Enhanced Properties of Micro Arc Oxidation Coating with Cu Addition on TC4 Alloy in Marine Environment
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
- The MAO coating with Cu on TC4 alloy was prepared in the base electrolyte with copper pyrophosphate addition, in the form of Cu2O and CuO. This coating still showed a porous structure, and Cu was mainly concentrated around micropores.
- The addition of Cu increases the porosity in the MAO coating, having a high bonding strength with the substrate. Although the addition of Cu reduces the hardness of the MAO coating, its friction coefficient was stable and low, and the wear track width was the smallest, which was due to the lubrication of Cu.
- Although the porous characteristics of the MAO coating make it easy for bacteria to attach, this MAO coating with Cu demonstrated excellent antibacterial property due to the antibacterial activities of Cu.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, S.K.; Song, G.L.; Li, Z.X.; Wang, H.N.; Zheng, D.J. A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments. Mater. Sci. Technol. 2018, 34, 421–435. [Google Scholar] [CrossRef]
- Yang, W.; Gao, Y.; Guo, P.; Xu, D.P.; Hu, L.; Wang, A.Y. Adhesion, biological corrosion resistance and biotribological properties of carbon films deposited on MAO coated Ti substrates. J. Mech. Behav. Biomed 2020, 101, 103448. [Google Scholar] [CrossRef] [PubMed]
- Wake, H.; Takimoto, T.; Takayanagi, H.; Ozawa, K.; Kadoi, H.; Okochi, M.; Matsunaga, T. Development of an Electrochemical Antifouling System for Seaw- ater Cooling Pipelines of Power Plants Using Titanium. Biotechnol. Bioeng. 2010, 95, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Jing, R.; Liang, S.X.; Liu, C.Y.; Ma, M.Z.; Zhang, X.Y.; Liu, R.P. Structure and mechanical properties of Ti–6Al–4V alloy after zirconium addition. Mater. Sci. Eng. A 2012, 552, 295–300. [Google Scholar] [CrossRef]
- Zhang, T.G.; Zhuang, H.F.; Zhang, Q.; Yao, B.; Yang, F. Influence of Y2O3 on the microstructure and tribological properties of Tibased wear-resistant laser-clad layers on TC4 alloy. Ceram. Int. 2020, 46, 13711–13723. [Google Scholar] [CrossRef]
- Shokouhfar, M.; Allahkaram, S.R. Effect of incorporation of nanoparticles with different composition on wear and corrosion behavior of ceramic coatings developed on pure titanium by micro arc oxidation. Surf. Coat. Technol. 2017, 309, 767–778. [Google Scholar] [CrossRef]
- Ao, N.; Liu, D.X.; Wang, S.X.; Zhao, Q.; Zhang, X.H. Microstructure and Tribological Behavior of a TiO2/hBN Composite Ceramic Coating Formed via Microarc Oxidation of Ti–6Al–4V Alloy. J. Mater. Sci. Technol. 2016, 32, 1071–1076. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Shi, X.L.; Lua, G.C.; Chen, Y.; Yang, Z.Y.; Wu, C.H.; Xue, Y.E. Friction and wear behaviors of TC4 alloy with surface microporous channels filled by Sn-Ag-Cu and Al2O3 nanoparticles. Surf. Coat. Technol. 2020, 384, 125552. [Google Scholar] [CrossRef]
- Yang, W.; Gao, Y.; Xu, D.P.; Zhao, J.; Ke, P.L.; Wang, A.Y. Bactericidal abilities and in vitro properties of diamond-like carbon films deposited onto MAO- treated titanium. Mater. Lett. 2019, 244, 155–158. [Google Scholar] [CrossRef]
- Fang, Y.J.; Jiang, X.S.; Song, T.F.; Mo, D.F.; Luo, Z.P. Pulsed laser welding of Ti-6Al-4V titanium alloy to AISI316L stainless steel using Cu/Nb bilayer. Mater. Lett. 2019, 244, 163–166. [Google Scholar] [CrossRef]
- Fazel, M.; Salimijazi, H.R.; Golozar, M.A.; Garsivazjazi, M.R. A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process. Appl. Surf. Sci. 2015, 324, 751–756. [Google Scholar] [CrossRef]
- Vangolu, Y.; Arslan, E.; Totik, Y.; Demirci, E.; Alsaran, A. Optimization of the coating parameters for micro-arc oxidation of Cp-Ti. Surf. Coat. Technol. 2010, 205, 1764–1773. [Google Scholar] [CrossRef]
- Zhou, G.H.; Ding, H.Y.; Zhang, Y.; Liu, A.H.; Lin, Y.B.; Zhu, Y.F. Fretting Wear Study on Micro-Arc Oxidation TiO2 Coating on TC4 Titanium Alloys in Simulated Body Fluid. Tribol. Lett. 2010, 40, 319–326. [Google Scholar] [CrossRef]
- Cheng, Z.H.; Yang, W.; Xu, D.P.; Wu, S.K.; Yao, X.F.; Lv, Y.K.; Chen, J. Improvement of high temperature oxidation resistance of micro arc oxidation coated AlTiNbMo0.5Ta0.5Zr high entropy alloy. Mater. Lett. 2019, 262, 127192. [Google Scholar] [CrossRef]
- Lin, R.Z.X.M.; Zhou, P.; Zou, J.J.; Han, P.J.; Wang, Z.H.; Tang, B. Surface damage mitigation of TC4 alloy via micro arc oxidation for oil and gas exploitation application: Characterizations of microstructure and evaluations on surface performance. Appl. Surf. Sci. 2018, 436, 467–476. [Google Scholar]
- Narayanan, T.S.N.S.; Park, I.S.; Lee, M.H. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges. Prog. Mater. Sci. 2014, 60, 1–71. [Google Scholar] [CrossRef]
- Wang, S.; Xie, F.; Wu, X.; Chen, L. CeO2 doped Al2O3 composite ceramic coatings fabricated on γ-TiAl alloys via cathodic plasma electrolytic deposition. J. Alloys Compd. 2019, 788, 632–638. [Google Scholar] [CrossRef]
- Aliofkhazraei, M.; Rouhaghdam, A.S.; Shahrabi, T. Abrasive wear behaviour of Si3N4/TiO2 nanocomposite coatings fabricated by plasma electrolytic oxidation. Surf. Coat. Technol. 2010, 205, S41–S46. [Google Scholar] [CrossRef]
- Wang, S.Q.; Xie, F.Q.; Wu, X.Q.; Ma, Y.; Du, H.X.; Wu, G. Cathodic plasma electrolytic deposition of ZrO2/YSZ doped Al2O3 ceramic coating on TiAl alloy. Ceram. Int. 2019, 45, 18899–18907. [Google Scholar] [CrossRef]
- Yang, W.; Wu, S.K.; Xu, D.P.; Gao, W.; Yao, Y.H.; Guo, Q.Q.; Chen, J. Preparation and performance of alumina ceramic coating doped with aluminum nitride by micro arc oxidation. Ceram. Int. 2020, 46, 17112–17116. [Google Scholar] [CrossRef]
- Wang, S.Q.; Xie, F.Q.; Wu, X.Q.; Lv, T.; Ma, Y. Microstructure and high temperature oxidation behavior of the Al2O3 CPED coating on TiAl alloy. J. Alloys Compd. 2020, 828, 154271. [Google Scholar] [CrossRef]
- Yang, W.; Xu, D.; Guo, Q.; Chen, T.; Chen, J. Influence of electrolyte composition on microstructure and properties of coatings formed on pure Ti substrate by micro arc oxidation. Surf. Coat. Technol. 2018, 349, 522–528. [Google Scholar] [CrossRef]
- Yao, X.H.; Zhang, X.Y.; Wu, H.B.; Tian, L.H.; Ma, Y.; Tang, B. Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation. Appl. Surf. Sci. 2014, 292, 944–947. [Google Scholar] [CrossRef]
- Li, G.Q.; Wang, Y.P.; Qiao, L.P.; Zhao, R.F.; Zhang, S.F.; Zhang, R.F.; Chen, C.M.; Li, X.Y.; Zhao, Y. Preparation and formation mechanism of copper incorporated micro-arc oxidation coatings developed on Ti-6Al-4V alloys. Surf. Coat. Technol. 2019, 375, 74–85. [Google Scholar] [CrossRef]
- Wei, J.P.; Gao, W.; Cheng, Z.H.; Yao, Y.H.; Jin, Y.H.; Chen, J.; Yang, W. Effect of copper pyrophosphate concentration on friction performance of micro arc oxidation layer of TC4 alloy. Trans. Mater. Heat Treat. 2021, 42, 162–167. (In Chinese) [Google Scholar] [CrossRef]
- Yang, W.; Xu, D.P.; Yao, X.F.; Wang, J.L.; Chen, J. Stable preparation and characterization of yellow micro arc oxidation coating on magnesium alloy. J. Alloys Compd. 2018, 745, 609–616. [Google Scholar] [CrossRef]
- Wang, J.L.; Yang, W.; Xu, D.P.; Yao, X.F. The effects of K2TiO(C2O4)2 addition in electrolyte on the microstructure and tribological behavior of micro-arc oxidation coatings on aluminium alloy. Acta Metall. Sin. (Engl. Lett.) 2017, 30, 1109–1118. [Google Scholar] [CrossRef]
- Wang, W.Q.; Zheng, X.C.; Yu, F.Y.; Li, Y.D.; Xue, X.D.; Qi, M.; Li, Y. Formation and cytocompatibility of a hierarchical porous coating on Ti-20Zr-10Nb-4Ta alloy by micro-arc oxidation. Surf. Coat. Technol. 2020, 404, 126471. [Google Scholar] [CrossRef]
- Liu, S.M.; Li, B.E.; Liang, C.Y.; Wang, H.S.; Qiao, Z.X. Formation mechanism and adhesive strength of a hydroxyapatite/TiO2 composite coating on a titanium surface prepared by micro-arc oxidation. Appl. Surf. Sci. 2016, 362, 109–114. [Google Scholar] [CrossRef]
- Shokouhfar, M.; Allahkaram, S.R. Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles. Surf. Coat. Technol. 2016, 291, 396–405. [Google Scholar] [CrossRef]
- Hong, M.H.; Lee, D.H.; Kim, K.M.; Lee, Y.K. Study on bioactivity and bonding strength between Ti alloy substrate and TiO2 film by micro-arc oxidation. Thin Solid Films 2011, 519, 7065–7070. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Liu, J.; Wei, J.; Yao, Y.; Ma, X.; Yang, W. Enhanced Properties of Micro Arc Oxidation Coating with Cu Addition on TC4 Alloy in Marine Environment. Coatings 2021, 11, 1168. https://doi.org/10.3390/coatings11101168
Gao W, Liu J, Wei J, Yao Y, Ma X, Yang W. Enhanced Properties of Micro Arc Oxidation Coating with Cu Addition on TC4 Alloy in Marine Environment. Coatings. 2021; 11(10):1168. https://doi.org/10.3390/coatings11101168
Chicago/Turabian StyleGao, Wei, Jiangnan Liu, Jingpeng Wei, Yuhong Yao, Xiqun Ma, and Wei Yang. 2021. "Enhanced Properties of Micro Arc Oxidation Coating with Cu Addition on TC4 Alloy in Marine Environment" Coatings 11, no. 10: 1168. https://doi.org/10.3390/coatings11101168
APA StyleGao, W., Liu, J., Wei, J., Yao, Y., Ma, X., & Yang, W. (2021). Enhanced Properties of Micro Arc Oxidation Coating with Cu Addition on TC4 Alloy in Marine Environment. Coatings, 11(10), 1168. https://doi.org/10.3390/coatings11101168