Edible Coatings Formulated with Antifungal GRAS Salts to Control Citrus Anthracnose Caused by Colletotrichum gloeosporioides and Preserve Postharvest Fruit Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. GRAS Salts
2.2. Fungal Pathogen
2.3. In Vitro Antifungal Activity of GRAS Salts
2.4. Preparation of Antifungal Edible Coatings
2.5. Fruit
2.6. In Vivo Anthracnose Control of Antifungal Coatings
2.7. Effect of Coatings on Quality of Cold-Stored Fruit
2.7.1. Weight Loss
2.7.2. Fruit Firmness
2.7.3. Juice Quality
2.7.4. Internal Gas Concentration
2.7.5. Ethanol Content (EtC) and Acetaldehyde Content (AcC)
2.7.6. Sensorial Evaluation
2.8. Statistical Analysis
3. Results
3.1. In Vitro Antifungal Activity of GRAS Salts
3.2. In Vivo Anthracnose control of Antifungal Coatings
3.3. Effect of Coatings on the Quality of Cold-Stored Oranges
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT, Food and Agriculture Organization of the United Nations. Statistics. Available online: http://www.fao.org/faostat/es/#data/QC (accessed on 17 June 2020).
- Feng, L.; Wu, F.; Li, J.; Jiang, Y.; Duan, X. Antifungal activities of polyhexamethylene biguanide and polyhexamethylene guanide against the citrus sour rot pathogen Geotrichum citri-aurantii in vitro and in vivo. Postharvest Biol. Technol. 2011, 61, 160–164. [Google Scholar] [CrossRef]
- Smilanick, J.L.; Erasmus, A.; Palou, L. Citrus fruits. In Postharvest Pathology of Fresh Horticultural Produce; Palou, L., Smilanick, J.L., Eds.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2020; pp. 3–53. [Google Scholar]
- Hao, W.; Zhong, G.; Hu, M.; Luo, J.; Weng, Q.; Rizwan-ul-Haq, M. Control of citrus postharvest green and blue mold and sour rot by tea saponin combined with imazalil and prochloraz. Postharvest Biol. Technol. 2010, 56, 39–43. [Google Scholar] [CrossRef]
- Regnier, T.; Combrinck, S.; Veldman, W.; Du Plooy, W. Application of essential oils as multi-target fungicides for the control of Geotrichum citri-aurantii and other postharvest pathogens of citrus. Ind. Crops Prod. 2014, 61, 151–159. [Google Scholar] [CrossRef]
- Palou, L. Penicillium digitatum, Penicillium italicum (Green Mold, Blue Mold). In Postharvest Decay. Control Strategies; Baños-Bautista, S., Ed.; Elsevier Inc.: London, UK, 2014; pp. 45–102. [Google Scholar]
- Timmer, L.W.; Garnsey, S.M.; Graham, J.H. Compendium of Citrus Diseases, 2nd ed.; APS Press: St. Paul, MN, USA, 2000; ISBN 9780890542484. (paperback). [Google Scholar]
- Siddiqui, Y.; Ali, A. Colletotrichum gloeosporioides (Anthracnose). In Postharvest Decay; Bautista-Baños, S., Ed.; Elsevier Inc.: London, UK, 2014; pp. 337–371. [Google Scholar]
- Ritenour, M.A.; Zhang, J.; Wardowski, W.F.; Brown, G.E. Postharvest decay control recommendations for Florida citrus fruit. IFAS Ext. 2011, CIR359A, 1–6. [Google Scholar]
- Palou, L.; Ali, A.; Fallik, E.; Romanazzi, G. GRAS, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biol. Technol. 2016, 122, 41–52. [Google Scholar] [CrossRef]
- Wisniewski, M.; Droby, S.; Norelli, J.; Liu, J.; Schena, L. Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biol. Technol. 2016, 122, 3–10. [Google Scholar] [CrossRef]
- Janjarasskul, T.; Krochta, J.M. Edible packaging materials. Ann. Rev. Food Sci. Technol. 2010, 1, 415–448. [Google Scholar] [CrossRef]
- Palou, L.; Valencia-Chamorro, S.A.; Pérez-Gago, M.B. Antifungal edible coatings for fresh citrus fruit: A review. Coatings 2015, 5, 962–986. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Izquierdo, V.M.; Krochta, J.M. Thermoplastic processing of proteins for film formation—A review. J. Food Sci. 2008, 73, R30–R39. [Google Scholar] [CrossRef]
- Palou, L. Postharvest treatments with GRAS salts to control fresh fruit decay. Horticulturae 2018, 4, 46. [Google Scholar] [CrossRef] [Green Version]
- Arslan, U.; Ilhan, K.; Vardar, C.; Karabulut, O.A. Evaluation of antifungal activity of food additives against soilborne phytopathogenic fungi. World J. Microbiol. Biotechnol. 2009, 25, 537–543. [Google Scholar] [CrossRef]
- Mills, A.A.S.; Platt, H.W.; Hurta, R.A.R. Effect of salt compounds on mycelial growth, sporulation and spore germination of various potato pathogens. Postharvest Biol. Technol. 2004, 34, 341–350. [Google Scholar] [CrossRef]
- Gunaydin, S.; Karaca, H.; Palou, L.; De La Fuente, B.; Pérez-Gago, M.B. Effect of hydroxypropyl methylcellulose-beeswax composite edible coatings formulated with or without antifungal agents on physicochemical properties of plums during cold storage. J. Food Qual. 2017, 2017, 8573549. [Google Scholar] [CrossRef] [Green Version]
- Karaca, H.; Pérez-Gago, M.B.; Taberner, V.; Palou, L. Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose-lipid composite edible coatings for plums. Int. J. Food Microbiol. 2014, 179, 72–79. [Google Scholar] [CrossRef]
- Fagundes, C.; Pérez-Gago, M.B.; Monteiro, A.R.; Palou, L. Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose-lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit. Int. J. Food Microbiol. 2013, 166, 391–398. [Google Scholar] [CrossRef]
- Fagundes, C.; Palou, L.; Monteiro, A.R.; Pérez-Gago, M.B. Hydroxypropyl methylcellulose-beeswax edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain postharvest quality of cold-stored cherry tomatoes. Sci. Hortic. 2015, 193, 249–257. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Palou, L.; Del Río, M.A.; Pérez-Gago, M.B. Inhibition of Penicillium digitatum and Penicillium italicum by hydroxypropyl methylcellulose-lipid edible composite films containing food additives with antifungal properties. J. Agric. Food Chem. 2008, 56, 11270–11278. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Pérez-Gago, M.B.; del Río, M.A.; Palou, L. Curative and preventive activity of hydroxypropyl methylcellulose-lipid edible composite coatings containing antifungal food additives to control citrus postharvest green and blue molds. J. Agric. Food Chem. 2009, 57, 2770–2777. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Pérez-Gago, M.B.; del Río, M.A.; Palou, L. Effect of antifungal hydroxypropyl methylcellulose (HPMC)-lipid edible composite coatings on postharvest decay development and quality attributes of cold-stored “Valencia” oranges. Postharvest Biol. Technol. 2009, 54, 72–79. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Pérez-Gago, M.B.; del Río, M.A.; Palou, L. Effect of antifungal hydroxypropyl methylcellulose-lipid edible composite coatings on penicillium decay development and postharvest quality of cold-stored “Ortanique” mandarins. J. Food Sci. 2010, 75, S418–S426. [Google Scholar] [CrossRef]
- Guimarães, J.E.R.; de la Fuente, B.; Pérez-Gago, M.B.; Andradas, C.; Carbó, R.; Mattiuz, B.-H.; Palou, L. Antifungal activity of GRAS salts against Lasiodiplodia theobromae in vitro and as ingredients of hydroxypropyl methylcellulose-lipid composite edible coatings to control Diplodia stem-end rot and maintain postharvest quality of citrus fruit. Int. J. Food Microbiol. 2019, 301, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.M.; Quyen, N.T.T.; Thuy, D.T.K. Effect of edible coating and antifungal emulsion system on Colletotrichum acutatum and shelf life of strawberries. Vietnam J. Chem. 2020, 58, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Iñiguez-Moreno, M.; Ragazzo-Sánchez, J.A.; Barros-Castillo, J.C.; Sandoval-Contreras, T.; Calderón-Santoyo, M. Sodium alginate coatings added with Meyerozyma caribbica: Postharvest biocontrol of Colletotrichum gloeosporioides in avocado (Persea americana Mill. cv. Hass). Postharvest Biol. Technol. 2020, 163, 111123. [Google Scholar] [CrossRef]
- Lima Oliveira, P.D.; de Oliveira, K.Á.R.; dos Santos Vieira, W.A.; Câmara, M.P.S.; de Souza, E.L. Control of anthracnose caused by Colletotrichum species in guava, mango and papaya using synergistic combinations of chitosan and Cymbopogon citratus (D.C. ex Nees) Stapf. essential oil. Int. J. Food Microbiol. 2018, 266, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Ajith, P.; Lakshmidevi, N. Effects of sodium and potassium salts on Colletotrichum capsici incitant of anthracnose on bell pepper. J. Agric. 2011, 7, 423–430. [Google Scholar]
- Al Zaemey, A.B.; Magan, N.; Thompson, A.K. Studies on the effect of fruit-coating polymers and organic acids on growth of Colletotrichum musae in vitro and on post-harvest control of anthracnose of bananas. Mycol. Res. 1993, 97, 1463–1468. [Google Scholar] [CrossRef]
- De Costa, D.M.; Gunawardhana, H.M.D.M. Effects of sodium bicarbonate on pathogenicity of Colletotrichum musae and potential for controlling postharvest diseases of banana. Postharvest Biol. Technol. 2012, 68, 54–63. [Google Scholar] [CrossRef]
- El-Sayed, M.E.; Layla, F.; Mohamed, O.A.M.; Talaat, I.E.S.; Lobna, R.A.A. Anthracnose disease (Colletotrichum sp.) affecting olive fruit quality and its control in Egypt. Int. J. Agric. Technol. 2014, 10, 1289–1306. [Google Scholar]
- Hasan, M.F.; Mahmud, T.M.M.; Kadir, J.; Ding, P.; Zaidul, I.S.M. Sensitivity of Colletotrichum gloeosporioides to sodium bicarbonate on the development of anthracnose in papaya (Carica papaya L. cv. Frangi). Aust. J. Crop Sci. 2012, 6, 17–22. [Google Scholar]
- Sivakumar, D.; Sultanbawa, Y.; Ranasingh, N.; Kumara, P.; Wijesundera, R.L.C. Effect of the combined application of chitosan and carbonate salts on the incidence of anthracnose and on the quality of papaya during storage. J. Hortic. Sci. Biotechnol. 2005, 80, 447–452. [Google Scholar] [CrossRef]
- Sivakumar, D.; Hewarathgamagae, N.K.; Wijeratnam, R.S.W.; Wijesundera, R.L.C. Effect of ammonium carbonate and sodium bicarbonate on anthracnose of papaya. Phytoparasitica 2002, 30, 486–492. [Google Scholar] [CrossRef]
- Bai, J.; Baldwin, E.A.; Hagenmaier, R.H. Alternatives to shellac coatings provide comparable gloss, internal gas modification, and quality for “Delicious” apple fruit. HortScience 2002, 37, 559–563. [Google Scholar] [CrossRef]
- Palou, L.; Marcilla, A.; Rojas-Argudo, C.; Alonso, M.; Jacas, J.A.; del Río, M.A. Effects of X-ray irradiation and sodium carbonate treatments on postharvest Penicillium decay and quality attributes of clementine mandarins. Postharvest Biol. Technol. 2007, 46, 252–261. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Palou, L.; del Río, M.A.; Pérez-Gago, M.B. Performance of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings with antifungal food additives during cold storage of “Clemenules” mandarins. LWT Food Sci. Technol. 2011, 44, 2342–2348. [Google Scholar] [CrossRef]
- Alaoui, F.T.; Askarne, L.; Boubaker, H.; Boudyach, E.H.; Ait Ben Aoumar, A. Control of gray mold disease of tomato by postharvest application of organic acids and salts. Plant Pathol. J. 2017, 16, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Youssef, K.; Roberto, S.R. Salt strategies to control Botrytis mold of “Benitaka” table grapes and to maintain fruit quality during storage. Postharvest Biol. Technol. 2014, 95, 95–102. [Google Scholar] [CrossRef]
- Talibi, I.; Askarne, L.; Boubaker, H.; Boudyach, E.H.; Aoumar, A.A.B. In vitro and in vivo antifungal activities of organic and inorganic salts against citrus sour rot agent Geotrichum candidum. Plant Pathol. J. 2011, 10, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Lai, T.; Bai, X.; Wang, Y.; Zhou, J.; Shi, N.; Zhou, T. Inhibitory effect of exogenous sodium bicarbonate on development and pathogenicity of postharvest disease Penicillium expansum. Sci. Hortic. 2015, 187, 108–114. [Google Scholar] [CrossRef]
- Ricke, S. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci. 2003, 82, 632–639. [Google Scholar] [CrossRef]
- Hervieux, V.; Yaganza, E.S.; Arul, J.; Tweddell, R.J. Effect of organic and inorganic salts on the development of Helminthosporium solani, the causal agent of potato silver scurf. Plant Dis. 2002, 86, 1014–1018. [Google Scholar] [CrossRef] [Green Version]
- Lucera, A.; Costa, C.; Conte, A.; Del Nobile, M.A. Food applications of natural antimicrobial compounds. Front. Microbiol. 2012, 3, 287. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.Q.; Hang, Y.D. Inhibition of Geotrichum candidum by bicarbonate. J. Appl. Microbiol. Biotechnol. 1989, 5, 109–113. [Google Scholar] [CrossRef]
- DePasquale, D.A.; Montville, T.J. Mechanism by which ammonium bicarbonate and ammonium sulfate inhibit mycotoxigenic fungi. Appl. Environ. Microbiol. 1990, 56, 3711–3717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maqbool, M.; Ali, A.; Alderson, P.G.; Mohamed, M.T.M.; Siddiqui, Y.; Zahid, N. Postharvest application of gum arabic and essential oils for controlling anthracnose and quality of banana and papaya during cold storage. Postharvest Biol. Technol. 2011, 62, 71–76. [Google Scholar] [CrossRef]
- Bill, M.; Sivakumar, D.; Korsten, L.; Thompson, A.K. The efficacy of combined application of edible coatings and thyme oil in inducing resistance components in avocado (Persea americana Mill.) against anthracnose during post-harvest storage. Crop Prot. 2014, 64, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Hei, G.K.; Keat, Y.W. Efficacy of ginger oil and extract combined with gum arabic on anthracnose and quality of papaya fruit during cold storage. J. Food Sci. Technol. 2016, 53, 1435–1444. [Google Scholar] [CrossRef] [Green Version]
- Gamagae, S.U.; Sivakumar, D.; Wijesundera, R.L.C. Evaluation of post-harvest application of sodium bicarbonate-incorporated wax formulation and Candida oleophila for the control of anthracnose of papaya. Crop Prot. 2004, 23, 575–579. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Palou, L.; del Río, M.A.; Pérez-Gago, M.B. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2011, 51, 872–900. [Google Scholar] [CrossRef]
- Valdés, A.; Ramos, M.; Beltrán, A.; Jiménez, A.; Garrigós, M.C. State of the art of antimicrobial edible coatings for food packaging applications. Coatings 2017, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Palou, L.; Usall, J.; Smilanick, J.L.; Aguilar, M.J.; Viñas, I. Evaluation of food additives and low-toxicity compounds as alternative chemicals for the control of Penicillium digitatum and Penicillium italicum on citrus fruit. Pest Manag. Sci. 2002, 58, 459–466. [Google Scholar] [CrossRef]
- Vargas, M.; Pastor, C.; Chiralt, A.; McClements, D.J.; González-Martínez, C. Recent advances in edible coatings for fresh and minimally processed fruits. Crit. Rev. Food Sci. Nutr. 2008, 48, 496–511. [Google Scholar] [CrossRef]
- Contreras-Oliva, A.; Rojas-Argudo, C.; Pérez-Gago, M.B. Effect of solid content and composition of hydroxypropyl methylcellulose-lipid edible coatings on physicochemical, sensory and nutritional quality of “Valencia” oranges. Int. J. Food Sci. Technol. 2011, 46, 2437–2445. [Google Scholar] [CrossRef]
- Fagundes, C.; Palou, L.; Monteiro, A.R.; Pérez-Gago, M.B. Effect of antifungal hydroxypropyl methylcellulose-beeswax edible coatings on gray mold development and quality attributes of cold-stored cherry tomato fruit. Postharvest Biol. Technol. 2014, 92, 1–8. [Google Scholar] [CrossRef]
- Pastor, C.; Sánchez-González, L.; Marcilla, A.; Chiralt, A.; Cháfer, M.; González-Martínez, C. Quality and safety of table grapes coated with hydroxypropylmethylcellulose edible coatings containing propolis extract. Postharvest Biol. Technol. 2011, 60, 64–70. [Google Scholar] [CrossRef]
- Navarro-Tarazaga, M.L.; del Río, M.A.; Krochta, J.M.; Pérez-Gago, M.B. Fatty acid effect on hydroxypropyl methylcellulose-beeswax edible film properties and postharvest quality of coated “Ortanique” mandarins. J. Agric. Food Chem. 2008, 56, 10689–10696. [Google Scholar] [CrossRef]
- Pérez-Gago, M.B.; Rojas, C.; del Río, M.A. Effect of lipid type and amount of edible hydroxypropyl methylcellulose-lipid composite coatings used to protect postharvest quality of mandarins cv. Fortune. J. Food Sci. 2002, 67, 2903–2910. [Google Scholar] [CrossRef]
- Valero, D.; Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M. Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biol. Technol. 2013, 77, 1–6. [Google Scholar] [CrossRef]
- Navarro-Tarazaga, M.L.; Pérez-Gago, M.B.; Goodner, K.L.; Plotto, A. A new composite coating containing HPMC, beeswax, and shellac for “Valencia” oranges and “Marisol” tangerines. Proc. Fla. State Hortic. Soc. 2007, 120, 228–234. [Google Scholar]
- Tietel, Z.; Plotto, A.; Fallik, E.; Lewinsohn, E.; Porat, R. Taste and aroma of fresh and stored mandarins. J. Sci. Food Agric. 2011, 91, 14–23. [Google Scholar] [CrossRef]
- Ke, D.; Kader, A.A. Tolerance of “Valencia” oranges to controlled atmospheres, as determined by physiological responses and quality attributes. J. Am. Soc. Hortic. Sci. 1990, 115, 779–783. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.X.; Goldschmidt, E.E.; Goren, R.; Porat, R. Molecular, biochemical and anatomical factors governing ethanol fermentation metabolism and accumulation of off-flavors in mandarins and grapefruit. Postharvest Biol. Technol. 2007, 46, 242–251. [Google Scholar] [CrossRef]
- Navarro-Tarazaga, M.L.; Pérez-Gago, M.B. Effect of edible coatings on quality of mandarins cv. Clemenules. Proc. Fla. State Hortic. Soc. 2006, 119, 350–352. [Google Scholar]
- Shi, J.X.; Porat, R.; Goren, R.; Goldschmidt, E.E. Physiological responses of “Murcott” mandarins and ‘Star Ruby’grapefruit to anaerobic stress conditions and their relation to fruit taste, quality and emission of off-flavor volatiles. Postharvest Biol. Technol. 2005, 38, 99–105. [Google Scholar] [CrossRef]
GRAS Salt | Acronym | Molecular Formula | E-Number 1 | MW 2 |
---|---|---|---|---|
Ammonium bicarbonate | ABC | NH4HCO3 | E-503 (ii) | 79.06 |
Ammonium carbonate | AC | (NH4)2CO3 | E-503 (i) | 114.10 |
Potassium bicarbonate | PBC | KHCO3 | E-501 (ii) | 100.12 |
Potassium carbonate | PC | K2CO3 | E-501 (i) | 138.21 |
Potassium silicate | PSi | K2SiO3 | E-560 | 154.26 |
Potassium sorbate | PS | C6H7O2K | E-202 | 150.22 |
Sodium benzoate | SB | C7H5O2Na | E-211 | 144.11 |
Sodium ethylparaben | SEP | C9H9NaO3 | E-215 | 188.16 |
Sodium methylparaben | SMP | C8H7NaO3 | E-219 | 174.13 |
Sodium propionate | SP | CH3CH2COONa | E-281 | 96.06 |
GRAS Salt 1 | Concentration (%) | Inhibition of C. Gloeosporioides (%) 2 | ||
---|---|---|---|---|
Day 3 | Day 5 | Day 7 | ||
ABC | 0.2 | 61.44 de | 60.49 d | 33.43 g |
1 | 100 a | 100 a | 100 a | |
2 | 100 a | 100 a | 100 a | |
PBC | 0.2 | 20.92 h | 26.80 f | 23.53 h |
1 | 98.04 a | 87.14 b | 76.46 c | |
2 | 100 a | 100 a | 92.89 b | |
PSi | 0.2 | 16.99 h | 6.43 g | 9.22 i |
1 | 58.50 e | 47.32 e | 33.72 g | |
2 | 88.56 b | 76.57 c | 56.96 e | |
SEP | 0.01 | 40.33 f | 36.04 f | 35.22 g |
0.05 | 100 a | 100 a | 100 a | |
0.1 | 100 a | 100 a | 100 a | |
SMP | 0.01 | 30.8 g | 29.38 f | 29.58 gh |
0.05 | 100 a | 95.72 ab | 87.08 b | |
0.1 | 100 a | 100 a | 100 a | |
SP | 0.2 | 68.9 d | 51.41 de | 44.77 f |
1 | 79.0 c | 71.34 c | 64.67 d | |
2 | 93.53 ab | 76.5 c | 79.96 c |
Quality Attributes 1 | Storage Conditions and Treatments 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
At Harvest | 28 d 5 °C + 7 d 20 °C | 56 d 5 °C + 7 d 20 °C | |||||||
Control | HPMC-BW-PS | HPMC-BW-SB | HPMC-BW-PSi | Control | HPMC-BW-PS | HPMC-BW-SB | HPMC-BW-PSi | ||
WL (% ± SE) | – | 2.25 ± 0.09 b | 2.59 ± 0.10 a | 2.24 ± 0.08 b | 2.12 ± 0.06 b | 3.48 ± 0.12 ab | 3.71 ± 0.13 a | 3.91 ± 0.22 a | 2.97 ± 0.11 b |
F (% deformation ± SE) | 2.03 ± 0.09 | 2.58 ± 0.09 a | 2.78 ± 0.14 a | 2.50 ± 0.07 a | 2.56 ± 0.14 a | 2.66 ± 0.13 a | 2.87 ± 0.15 a | 2.47 ± 0.12 a | 2.46 ± 0.13 a |
SSC (% ± SE) | 12.42 ± 0.08 | 11.70 ± 0.17a | 11.37 ± 0.50 ab | 10.28 ± 0.55 bc | 10.05 ± 0.22 c | 11.60 ± 0.26 a | 11.20 ± 0.21 a | 10.20 ± 0.15 b | 10.02 ± 0.23 b |
TA (% citric acid ± SE) | 1.34 ± 0.01 | 1.08 ± 0.06 a | 1.23 ± 0.10 a | 0.97 ± 0.07 a | 0.98 ± 0.09 a | 0.90 ± 0.04 a | 0.84 ± 0.04 a | 0.83 ± 0.04 a | 0.98 ± 0.04 a |
MI (average ± SE) | 9.24 ± 0.08 | 10.85 ± 0.47 a | 9.31 ± 0.38 a | 10.59 ± 0.24 a | 10.36 ± 0.70 a | 12.95 ± 0.63 a | 13.28 ± 0.07 a | 12.28 ± 0.49 a | 10.29 ± 0.52 b |
EtC (mg/L ± SE) | 221.05 ± 10.42 | 412.35 ± 40.5 c | 533.65 ± 16.21 ab | 439.51 ± 23.70 bc | 628.01 ± 50.27 a | 441.49 ± 24.62 c | 606.90 ± 29.78 ab | 543.17 ± 80.63 bc | 699.63 ± 48.35 a |
AcC (mg/L ± SE) | 3.16 ± 0.21 | 5.78 ± 0.26 b | 6.51 ± 0.22 b | 6.17 ± 0.07 b | 7.39 ± 0.39 a | 5.72 ± 0.23 c | 6.88 ± 0.16 b | 7.47 ± 0.31 ab | 7.72 ± 0.33 a |
Treatments 2 | Storage Conditions and Sensory Attributes 1 | |||||
---|---|---|---|---|---|---|
28 d 5 °C + 7 d 20 °C | 56 d 5 °C + 7 d 20 °C | |||||
Overall Taste (1–9 Scale) 3 | Off-Flavours (1–5 Scale) 4 | Appearance (1–3 Scale) 5 | Overall Taste (1–9 Scale) 3 | Off-Flavours (1–5 Scale) 4 | Appearance (1–3 Scale) 5 | |
Control | 6.43 ± 0.43 a | 1.00 ± 0.00 a | 2.43 ± 0.20 a | 5.70 ± 0.63 a | 1.38 ± 0.16 a | 2.38 ± 0.24 a |
HPMC-BW-PS | 5.71 ± 0.56 a | 1.71 ± 0.19 a | 1.58 ± 0.20 b | 5.50 ± 0.54 a | 1.33 ± 0.22 a | 1.63 ± 0.16 b |
HPMC-BW-SB | 6.43 ± 0.20 a | 1.00 ± 0.00 a | 2.00 ± 0.22 b | 5.30 ± 0.58 a | 1.80 ± 0.36 a | 1.88 ± 0.26 b |
HPMC-BW-PSi | 5.83 ± 0.28 a | 1.57 ± 0.20 a | 2.71 ± 0.18 a | 5.61 ± 0.41 a | 1.33 ± 0.16 a | 2.63 ± 0.24 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Blay, V.; Pérez-Gago, M.B.; de la Fuente, B.; Carbó, R.; Palou, L. Edible Coatings Formulated with Antifungal GRAS Salts to Control Citrus Anthracnose Caused by Colletotrichum gloeosporioides and Preserve Postharvest Fruit Quality. Coatings 2020, 10, 730. https://doi.org/10.3390/coatings10080730
Martínez-Blay V, Pérez-Gago MB, de la Fuente B, Carbó R, Palou L. Edible Coatings Formulated with Antifungal GRAS Salts to Control Citrus Anthracnose Caused by Colletotrichum gloeosporioides and Preserve Postharvest Fruit Quality. Coatings. 2020; 10(8):730. https://doi.org/10.3390/coatings10080730
Chicago/Turabian StyleMartínez-Blay, Victoria, María B. Pérez-Gago, Beatriz de la Fuente, Rosario Carbó, and Lluís Palou. 2020. "Edible Coatings Formulated with Antifungal GRAS Salts to Control Citrus Anthracnose Caused by Colletotrichum gloeosporioides and Preserve Postharvest Fruit Quality" Coatings 10, no. 8: 730. https://doi.org/10.3390/coatings10080730
APA StyleMartínez-Blay, V., Pérez-Gago, M. B., de la Fuente, B., Carbó, R., & Palou, L. (2020). Edible Coatings Formulated with Antifungal GRAS Salts to Control Citrus Anthracnose Caused by Colletotrichum gloeosporioides and Preserve Postharvest Fruit Quality. Coatings, 10(8), 730. https://doi.org/10.3390/coatings10080730