Marine Antibiofouling Properties of TiO2 and Ti-Cu-O Films Deposited by Aerosol-Assisted Chemical Vapor Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Film Growth
2.2. Film Characterizations
2.3. Photocatalytic Activity
2.4. Marine Biofouling Field Tests
2.5. Marine Biofouling In Vitro Tests
2.5.1. Strains and Culture Conditions
2.5.2. Adhesion Assay in Static Conditions
2.5.3. Toxicity Assay
2.5.4. Statistical Analysis
3. Results and Discussion
- (a)
- Pure TiO2 layers
- (b)
- Ti-Cu-O
3.1. Morphology of TiO2 and Ti-Cu-O Films
3.2. Structure Analysis
3.3. Photocatalytic Properties
3.4. Antifouling Activity
3.4.1. Marine Biofouling Field Tests
3.4.2. Marine Biofouling In Vitro Tests
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kallio, T.; Alajoki, S.; Pore, V.; Ritala, M.; Laine, J.; Leskelä, M.; Stenius, P. Antifouling properties of TiO2: Photocatalytic decomposition and adhesion of fatty and rosin acids, sterols and lipophilic wood extractives. Colloids Surf. A Physicochem. Eng. Asp. 2006, 291, 162–176. [Google Scholar] [CrossRef]
- Verdier, T.; Bertron, A.; Erable, B.; Roques, C. Bacterial Biofilm Characterization and Microscopic Evaluation of the Antibacterial Properties of a Photocatalytic Coating Protecting Building Material. Coatings 2018, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Al-Ahmad, M.; Abdul Aleem, F.A.; Mutiri, A.; Ubaisy, A. Biofuoling in RO membrane systems Part 1: Fundamentals and control. Desalination 2000, 132, 173–179. [Google Scholar] [CrossRef]
- Natarajan, S.; Lakshmi, D.S.; Thiagarajan, V.; Mrudula, P.; Chandrasekaran, N.; Mukherjee, A. Antifouling and anti-algal effects of chitosan nanocomposite (TiO2/Ag) and pristine (TiO2 and Ag) films on marine microalgae Dunaliella salina. J. Environ. Chem. Eng. 2018, 6, 6870–6880. [Google Scholar] [CrossRef]
- Damodar, R.A.; You, S.J.; Chou, H.H. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J. Hazard. Mater. 2009, 172, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Mills, A.; Elliott, N.; Parkin, I.P.; O’Neill, S.A.; Clark, R.J. Novel TiO2 CVD films for semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 2002, 151, 171–179. [Google Scholar] [CrossRef]
- Foster, H.A.; Ditta, I.B.; Varghese, S.; Steele, A. Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 2011, 90, 1847–1868. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Kleiman, A.; Meichtry, J.M.; Vega, D.; Litter, M.I.; Márquez, A. Photocatalytic activity of TiO2 films prepared by cathodic arc deposition: Dependence on thickness and reuse of the photocatalysts. Surf. Coat. Technol. 2020, 382, 125154. [Google Scholar] [CrossRef]
- Malik, R.; Tomer, V.K.; Joshi, N.; Dankwort, T.; Lin, L.; Kienle, L. Au–TiO2 -Loaded Cubic g-C3N4 Nanohybrids for Photocatalytic and Volatile Organic Amine Sensing Applications. ACS Appl. Mater. Interfaces 2018, 10, 34087–34097. [Google Scholar] [CrossRef]
- Odhiambo, V.O.; Ongarbayeva, A.; Kéri, O.; Simon, L.; Szilágyi, I.M. Synthesis of TiO2/WO3 Composite Nanofibers by a Water-Based Electrospinning Process and Their Application in Photocatalysis. Nanomaterials 2020, 10, 882. [Google Scholar] [CrossRef]
- Watté, J.; Van Zele, M.; De Buysser, K.; Van Driessche, I. Recent Advances in Low-Temperature Deposition Methods of Transparent, Photocatalytic TiO2 Coatings on Polymers. Coatings 2018, 8, 131. [Google Scholar] [CrossRef] [Green Version]
- Devi, L.G.; Kumar, S.G. Influence of physicochemical–electronic properties of transition metal ion doped polycrystalline titania on the photocatalytic degradation of Indigo Carmine and 4-nitrophenol under UV/solar light. Appl. Surf. Sci. 2011, 257, 2779–2790. [Google Scholar] [CrossRef]
- Wu, M.-C.; Wu, P.-Y.; Lin, T.-H.; Lin, T.-F. Photocatalytic performance of Cu-doped TiO2 nanofibers treated by the hydrothermal synthesis and air-thermal treatment. Appl. Surf. Sci. 2018, 430, 390–398. [Google Scholar] [CrossRef]
- Navabpour, P.; Cooke, K.; Sun, H. Photocatalytic Properties of Doped TiO2 Coatings Deposited Using Reactive Magnetron Sputtering. Coatings 2017, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Li, R.; Xu, Q. Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation. Sci. Rep. 2018, 8, 8752. [Google Scholar] [CrossRef] [PubMed]
- Nasr, M.; Soussan, L.; Viter, R.; Eid, C.; Habchi, R.; Miele, P.; Bechelany, M. High photodegradation and antibacterial activity of BN–Ag/TiO2 composite nanofibers under visible light. New J. Chem. 2018, 42, 1250–1259. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, X.; McLeod, J.A.; Sun, X. First-principles study of Cu-doping and oxygen vacancy effects on TiO2 for water splitting. Chem. Phys. Lett. 2014, 612, 106–110. [Google Scholar] [CrossRef]
- Vishwakarma, V.; Josephine, J.; George, R.P.; Krishnan, R.; Dash, S.; Kamruddin, M.; Kalavathi, S.; Manoharan, N.; Tyagi, A.K.; Dayal, R.K. Antibacterial copper-nickel bilayers and multilayer coatings by pulsed laser deposition on titanium. Biofouling 2009, 25, 705–710. [Google Scholar] [CrossRef]
- Rtimi, S.; Baghriche, O.; Pulgarin, C.; Lavanchy, J.C.; Kiwi, J. Growth of TiO2/Cu films by HiPIMS for accelerated bacterial loss of viability. Surf. Coat. Technol. 2013, 232, 804–813. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, J.F.; Carman, M.L.; Estes, T.G.; Feinberg, A.W.; Wilson, L.H.; Callow, M.E.; Callow, J.A.; Finlay, J.A.; Brennan, A.B. Engineered antifouling microtopographies—Effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Biofouling 2007, 23, 55–62. [Google Scholar] [CrossRef]
- Carve, M.; Scardino, A.; Shimeta, J. Effects of surface texture and interrelated properties on marine biofouling: A systematic review. Biofouling 2019, 35, 597–617. [Google Scholar] [CrossRef]
- Myan, F.W.Y.; Walker, J.; Paramor, O. The interaction of marine fouling organisms with topography of varied scale and geometry: A review. Biointerphases 2013, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Jiménez, C.; Khan, A.; Forissier, S.; Kar, A.K.; Muñoz-Rojas, D.; Deschanvres, J.-L. Structural study of TiO2 hierarchical microflowers grown by aerosol-assisted MOCVD. CrystEngComm 2017, 19, 1535–1544. [Google Scholar] [CrossRef]
- Resende, J.; Jiménez, C.; Nguyen, N.D.; Deschanvres, J.-L. Magnesium-doped cuprous oxide (Mg: Cu2O) thin films as a transparent p-type semiconductor. Phys. Status Solidi 2016, 213, 2296–2302. [Google Scholar] [CrossRef]
- Villardi de Oliveira, C.; Alhussein, A.; Creus, J.; Schuster, F.; Schlegel, M.L.; Dong, Z.; Jiménez, C.; Sanchette, F. Bifunctional TiO2/AlZr Thin Films on Steel Substrate Combining Corrosion Resistance and Photocatalytic Properties. Coatings 2019, 9, 564. [Google Scholar] [CrossRef] [Green Version]
- Faÿ, F.; Carteau, D.; Linossier, I.; Vallée-Réhel, K. Evaluation of anti-microfouling activity of marine paints by microscopical techniques. Prog. Org. Coat. 2011, 72, 579–585. [Google Scholar] [CrossRef]
- Druehl, L.D.; Hsiao, S.I.C. Axenic culture of Laminariales in defined media. Phycologia 1969, 8, 47–49. [Google Scholar] [CrossRef]
- Martens, C.; Vandepoele, K.; Gillard, J.; Heijde, M.; Bowler, C.; Van De Peer, Y.; De, L.; Vyverman, W. Genome-wide analysis of the diatom cell cycle unveils a novel cyclin gene family involved in environmental signalling. Plant Biotechnol. 2010, 11, R17. [Google Scholar]
- Machado, M.D.; Soares, E.V. Development of a short-term assay based on the evaluation of the plasma membrane integrity of the alga Pseudokirchneriella subcapitata. Appl. Microbiol. Biotechnol. 2012, 95, 1035–1042. [Google Scholar] [CrossRef] [Green Version]
- Horzum, S.; Gürakar, S.; Serin, T. Investigation of the structural and optical properties of copper-titanium oxide thin films produced by changing the amount of copper. Thin Solid Films 2019, 685, 293–298. [Google Scholar] [CrossRef]
- Celik, E.; Gokcen, Z.; Ak Azem, N.F.; Tanoglu, M.; Emrullahoglu, O.F. Processing, characterization and photocatalytic properties of Cu doped TiO2 thin films on glass substrate by sol-gel technique. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2006, 132, 258–265. [Google Scholar] [CrossRef]
- Saha, S.; Hamid, S.B.A.; Ali, T.H. Catalytic evaluation on liquid phase oxidation of vanillyl alcohol using air and H2O2 over mesoporous Cu-Ti composite oxide. Appl. Surf. Sci. 2017, 394, 205–218. [Google Scholar] [CrossRef]
- Swanson, H.E.; Tatge, E.; Fuyat, R.K. Standard X-ray Diffraction Powder Patterns; US Department of Commerce, National Bureau of Standards: Washington, DC, USA, 1953.
- Busca, G.; Ramis, G.; Amores, J.M.G.; Escribano, V.S.; Piaggio, P. FT Raman and FTIR studies of titanias and metatitanate powders. J. Chem. Soc. Faraday Trans. 1994, 90, 3181–3190. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Ba, X.; Huang, L.; Yu, Y. TiO2 thin films with rutile phase prepared by DC magnetron co-sputtering at room temperature: Effect of Cu incorporation. Appl. Surf. Sci. 2015, 345, 49–56. [Google Scholar] [CrossRef]
- Solache-Carranco, H.; Juárez-Díaz, G.; Galván-Arellano, M.; Martínez-Juárez, J.; Romero-Paredes, R.G.; Peña-Sierra, R. Raman scattering and photoluminescence studies on Cu2O. In Proceedings of the 2008 5th International Conference on Electrical Engineering, Computing Science and Automatic Control, Mexico City, Mexico, 12–14 November 2008; pp. 421–424. [Google Scholar] [CrossRef]
- Bergerot, L.; Jiménez, C.; Chaix-Pluchery, O.; Rapenne, L.; Deschanvres, J.-L. Growth and characterization of Sr-doped Cu2O thin films deposited by metalorganic chemical vapor deposition. Phys. Status Solidi 2015, 212, 1735–1741. [Google Scholar] [CrossRef]
- Sanson, A. A first-principles study of vibrational modes in Cu2O and Ag2O crystals. Solid State Commun. 2011, 151, 1452–1454. [Google Scholar] [CrossRef]
- Maruyama, T. Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate. Sol. Energy Mater. Sol. Cells 1998, 56, 85–92. [Google Scholar] [CrossRef]
- Akgul, F.A.; Akgul, G.; Yildirim, N.; Unalan, H.E.; Turan, R. Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater. Chem. Phys. 2014, 147, 987–995. [Google Scholar] [CrossRef]
- Sahu, M.; Biswas, P. Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor. Nanoscale Res. Lett. 2011, 6, 441. [Google Scholar] [CrossRef] [Green Version]
- Mikami, M.; Nakamura, S.; Kitao, O.; Arakawa, H. Lattice dynamics and dielectric properties of (formula presented) anatase: A first-principles study. Phys. Rev. B Condens. Matter Mater. Phys. 2002, 66, 1–6. [Google Scholar] [CrossRef]
- Grujić-Brojčin, M.; Šćepanović, M.J.; Dohčević-Mitrović, Z.D.; Hinić, I.; Matović, B.; Stanišić, G.; Popović, Z.V. Infrared study of laser synthesized anatase TiO2 nanopowders. J. Phys. D Appl. Phys. 2005, 38, 1415–1420. [Google Scholar] [CrossRef]
- Dette, C.; Pérez-Osorio, M.A.; Kley, C.S.; Punke, P.; Patrick, C.E.; Jacobson, P.; Giustino, F.; Jung, S.J.; Kern, K. TiO2 anatase with a bandgap in the visible region. Nano Lett. 2014, 14, 6533–6538. [Google Scholar] [CrossRef]
- Cheon, M.; Jung, B.; Kim, S.J.; Jang, J.I.; Jeong, S.Y. High-quality epitaxial Cu2O films with (111)-terminated plateau grains obtained from single-crystal Cu (111) thin films by rapid thermal oxidation. J. Alloys Compd. 2019, 801, 536–541. [Google Scholar] [CrossRef]
- Tauc, J.; Menth, A. States in the gap. J. Non-Cryst. Solids 1972, 8–10, 569–585. [Google Scholar] [CrossRef]
- Heinemann, M.; Eifert, B.; Heiliger, C. Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 87, 3–7. [Google Scholar] [CrossRef]
- Navas, J.; Sánchez-Coronilla, A.; Aguilar, T.; Hernández, N.C.; Desireé, M.; Sánchez-Márquez, J.; Zorrilla, D.; Fernández-Lorenzo, C.; Alcántara, R.; Martín-Calleja, J. Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2. Phys. Chem. Chem. Phys. 2014, 16, 3835–3845. [Google Scholar] [CrossRef]
- Duminica, F.D.; Maury, F.; Hausbrand, R. Growth of TiO2 thin films by AP-MOCVD on stainless steel substrates for photocatalytic applications. Surf. Coat. Technol. 2007, 201, 9304–9308. [Google Scholar] [CrossRef] [Green Version]
- Bideau, M.; Claudel, B.; Faure, L.; Kazouan, H. The photo-oxidation of acetic acid by oxygen in the presence of titanium dioxide and dissolved copper ions. J. Photochem. Photobiol. A Chem. 1991, 61, 269–280. [Google Scholar] [CrossRef]
- Brezová, V.; Blažková, A.; Borošová, E.; Čeppan, M.; Fiala, R. The influence of dissolved metal ions on the photocatalytic degradation of phenol in aqueous TiO2 suspensions. J. Mol. Catal. A. Chem. 1995, 98, 109–116. [Google Scholar] [CrossRef]
- López-Muñoz, M.J.; Aguado, J.; Rupérez, B. The influence of dissolved transition metals on the photocatalytic degradation of phenol with TiO2. Res. Chem. Intermed. 2007, 33, 377–392. [Google Scholar] [CrossRef]
- Morikawa, T.; Irokawa, Y.; Ohwaki, T. Enhanced photocatalytic activity of TiO2−xNx loaded with copper ions under visible light irradiation. Appl. Catal. A Gen. 2006, 314, 123–127. [Google Scholar] [CrossRef]
- Reiche, H.; Dunn, W.W.; Bard, A.J. Heterogeneous photocatalytic and photosynthetic deposition of copper on Titanium dioxide and tungsten(VI) oxide powders. J. Phys. Chem. 1979, 83, 2248–2251. [Google Scholar] [CrossRef]
- Okamoto, K.; Yamamoto, Y.; Tanaka, H.; Tanaka, M.; Itaya, A. Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder. Bull. Chem. Soc. Jpn. 1985, 58, 2015–2022. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Zhang, X.; Li, Y.; Li, S.; Lu, G. 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catal. Commun. 2007, 8, 1267–1273. [Google Scholar] [CrossRef]
- Damodaran, V.B.; Murthy, S.N. Bio-inspired strategies for designing antifouling biomaterials. Biomater. Res. 2016, 20, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Borkow, G.; Gabbay, J. Copper as a biocidal tool. Curr. Med. Chem. 2005, 12, 2163–2175. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Suo, X.; Wang, Z.; Gong, Y.; Wang, X.; Li, H. Developing polyimide-copper antifouling coatings with capsule structures for sustainable release of copper. Mater. Des. 2017, 130, 285–293. [Google Scholar] [CrossRef]
- Wei, X.; Yang, Z.; Wang, Y.; Tay, S.L.; Gao, W. Polymer antimicrobial coatings with embedded fine Cu and Cu salt particles. Appl. Microbiol. Biotechnol. 2014, 98, 6265–6274. [Google Scholar] [CrossRef]
- Scardino, A.J.; Guenther, J.; de Nys, R. Attachment point theory revisited: The fouling response to a microtextured matrix. Biofouling 2008, 24, 45–53. [Google Scholar] [CrossRef]
- Callow, M.E. Fouling algae from ‘in-service’ ships. Bot. Mar. 1986, 29, 351–358. [Google Scholar] [CrossRef]
- Cassé, F.; Swain, G.W. The development of microfouling on four commercial antifouling coatings under static and dynamic immersion. Int. Biodeterior. Biodegrad. 2006, 57, 179–185. [Google Scholar] [CrossRef]
- Pelletier, É.; Bonnet, C.; Lemarchand, K. Biofouling growth in cold estuarine waters and evaluation of some chitosan and copper anti-fouling paints. Int. J. Mol. Sci. 2009, 10, 3209–3223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zargiel, K.A.; Swain, G.W. Static vs dynamic settlement and adhesion of diatoms to ship hull coatings. Biofouling 2014, 30, 115–129. [Google Scholar] [CrossRef]
- Whitehead, K.A.; Verran, J. The effect of surface topography on the retention of microorganisms. Food Bioprod. Process. 2006, 84, 253–259. [Google Scholar] [CrossRef]
- Cui, Y.; Yuan, W.; Cao, J. Effects of surface texturing on microalgal cell attachment to solid carriers. Int. J. Agric. Biol. Eng. 2013, 6, 44–54. [Google Scholar]
- Brooks, S.; Waldock, M. The use of copper as a biocide in marine antifouling paints. Adv. Mar. Antifouling Coat. Technol. 2009, 492–521. [Google Scholar] [CrossRef]
- Masmoudi, S.; Nguyen-Deroche, N.; Caruso, A.; Ayadi, H.; Morant-Manceau, A.; Tremblin, G. Cadmium, copper, sodium and zinc effects on diatoms: From heaven to hell—A review. Cryptogam. Algol. 2013, 34, 185–225. [Google Scholar] [CrossRef]
- Brown, L.N.; Robinson, M.G.; Hall, B.D.; Columbia, B. Mechanisms for cooper tolerance in Amphora coffeaeformis-internal and external binding. Mar. Biol. 1988, 97, 581–586. [Google Scholar] [CrossRef]
- Real, M.; Muñoz, I.; Guasch, H.; Navarro, E.; Sabater, S. The effect of copper exposure on a simple aquatic food chain. Aquat. Toxicol. 2003, 63, 283–291. [Google Scholar] [CrossRef]
- Gonçalves, S.; Kahlert, M.; Almeida, S.F.P.; Figueira, E. Assessing Cu impacts on freshwater diatoms: Biochemical and metabolomic responses of Tabellaria flocculosa (Roth) Kützing. Sci. Total Environ. 2018, 625, 1234–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordeiro, A.L.; Pettit, M.E.; Callow, M.E.; Callow, J.A.; Werner, C. Controlling the adhesion of the diatom Navicula perminuta using poly(N-isopropylacrylamide-co-N-(1-phenylethyl) acrylamide) films. Biotechnol. Lett. 2010, 32, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Willis, A.; Eason-Hubbard, M.; Hodson, O.; Maheswari, U.; Bowler, C.; Wetherbee, R. Adhesion molecules from the diatom Phaeodactylum tricornutum (Bacillariophyceae): Genomic identification by amino-acid profiling and in vivo analysis. J. Phycol. 2014, 50, 837–849. [Google Scholar] [CrossRef] [PubMed]
- Martin-Jézéquel, V.; Tesson, B. Phaeodactylum tricornutum polymorphism: An overview. Adv. Algal Cell Biol. Walter Gruyter 2012, 43–80. [Google Scholar]
- Kagalou, I.; Beza, P.; Perdikaris, C.; Petridis, D. Effects of copper and lead on microalgae(Isochrysis galbana) growth. Fresenius Environ. Bull. 2002, 11, 233–236. [Google Scholar]
- Manimaran, K.; Karthikeyan, P.; Ashokkumar, S.; Ashok Prabu, V.; Sampathkumar, P. Effect of copper on growth and enzyme activities of marine diatom, odontella mobiliensis. Bull. Environ. Contam. Toxicol. 2012, 88, 30–37. [Google Scholar] [CrossRef]
- Morin, S.; Lambert, A.S.; Rodriguez, E.P.; Dabrin, A.; Coquery, M.; Pesce, S. Changes in copper toxicity towards diatom communities with experimental warming. J. Hazard. Mater. 2017, 334, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Gagneux-Moreaux, S.; Cosson, R.P.; Bustamante, P.; Moreau, C. Growth and metal uptake of microalgae produced using salt groundwaters from the Bay of Bourgneuf. Aquat. Living Resour. 2006, 19, 247–255. [Google Scholar] [CrossRef]
- Wei, Y.; Zhu, N.; Lavoie, M.; Wang, J.; Qian, H.; Fu, Z. Copper toxicity to Phaeodactylum tricornutum: A survey of the sensitivity of various toxicity endpoints at the physiological, biochemical, molecular and structural levels. BioMetals 2014, 27, 527–537. [Google Scholar] [CrossRef]
- Daniel, G.F.; Chamberlain, A.H.L. Copper immobilization in fouling diatoms. Bot. Mar. 1981, 24, 229–244. [Google Scholar] [CrossRef]
Cu (at.%) | k (min−1) |
---|---|
0 | 0.00136 |
16 | 0.00110 |
50 | 0.00132 |
55 | 0.00128 |
66 | 0.00042 |
Samples | Average Microflowers Density (%) | Space between Microflowers (µm) |
---|---|---|
TiO2_3 WOF | - | - |
TiO2_3 WF | 14 | 15 ± 7 |
TiO2_6 WF | 22 | 8 ± 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villardi de Oliveira, C.; Petitbois, J.; Faÿ, F.; Sanchette, F.; Schuster, F.; Alhussein, A.; Chaix-Pluchery, O.; Deschanvres, J.-L.; Jiménez, C. Marine Antibiofouling Properties of TiO2 and Ti-Cu-O Films Deposited by Aerosol-Assisted Chemical Vapor Deposition. Coatings 2020, 10, 779. https://doi.org/10.3390/coatings10080779
Villardi de Oliveira C, Petitbois J, Faÿ F, Sanchette F, Schuster F, Alhussein A, Chaix-Pluchery O, Deschanvres J-L, Jiménez C. Marine Antibiofouling Properties of TiO2 and Ti-Cu-O Films Deposited by Aerosol-Assisted Chemical Vapor Deposition. Coatings. 2020; 10(8):779. https://doi.org/10.3390/coatings10080779
Chicago/Turabian StyleVillardi de Oliveira, Caroline, Julie Petitbois, Fabienne Faÿ, Frédéric Sanchette, Frédéric Schuster, Akram Alhussein, Odette Chaix-Pluchery, Jean-Luc Deschanvres, and Carmen Jiménez. 2020. "Marine Antibiofouling Properties of TiO2 and Ti-Cu-O Films Deposited by Aerosol-Assisted Chemical Vapor Deposition" Coatings 10, no. 8: 779. https://doi.org/10.3390/coatings10080779