Trilayer Films of YBa2Cu3O7−x/LaAlO3/YBa2Cu3O7−x with Superconducting Properties Prepared via Sol-Gel Method
Abstract
:1. Introduction
2. Experiments
2.1. Film Preparation
2.1.1. Preparation of the YBCO Film
2.1.2. Preparation of the LAO Film
2.1.3. Preparation of the Trilayer Films
2.2. Characterization of the Samples
3. Results and Discussion
3.1. The Phase of the Films
3.1.1. Phase of the LAO Film
3.1.2. Phase of the Trilayer Film
3.2. Film Performance
4. Conclusions
- The top and bottom YBCO layers in the trilayer film have superconducting properties, with an initial transition temperature of ~90 K, and a resistance that eventually returns to zero, thus showing superconducting performance.
- When the LAO middle layer is sufficiently thin (below 20 nm), the trilayer film shows a high Jc (~3 kA/cm2), which is similar to that of the single-layer YBCO film. When the nominal thickness of the middle LAO layer is 40 nm, the trilayer exhibits I–V characteristics similar to the DC Josephson effect, and its Ic vs. T relationship indicates the presence of point contacts and micro-bridge weak connections in the trilayer film. Finally, when the nominal thickness of the middle LAO film is 70 nm, the superconducting current of the YBCO layer can be isolated in the heterogeneous film, which is useful for the preparation of superconducting circuit integrated devices.
Author Contributions
Funding
Conflicts of Interest
References
- Rauch, W.; Behner, H.; Gieres, G.; Sipos, B.; Seeböck, R.; Eibl, O.; Kerner, R.; Sölkner, G.; Gornik, E. Sputtering of YBa2Cu3O7− δ/NdAlO3/YBa2Cu3O7− δ trilayers. Appl. Phys. Lett. 1992, 60, 3304–3306. [Google Scholar] [CrossRef]
- Masterov, D.V.; Parafin, A.E.; Revin, L.S.; Chiginev, A.V.; Pankratov, A.L. YBa2Cu3O7−δ long Josephson junctions on bicrystal Zr1−xYxO2 substrates fabricated by preliminary topology masks. Supercond. Sci. Technol. 2017, 30, 025007. [Google Scholar] [CrossRef]
- Revin, L.S.; Pankratov, A.L.; Masterov, D.V.; Parafin, A.E.; Pavlov, S.A.; Alexander, C.; Skorokhodov, E.V. Features of long YBCO josephson junctions fabricated by preliminary topology mask. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef]
- Tsuchiya, R.; Kawasaki, M.; Kubota, H.; Nishino, J.; Sato, H.; Akoh, H.; Koinuma, H. YBa2Cu3O7−δ trilayer junction with nm thickPrGaO3 barrier. Appl. Phys. Lett. 1997, 71, 1570–1572. [Google Scholar] [CrossRef]
- Moeckly, B.H. All Ya–Ba–Cu–O c-axis trilayer interface-engineered Josephson junctions. Appl. Phys. Lett. 2001, 78, 790–792. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Chen, J.; Yao, W.; Liu, L.; Du, G. Opreparation and performance characterization of Superconducting YBa2Cu3O7−δ-Y2O3 multi-layer thin film. Chin. J. Low. Temp. Phys. 2012, 34, 46–49. [Google Scholar]
- Foltyn, S.R.; Civale, L.; Macmanus-Driscoll, J.L.; Jia, Q.X.; Maiorov, B.; Wang, H.; Maley, M. Materials science challenges for high-temperature superconducting wire. Nat. Mater. 2007, 6, 631–642. [Google Scholar] [CrossRef]
- Maiorov, B.; Baily, S.; Zhou, H.; Ugurlu, O.; Kennison, J.; Dowden, P.; Holesinger, T.; Foltyn, S.; Civale, L. Synergetic combination of different types of defect to optimize pinning landscape using BaZrO3-doped YBa2Cu3O7. Nat. Mater. 2009, 8, 398–404. [Google Scholar]
- Mele, P.; Matsumoto, K.; Ichinose, A.; Mukaida, M.; Kita, R. Systematic study of the BaSnO3 insertion effect on the properties of YBa2Cu3O7−x films prepared by pulsed laser ablation. Supercond. Sci. Technol. 2008, 21, 125017. [Google Scholar] [CrossRef]
- Li, L.; Zhao, G.; Xu, H.; Wu, N.; Chen, Y. Influences of Y2O3 nanoparticle additions on the microstructure and superconductivity of YBCO films derived from low-fluorine solution. Mater. Chem. Phys. 2011, 127, 91–94. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.Z. Effect of interlayer magnetic coupling on the Jc of YBa2Cu3O7/insulator/ YBa2Cu3O7 trilayers. Appl. Phys. Lett. 2006, 88, 062513. [Google Scholar] [CrossRef]
- Foltyn, S.R.; Wang, H.; Civale, L.; Jia, Q.X.; Arendt, P.N.; Maiorov, B.; Li, Y.; Maley, M.P.; MacManus-Driscoll, J.L. Overcoming the barrier to 1000 A/cm width superconducting coatings. Appl. Phys. Lett. 2005, 87, 162505. [Google Scholar] [CrossRef]
- Pan, A.V.; Pysarenko, S.; Dou, S.X. Drastic improvement of surface structure and current-carrying ability in YBa2Cu3O7 films by introducing multilayered structure. Appl. Phys. Lett. 2006, 88, 232506. [Google Scholar] [CrossRef] [Green Version]
- Locquet, J.P.; Perret, J.; Fompeyrine, J.; Maechler, E.; Seo, J.W.; Tendeloo, G.V. Doubling the critical temperature of La1.9Sr0.1CuO4 using epitaxial strain. Nature 1998, 394, 453–456. [Google Scholar] [CrossRef]
- Wu, C.; Zhao, G.; Lei, L.; Zhao, R.; Qu, G. Effect of Y2O3 buffer layer on superconducting transition temperature of YBCO films. Chin. J. Low. Temp. Phys. 2014, 36, 81–85. [Google Scholar]
- Horwitz, J.S.; Cotell, C.M.; Chrisey, D.B.; Pond, J.M.; Osofsky, M.S. Origins of conductive losses at microwave frequencies in YBa2Cu3O7−δ/LaAlO3/YBa2Cu3O7−δ trilayers deposited by pulsed laser deposition. J. Supercond. 1994, 7, 965–969. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Y. Enhancement of critical current density by establishing a YBa2Cu3O7−x/LaAlO3/ YBa2Cu3O7−x quasi-trilayer architecture using the sol-gel method. Coatings 2019, 9, 437. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wu, C.; Zhao, G.; You, C. An advanced low-fluorine solution route for fabrication of high-performance YBCO superconducting films. Supercond. Sci. Technol. 2012, 25, 069501. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Zhao, G.; Lei, L. Enhancement of critical current density in superconducting YBa2Cu3O7−x films by nanostructure development of substrate surface using sol-gel method. J. Sol-Gel. Sci. Techn. 2013, 67, 203–207. [Google Scholar] [CrossRef]
- Jia, Y.; Hua, J.; Crabtree, G.W.; Kwok, W.K.; Welp, U.; Malozemoff, A.P.; Rupich, M.; Fleshler, S. C-axis critical current density of second-generation YBCO tapes. Supercond. Sci. Technol. 2010, 23, 115017. [Google Scholar] [CrossRef]
- Seidel, P.; Schmidl, F.; Pfuch, A.; Schneidewind, H.; Heinz, E. Investigations on high-TC thin film intrinsic stacked Josephson junctions. Supercond. Sci. Technol. 1999, 9, A9–A13. [Google Scholar] [CrossRef]
- Zalecki, R.; Woch, W.M.; Chrobak, M.; Koldziejczyk, A. Resistance and AC Susceptibility of YBCO 1:2:3 Films on Silver Substrates. Acta Phys. Pol. A 2012, 121, 850–853. [Google Scholar] [CrossRef]
- Ambegaokar, V.; Baratoff, A. Tunneling between superconductors. Phys. Rev. Lett. 1963, 10, 486–489. [Google Scholar] [CrossRef]
- Delin, K.A.; Kleinsasser, A.W. Stationary properties of high-critical-temperature proximity effect Josephson junctions. Supercond. Sci. Technol. 1996, 9, 227–269. [Google Scholar] [CrossRef]
- Clem, J.R.; Bumble, B.; Raider, S.I.; Gallagher, W.J.; Shih, Y.C. Ambegaokar-Baratoff—Ginzburg-Landau crossover effects on the critical current density of granular superconductors. Phys. Rev. B 1987, 35, 6637–6642. [Google Scholar] [CrossRef] [PubMed]
- Tinkham, M. Introducton to Superconductivity, 2nd ed.; Dover Publications: Mineola, NY, USA, 1996; pp. 63–64. [Google Scholar]
- Bailey, A.; Alvarez, G.; Puzzer, T.; Town, S.L.; Russell, G.J.; Taylor, K.N.R. Josephson behaviour for high critical current density YBCO+Ag thick films on YSZ substrates. Physica C 1990, 167, 133–138. [Google Scholar] [CrossRef]
- Aminov, B.A.; Brandt, N.B.; Thuy, N.M.; Ponomarev, Y.G.; Sudakova, M.V.; Kaul, A.R.; Graboi, I.E.; Tretiakov, Y.D.; Wittig, J.; Kobeleva, S.P. Temperature dependence of the critical current in YBa2Cu3O7−δ and Bi2Sr2Ca1Cu2O8 Josephson junctions. Physica C 1989, 160, 505–510. [Google Scholar] [CrossRef]
- Goodyear, S.W.; Chew, N.G. Vertical c-axis microbridge junctions in YBa2Cu3O7/PrBa2Cu3O7 thin films. IEEE Trans. Appl. Supercond. 1995, 5, 3143–3146. [Google Scholar] [CrossRef]
- Schneider, J.; Kohlstedt, H.; Wordenweber, R. Nanobridges of optimized YBa2Cu3O7 thin films for superconducting flux-flow type devices. Appl. Phys. Lett. 1993, 63, 2426–2428. [Google Scholar] [CrossRef]
Materials | Lattice Type | Lattice Parameter (nm) | Thermal Expansion Coefficient (10−6/K) |
---|---|---|---|
YBCO | perovskite | a = 0.382, b = 0.389, c = 11.68 | 13.4 |
LaAlO3 | perovskite (pseudocubic) | a = b = c = 0.379 | 10.0 |
Si | cubic diamond | a = b = c = 0.543 | 2.5 |
Sample | YBCO Layers | Tc/K | ΔTc/K | Tc0/K |
---|---|---|---|---|
SS | top YBCO | 90.2 | 1.1 | 88.4 |
bottom YBCO | 89.8 | 2.4 | 85.7 | |
SIS-20 | top YBCO | 89.9 | 1.5 | 87.8 |
bottom YBCO | 89.7 | 3.3 | 82.9 | |
SIS-40 | top YBCO | 88.6 | 2.3 | 84.5 |
bottom YBCO | 88.2 | 3.6 | 81.1 | |
SIS-70 | top YBCO | 87.2 | 2.3 | 80.1 |
bottom YBCO | 83.5 | 4.2 | 72.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Wang, Y. Trilayer Films of YBa2Cu3O7−x/LaAlO3/YBa2Cu3O7−x with Superconducting Properties Prepared via Sol-Gel Method. Coatings 2020, 10, 686. https://doi.org/10.3390/coatings10070686
Wu C, Wang Y. Trilayer Films of YBa2Cu3O7−x/LaAlO3/YBa2Cu3O7−x with Superconducting Properties Prepared via Sol-Gel Method. Coatings. 2020; 10(7):686. https://doi.org/10.3390/coatings10070686
Chicago/Turabian StyleWu, Chuanbao, and Yunwei Wang. 2020. "Trilayer Films of YBa2Cu3O7−x/LaAlO3/YBa2Cu3O7−x with Superconducting Properties Prepared via Sol-Gel Method" Coatings 10, no. 7: 686. https://doi.org/10.3390/coatings10070686
APA StyleWu, C., & Wang, Y. (2020). Trilayer Films of YBa2Cu3O7−x/LaAlO3/YBa2Cu3O7−x with Superconducting Properties Prepared via Sol-Gel Method. Coatings, 10(7), 686. https://doi.org/10.3390/coatings10070686