysis on tribological performance of CrCN coatings with different carbon contents in seawater. Tribol. Int. 2015, 91, 131–139. [Google Scholar] [CrossRef]
- Pengfei, H.; Bailing, J. Study on tribological property of CrCN coating based on magnetron sputtering plating technique. Vacuum 2011, 85, 994–998. [Google Scholar] [CrossRef]
- Kuprin, A.S.; Kolodiy, I.V.; Ovcharenko, V.D.; Tolmachova, G.N.; Gilewicz, A.; Lupicka, O.; Warcholiński, B. Effect of carbon on the properties of CrN coatings formed by cathodic arc evaporation in stationary system. Probl. Atom. Sci. Technol. 2016, 104, 72–75. [Google Scholar]
- Čekada, M.; Maček, M.; Merl, D.K.; Panjan, P. Properties of Cr(C,N) hard coatings deposited in Ar-C2H2-N2 plasma. Thin Solid Films 2003, 433, 174–179. [Google Scholar] [CrossRef]
- Guan, J.J.; Wang, H.Q.; Qin, L.Z.; Liao, B.; Liang, H.; Li, B. Phase transitions of doped carbon in CrCN coatings with modified mechanical and tribological properties via filtered cathodic vacuum arc deposition. Nucl. Instrum. Meth. B 2017, 397, 86–91. [Google Scholar] [CrossRef]
- Ghasemi, R.; Elmquist, L. Cast iron and the self-lubricating behaviour of graphite under abrasive wear conditions. In Proceedings of the 10th International Symposium on the Science and Processing of Cast Iron—SPCI10, Mar del Plata, Argentina, 10–13 November 2014. [Google Scholar]
- Fisher, J.; Hu, X.Q.; Stewart, T.D.; Williams, S.; Tipper, J.L.; Ingham, E.; Stone, M.H.; Davies, C.; Hatto, P.; Bolton, J.; et al. Wear of surface engineered metal-on-metal hip prostheses. J. Mater. Sci. Mater. M 2004, 15, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Willmann, H.; Mayrhofer, P.H.; Persson, P.O.; Reiter, A.E.; Hultman, L.; Mitterer, C. Thermal stability of Al-Cr-N hard coatings. Scr. Mater. 2006, 54, 1847–1851. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, L.; Ke, R.; Wan, Q.; Wang, Z.; Lu, Z. Thermal stability and oxidation behavior of AlTiN, AlCrN and AlCrSiWN coatings. Int. J. Refract. Met. Hard 2014, 43, 241–249. [Google Scholar] [CrossRef]
- Chen, M.; Wu, D.; Chen, W.; Zhang, S. Structural optimisation and electrochemical behaviour of AlCrN coatings. Thin Solid Films 2016, 612, 400–406. [Google Scholar] [CrossRef] [Green Version]
- Kolaklieva, L.; Kakanakov, R.; Stefanov, P.; Kovacheva, D.; Atanasova, G.; Russev, S.; Chitanov, V.; Cholakova, T.; Bahchedjiev, C. Mechanical and structural properties of nanocomposite CrAlSiN-AlSiN coating with periodically modulated composition. Coatings 2020, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Veprek, S.; Zhang, R.F.; Veprek-Heijman, M.G.J.; Sheng, S.H.; Argon, A.S. Superhard nanocomposites: Origin of hardness enhancement, properties and applications. Surf. Coat. Technol. 2010, 204, 1898–1906. [Google Scholar] [CrossRef]
- Tillmann, W.; Stangier, D.; Laemmerhirt, I.A.; Biermann, D.; Freiburg, D. Investigation of the tribological properties of high-feed milled structures and Cr-based hard PVD-coatings. Vacuum 2016, 131, 5–13. [Google Scholar] [CrossRef]
- Myśliński, P.; Szparaga, Ł.; Gilewicz, A.; Mydłowska, K.; Piątkowska, A. Investigations of the thermo-mechanical stability of hybrid layers for tribological applications: Nitrided layer/CrCN coating system. Vacuum 2018, 148, 276–285. [Google Scholar] [CrossRef]
- Javed, H.; Merle, B.; Preiß, E.; Hivet, R.; Benedetto, A.; Göken, M. Mechanical characterization of metallic thin films by bulge and scratch testing. Surf. Coat. Technol. 2016, 289, 69–74. [Google Scholar] [CrossRef]
- Pökl, F.; Hardes, C.; Theisen, W. Deformation behavior and dominant abrasion micro mechanism of tempering steel with varying carbon content under controlled scratch testing. Wear 2019, 422–423, 212–222. [Google Scholar]
- Beake, B.D.; Endrino, J.L.; Kimpton, C.; Fox-Rabinovich, G.S.; Veldhuis, S.C. Elevated temperature repetitive micro-scratch testing of AlCrN, TiAlN and AlTiN PVD coatings. Int. J. Refract. Met. Hard 2017, 69, 215–226. [Google Scholar] [CrossRef]
- Vencl, A.; Arostegui, S.; Favaro, G.; Zivic, F.; Mrdak, M.; Mitrović, S.; Popovic, V. Evaluation of adhesion/cohesion bond strength of the thick plasma spray coatings by scratch testing on coatings cross-section. Tribol. Int. 2011, 44, 1281–1288. [Google Scholar] [CrossRef]
- Choi, E.Y.; Kang, M.C.; Kwon, D.H.; Shin, D.W.; Kim, K.H. Comparative studies on microstructure and mechanical properties of CrN, Cr-C-N and Cr-Mo-N coatings. J. Mater. Process. Technol. 2007, 187–188, 566–570. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Weng, S.-Y.; Chen, C.-H.; Fu, F.-X. High temperature oxidation and cutting performance of AlCrN, TiVN and multilayered AlCrN/TiVN hard coatings. Surf. Coat. Technol. 2017, 332, 494–503. [Google Scholar] [CrossRef]
- Antonov, M.; Afshari, H.; Baronins, J.; Adoberg, E.; Raadik, T.; Hussainova, I. The effect of temperature and sliding speed on friction and wear of Si3N4, Al2O3, and ZrO2 balls tested against AlCrN PVD coating. Tribol. Int. 2018, 118, 500–514. [Google Scholar] [CrossRef]
- Polcar, T.; Cvrček, L.; Široký, P.; Novák, R. Tribological characteristics of CrCN coatings at elevated temperature. Vacuum 2005, 80, 113–116. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, Y.; Chen, H.; Li, J.; Yao, Y.; Wang, C. Doping carbon to improve the tribological performance of CrN coatings in seawater. Tribol. Int. 2015, 90, 362–371. [Google Scholar] [CrossRef]
Parameter | AlCrN | CrCN |
---|---|---|
Target current (A) | Cr–250; Al–235 | 250 |
Substrate bias voltage (V) | 60 | 35 |
Working pressure (Pa) | 3 | 2 |
Flow of nitrogen/acetylene (sccm) | 400 | 450/45 |
Time (s) | 4200 | 800 |
Process temperature (°C) | 450 | 450 |
Thickness (μm) | 2.3 | 0.5 |
Samples | Ra (nm) | RMS (nm) | Surface Area Ratio (%) |
---|---|---|---|
Substrat | 1 ± 0.1 | 2 ± 0.3 | 0.2 |
AlCrN | 28 ± 7 | 47 ± 14 | 8.7 |
AlCrN + CrCN | 12 ± 1 | 17 ± 2 | 2.2 |
Coating | μ | Weight of Sample (g) | Weight of Ball (g) | Weight Loss (g) | |||
---|---|---|---|---|---|---|---|
Before | After | Before | After | Sample | Ball | ||
AlCrN | 0.770 ± 0.068 | 53.245 ± 3.567 | 53.234 ± 3.573 | 0.445 ± 0.012 | 0.445 ± 0.012 | 0.011 | 0.000 |
AlCrN + CrCN | 0.620 ± 0.042 | 49.532 ± 2.751 | 49.523 ± 2.750 | 0.446 ± 0.010 | 0.446 ± 0.010 | 0.009 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukaszkowicz, K.; Sondor, J.; Paradecka, A.; Pawlyta, M.; Chmiela, B.; Pancielejko, M.; Szczucka-Lasota, B.; Węgrzyn, T.; Tański, T. Structure and Tribological Properties of AlCrN + CrCN Coating. Coatings 2020, 10, 1084. https://doi.org/10.3390/coatings10111084
Lukaszkowicz K, Sondor J, Paradecka A, Pawlyta M, Chmiela B, Pancielejko M, Szczucka-Lasota B, Węgrzyn T, Tański T. Structure and Tribological Properties of AlCrN + CrCN Coating. Coatings. 2020; 10(11):1084. https://doi.org/10.3390/coatings10111084
Chicago/Turabian StyleLukaszkowicz, Krzysztof, Jozef Sondor, Agnieszka Paradecka, Mirosława Pawlyta, Bartosz Chmiela, Mieczysław Pancielejko, Bożena Szczucka-Lasota, Tomasz Węgrzyn, and Tomasz Tański. 2020. "Structure and Tribological Properties of AlCrN + CrCN Coating" Coatings 10, no. 11: 1084. https://doi.org/10.3390/coatings10111084
APA StyleLukaszkowicz, K., Sondor, J., Paradecka, A., Pawlyta, M., Chmiela, B., Pancielejko, M., Szczucka-Lasota, B., Węgrzyn, T., & Tański, T. (2020). Structure and Tribological Properties of AlCrN + CrCN Coating. Coatings, 10(11), 1084. https://doi.org/10.3390/coatings10111084