A Comparative Study of the Mechanical Properties of Selected Dental Composites with a Dual-Curing System with Light-Curing Composites
Abstract
:1. Introduction
2. Materials and Methods
- F—force, which caused the destruction of the sample (N);
- d—diameter of the sample (mm);
- h—height of the sample (mm).
- F—force, which caused the destruction of the sample (N);
- l—distance between supports, 20 mm;
- b—sample width (mm);
- h—sample height (mm).
3. Results
3.1. Three-Point Bending Flexural Strength (TPB)
- Activa Bioactive-Restorative and Rebilda DC (p-value = 0.0075);
- Activa Bioactive-Restorative and Multicore Flow (p-value = 0.0173);
- Activa Bioactive-Restorative and G-aenial Universal Flo (p-value = 0.0008);
- Fill-Up! and G-aenial Universal Flo (p-value = 0.0270).
- Activa Bioactive-Restorative and Multicore Flow (p-value = 0.0216);
- Activa Bioactive-Restorative and Filtek Bulk Fill Posterior (p-value = 0.0001);
- Activa Bioactive-Restorative and Charisma Classic (p-value = 0.0017);
- Fill-Up! and Filtek Bulk Fill Posterior (p-value = 0.0068).
3.2. Diametral Tensile Strength (DTS)
- Activa Bioactive-Restorative and Charisma Classic (p-value = 0.0025);
- Rebilda DC and Charisma Classic (p-value = 0.0274).
3.3. Hardness
- Activa Bioactive-Restorative and Multicore Flow (p-value < 0.00005);
- Activa Bioactive-Restorative and Fill-Up! (p-value = 0.0013);
- Activa Bioactive-Restorative and Filtek Bulk Fill posterior (p-value < 0.00005);
- Activa Bioactive-Restorative and G-aenial Universal Flo (p-value = 0.0233);
- Activa Bioactive-Restorative and Charisma Classic (p-value < 0.00005);
- Rebilda DC and Filtek Bulk Fill Posterior (p-value = 0.0057);
- Multicore Flow and Bulk EZ (p-value = 0.0284);
- Multicore Flow and StarFill 2B (p-value = 0.0056);
- Bulk EZ and Filtek Bulk Fill Posterior (p-value < 0.00005);
- Bulk EZ and Charisma Classic (p-value = 0.0170);
- StarFill 2B and Filtek Bulk Fill Posterior (p-value < 0.00005);
- StarFill 2B and Charisma Classic (p-value = 0.0032).
3.4. Microhardness Profile Depending on the Depth of Cure
3.5. Shrinkage Stress
- Rebilda DC and Bulk EZ (p-value = 0.033513);
- Rebilda DC and Charisma Classic (p-value = 0.003128);
- G-aenial Universal Flo and Bulk EZ (p-value = 0.002197);
- G-aenial Universal Flo and Filtek Bulk Fill Posterior (p-value = 0.023652);
- G-aenial Universal and Charisma Classic (p-value = 0.000136);
4. Discussion
5. Conclusions
- Dual-curing composites have similar mechanical properties and shrinkage stress values compared to light-cured composites.
- The properties of materials mainly depend on the composition of the polymer matrix and filler system.
- From chosen light-cured composites, the Filtek Bulk Fill Posterior material showed the best balance between mechanical properties and shrinkage stress.
- Due to its lower TPB and HV values, the Activa Bioactive-Restorative material should be used in places were loads are not high, in deeper parts of cavity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Material | TPB [MPa] | TPB Modulus [GPa] | DTS [MPa] | HV | Shrinkage Stress [MPa] |
---|---|---|---|---|---|
Activa Bioactive-Restorative | 87 | 2.99 | 39.2 | 26 | 8.2 |
Rebilda DC | 129 | 4.81 | 39.4 | 45 | 11.2 |
Multicore Flow | 123 | 6.54 | 50.6 | 53 | 10.9 |
Bulk EZ | 116 | 5.67 | 46.7 | 39 | 7.8 |
Fill-Up! | 98 | 5.15 | 40.5 | 50 | 7.8 |
StarFill 2B | 109 | 5.98 | 43.6 | 36 | 10.9 |
Filtek Bulk Fill posterior | 110 | 8.06 | 41.1 | 69 | 7.8 |
G-aenial Universal Flo | 137 | 6.02 | 45.8 | 48 | 13.2 |
Charisma classic | 117 | 6.94 | 54.1 | 53 | 6.3 |
References
- Passos, S.P.; Freitas, A.P.; Jumaily, S.; Santos, M.J.M.C.; Rizkalla, A.S.; Santos, G.C. Comparison of mechanical properties of five commercial dental core build-up materials. Compend. Contin. Educ. Dent. 2013, 34, 62–68. [Google Scholar]
- Schmage, P.; Nergiz, I.; Sito, F.; Platzer, U.; Rosentritt, M. Wear and hardness of different core build-up materials. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 91, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Rüttermann, S.; Alberts, I.; Raab, W.H.M.; Janda, R.R. Physical properties of self-, dual-, and light-cured direct core materials. Clin. Oral Investig. 2011, 15, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Kovarik, R.E.; Breeding, L.C.; Caughman, W.F. Fatigue life of three core materials under simulated chewing conditions. J. Prosthet. Dent. 1992, 68, 584–590. [Google Scholar] [CrossRef]
- Kivanç, B.H.; Görgül, G. Fracture resistance of teeth restored with different post systems using new-generation adhesives. J. Contemp. Dent. Pract. 2008, 9, 33–40. [Google Scholar]
- Ferracane, J.L. Resin composite—State of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef]
- Malhotra, N.; Kundabala, M.; Shashirashmi, A. Strategies to overcome polymerization shrinkage—Materials and techniques. A review. Dent. Update 2010, 37, 115–125. [Google Scholar] [CrossRef]
- Braga, R.R.; Ballester, R.Y.; Ferracane, J.L. Factors involved in the development of polymerization shrinkage stress in resin-composites: A systematic review. Dent. Mater. 2005, 21, 962–970. [Google Scholar] [CrossRef]
- Chandrasekhar, V.; Rudrapati, L.; Badami, V.; Tummala, M. Incremental techniques in direct composite restoration. J. Conserv. Dent. 2017, 20, 386–391. [Google Scholar]
- Corral Núñez, C.; Vildósola Grez, P.; Bersezio Miranda, C.; Alves Dos Campos, E.; Fernández Godoy, E. State of the art of Bulk-Fill resin-based composites: A review. Rev. Fac. Odontol. 2015, 27, 177–196. [Google Scholar] [CrossRef]
- Tiba, A.; Zeller, G.G.; Estrich, C.G.; Hong, A. A laboratory evaluation of bulk-fill versus traditional multi-increment-fill resin-based composites. J. Am. Dent. Assoc. 2013, 144, 1182–1183. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, F.; Campos, L.M.D.P.; Rodrigues-Júnior, E.C.; Costa, F.V.; Marques, P.A.; Francci, C.E.; Braga, R.R.; Boaro, L.C.C. A comparative study of bulk-fill composites: Degree of conversion, post-gel shrinkage and cytotoxicity. Braz. Oral Res. 2018, 32, e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO 4049. Dentistry—Polymer-based Restorative Materials; International Organization for Standardization: Geneva, Switzerland, 2019; pp. 1–29. [Google Scholar]
- Bociong, K. Naprężenia skurczowe generowane podczas fotoutwardzania eksperymentalnego kompozytu stomatologicznego. Cz. II. Przem. Chem. 2017, 1, 72–74. [Google Scholar] [CrossRef]
- Domarecka, M. Some properties of flowable low-shrinkage dental composites Wybrane właściwości materiałów kompozytowych typu flow o niskim skurczu polimeryzacyjnym. Przem. Chem. 2014, 93, 1000–1003. [Google Scholar]
- Domarecka, M.; Sokołowski, K.; Krasowski, M.; Szczesio, A.; Bociong, K.; Sokołowski, J.; Łukomska-Szymańska, M. Influence of water sorption on the shrinkage stresses of dental composites. J. Stoma. 2016, 64, 476–483. [Google Scholar]
- Timoshenko, S.; Goodier, J.N. Theory of Elasticity, 2nd ed.; McGraw-Hill: New York, NY, USA, 1951. [Google Scholar]
- Heymann, H.; Swift, E.J.; Ritter, A.V.; Sturdevant, C.M. Sturdevant’s Art and Science of Operative Dentistry; Elsevier/Mosby: Amsterdam, The Netherlands, 2013; ISBN 9780323170604. [Google Scholar]
- Wang, L.; D’Alpino, P.H.P.; Lopes, L.G.; Pereira, J.C. Mechanical properties of dental restorative materials: Relative contribution of laboratory tests. J. Appl. Oral Sci. 2003, 11, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Ersoy, M.; Civelek, A.; L’Hotelier, E.; Say, E.C.; Soyman, M. Physical properties of different composites. Dent. Mater. J. 2004, 23, 278–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yap, A.U.J.; Teoh, S.H. Comparison of flexural properties of composite restoratives using the iso and mini-flexural tests. J. Oral Rehabil. 2003, 30, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Combe, E.C.; Shaglouf, A.M.S.; Watts, D.C.; Wilson, N.H.F. Mechanical properties of direct core build-up materials. Dent. Mater. 1999, 15, 158–165. [Google Scholar] [CrossRef]
- Chung, S.M.; Yap, A.U.J.; Chandra, S.P.; Lim, C.T. Flexural strength of dental composite restoratives: Comparison of biaxial and three-point bending test. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 71, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Kleczewska, J.; Bieliński, D.M.; Ranganathan, N.; Sokolowski, J. Characterization of Light-Cured Dental Composites; Ranganathan, N., Ed.; Pan Stanford Publishing Pte. Ltd.: Singapore, 2015; Volume 4, ISBN 9789814613064. [Google Scholar]
- Craig, R.G. Materiały Stomatologiczne, 12th ed.; Powers, J.M., Sakaguchi, R.L., Shaw, H., Shaw, J.G., Eds.; Edra Urban & Partner: Wrocław, Poland, 2008; ISBN 9780323081085. [Google Scholar]
- Okulus, Z. Otrzymywanie Oraz Charakterystyka Dentysycznych Materiałów Kompozytowych; Politechnika Poznańska: Poznań, Poland, 2016. [Google Scholar]
- Mota, E.G.; Oshima, H.M.S.; Burnett, L.H.; Pires, L.A.G.; Rosa, R.S. Evaluation of diametral tensile strength and Knoop microhardness of five nanofilled composites in dentin and enamel shades. Stomatol. Balt. Dent. Maxillofac. J. 2006, 8, 67–69. [Google Scholar]
- ANSI/ADA Specification No. 27: Resin-Based Filling Material; American National Standards Institute (ANSI): Washington, DC, USA, 1993.
- Poggio, C.; Lombardini, M.; Gaviati, S.; Chiesa, M. Evaluation of Vickers hardness and depth of cure of six composite resins photo-activated with different polymerization modes. J. Conserv. Dent. 2012, 15, 237–241. [Google Scholar] [CrossRef]
- Meredith, N.; Sherriff, M.; Setchell, D.J.; Swanson, S.A. Measurement of the microhardness and Young’s modulus of human enamel and dentine using an indentation technique. Arch. Oral Biol. 1996, 41, 539–545. [Google Scholar] [CrossRef]
- Esmaeili, B.; Safarcherati, H.; Vaezi, A. Hardness evaluation of composite resins cured with QTH and LED. J. Dent. Res. Dent. Clin. Dent. Prospects 2014, 8, 40–44. [Google Scholar] [CrossRef]
- Abuelenain, D.A.; Neel, E.A.A. Surface and mechanical properties of different dental composites. Austin J. Dent. 2015, 2, 1019. [Google Scholar]
- Asmussen, E.; Peutzfeldt, A.; Flury, S.; Hayoz, S.; Peutzfeldt, A.; Hüsler, J.; Lussi, A. Depth of cure of resin composites: Is the ISO 4049 method suitable for bulk fill materials? Eur. J. Oral Sci. 2012, 28, 521–528. [Google Scholar] [CrossRef]
- Onose, H.; Sano, H.; Kanto, H.; Ando, S.; Hasuike, T. Selected curing characteristics of light-activated composite resins. Dent. Mater. 1985, 1, 48–54. [Google Scholar] [CrossRef]
- Asmussen, E.; Peutzfeldt, A. Influence of specimen diameter on the relationship between subsurface depth and hardness of a light-cured resin composite. Eur. J. Oral Sci. 2003, 111, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, H.; Fok, A.S.L.; Watts, D.C. Multiple correlations of material parameters of light-cured dental composites. Dent. Mater. 2009, 25, 829–836. [Google Scholar] [CrossRef]
- Rueggeberg, F.A.; Giannini, M.; Arriais, C.A.G.; Price, R.B.T. Light curing in dentistry and clinical implications: A literature review. Braz. Oral Res. 2017, 31, 64–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palin, W.M.; Leprince, J.G.; Hadis, M.A. Shining a light on high volume photocurable materials. Dent. Mater. 2018, 34, 695–710. [Google Scholar] [CrossRef] [Green Version]
- Ilie, N.; Furtos, G. A comparative study of light transmission by various dental restorative materials and the tooth structure. Oper. Dent. 2020, 45, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Sartori, N.; Knezevic, A.; Peruchi, L.D.; Phark, J.H.; Sillas Duarte, S.D. Effects of light attenuation through dental tissues on cure depth of composite resins. Acta Stomatol. Croat. 2019, 53, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N.; Bucuta, S.; Draenert, M. Bulk-fill resin-based composites: An in vitro assessment of their mechanical performance. Oper. Dent. 2013, 38, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, H.; Wang, Y. Different depth-related polymerization kinetics of dual-cure, bulk-fill composites. Dent. Mater. 2019, 35, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- ActivaTM BioActive-RestorativeTM Archives—Pulpdent. Available online: https://www.pulpdent.com/shop/category/activa-bioactive-restorative/ (accessed on 10 December 2019).
- Randolph, L.D.; Palin, W.M.; Leloup, G.; Leprince, J.G. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent. Mater. 2016, 32, 1586–1599. [Google Scholar] [CrossRef] [PubMed]
- Kundie, F.; Azhari, C.H.; Muchtar, A.; Ahmad, Z.A. Effects of filler size on the mechanical properties of polymer-filled dental composites: A review of recent developments. J. Phys. Sci. 2018, 29, 141–165. [Google Scholar] [CrossRef] [Green Version]
- Szczesio, A.; Sokołowski, K.; Nowak, J.; Bociong, K.; Kopacz, K.; Sokołowski, J. Wpływ pokrycia powierzchni cementów szkło-jonomerowych powłoką nanokompozytową na ich wybrane właściwości. Dent. Forum 2017, 45, 21–29. [Google Scholar] [CrossRef]
- Pameijer, C.H.; Garcia-Godoy, F.; Morrow, B.R.; Jefferies, S.R. Flexural strength and flexural fatigue properties of resin-modified glass ionomers. J. Clin. Dent. 2015, 26, 23–27. [Google Scholar]
- Junior, S.A.R.; Ferracane, J.L.; Bona, Á. Della flexural strength and weibull analysis of a microhybrid and a nanofill composite evaluated by 3- and 4-point bending tests. Dent. Mater. 2008, 24, 426–431. [Google Scholar] [CrossRef]
- Tanimoto, Y.; Hayakawa, T.; Nemoto, K. Analysis of photopolymerization behavior of UDMA/TEGDMA resin mixture and its composite by differential scanning calorimetry. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 72, 310–315. [Google Scholar] [CrossRef]
- Gajewski, V.E.S.; Pfeifer, C.S.; Fróes-Salgado, N.R.G.; Boaro, L.C.C.; Braga, R.R. Monomers used in resin composites: Degree of conversion, mechanical properties and water sorption/solubility. Braz. Dent. J. 2012, 23, 508–514. [Google Scholar] [CrossRef]
- Shah, P.K.; Stansbury, J.W.J.W. Role of filler and functional group conversion in the evolution of properties in polymeric dental restoratives. Dent. Mater. 2014, 30, 586–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, K.-H.; Greener, E.H. Correlation between degree of conversion, filler concentration and mechanical properties of posterior composite resins. J. Oral Rehabil. 1990, 17, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Leprince, J.; Palin, W.M.; Mullier, T.; Devaux, J.; Vreven, J.; Leloup, G. Investigating filler morphology and mechanical properties of new low-shrinkage resin composite types. J. Oral Rehabil. 2010, 37, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Leprince, J.G.; Palin, W.M.; Vanacker, J.; Sabbagh, J.; Devaux, J.; Leloup, G. Physico-mechanical characteristics of commercially available bulk-fill composites. J. Dent. 2014, 42, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L.; Hilton, T.J. Polymerization stress—Is it clinically meaningful? Dent. Mater. 2016, 32, 1–10. [Google Scholar] [CrossRef]
- Van Dijken, J.W.V.; Lindberg, A. A 15-year randomized controlled study of a reduced shrinkage stress resin composite. Dent. Mater. 2015, 31, 1150–1158. [Google Scholar] [CrossRef]
- Kleverlaan, C.J.; Feilzer, A.J. Polymerization shrinkage and contraction stress of dental resin composites. Dent. Mater. 2005, 21, 1150–1157. [Google Scholar] [CrossRef]
- Bociong, K.; Szczesio, A.; Sokolowski, K.; Domarecka, M.; Sokolowski, J.; Krasowski, M.; Lukomska-Szymanska, M. The Influence of Water Sorption of Dental Light-Cured Composites on Shrinkage Stress. Materials 2017, 10, 1142. [Google Scholar] [CrossRef]
- Labella, R.; Lambrechts, P.; Van Meerbeek, B.; Vanherle, G. Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent. Mater. 1999, 15, 128–137. [Google Scholar] [CrossRef]
- Domarecka, M.; Sokołowska, A.; Szynkowska, M.I.; Sokołowski, K.; Sokołowski, J.; Łukomska-Szymańska, M. Wybrane właściwości materiałów kompozytowych typu flow o niskim skurczu polimeryzacyjnym. Przem. Chem. 2014, 93, 775–778. [Google Scholar] [CrossRef]
- Gonalves, F.; Azevedo, C.L.N.; Ferracane, J.L.; Braga, R.R. BisGMA/TEGDMA ratio and filler content effects on shrinkage stress. Dent. Mater. 2011, 27, 520–526. [Google Scholar] [CrossRef]
- Mucci, V.L.; Arenas, G.F.; Pérez, C.J.; Vallo, C.I. Prepolymerized organic-inorganic hybrid nanoparticles as fillers for light-cured methacrylate monomers. J. Mater. Sci. 2012, 47, 2951–2959. [Google Scholar] [CrossRef]
- Kwon, T.Y.; Ha, J.Y.; Chun, J.N.; Son, J.S.; Kim, K.H. Effects of prepolymerized particle size and polymerization kinetics on volumetric shrinkage of dental modeling resins. Biomed Res. Int. 2014, 2014, 914739. [Google Scholar] [CrossRef]
- Satterthwaite, J.D.; Maisuria, A.; Vogel, K.; Watts, D.C. Effect of resin-composite filler particle size and shape on shrinkage-stress. Dent. Mater. 2012, 28, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, C.S.; Shelton, Z.R.; Braga, R.R.; Windmoller, D.; MacHado, J.C.; Stansbury, J.W. Characterization of dimethacrylate polymeric networks: A study of the crosslinked structure formed by monomers used in dental composites. Eur. Polym. J. 2011, 47, 162–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, C.J.; Faria-E-Silva, A.L.; de Paula Rodrigues, M.; Fernandes Vilela, A.B.; Pfeifer, C.S.; Tantbirojn, D.; Versluis, A. Polymerization shrinkage stress of composite resins and resin cements—What do we need to know? Braz. Oral Res. 2017, 31, 49–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, R.D.; Valdívia, A.D.C.M.; Bicalho, A.A.; Franco, S.D.; Tantbirojn, D.; Versluis, A.; Soares, C.J. Effect of photoactivation timing on the mechanical properties of resin cements and bond strength of fiberglass post to root dentin. Oper. Dent. 2015, 40, E206–E221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Material | Manufacturer | Type | Composition | Curing Time (s) |
---|---|---|---|---|
Activa Bioactive-Restorative | Pulpdent Corporation, Watertown, USA | Dual-Curing flowable composite | Blend of diurethane and other methacrylates with modified polyacrylic acid (44.6%), amorphous silica, sodium fluoride, | 20 |
Rebilda DC | Voco, Cuxhaven, Germany | Dual-Curing flowable composite | DDDMA, bis-GMA, bis-GMA, UDMA, HEDMA, BHT, silica (77% filler), BPO and camphorquinone/amine initiator system | 20 |
MultiCore Flow | Ivoclar Vivadent, Schaan, Liechtenstein | Dual-Curing flowable composite | Bis-GMA, UDMA, TEGDMA, barium glass fillers, Ba–Al–fluorosilicate glass, highly dispersed silicon dioxide, ytterbium trifluoride (55% filler) | 10 |
Bulk EZ | Denville Materials, San Ramon, CA, USA | Dual-Curing Bulk Fill Composite | Ethoxylated bisphenol dimethacrylate esters (6–33%), TEGDMA (2–10%), bis-GMA (1–8%), UDMA (0.1–6), barium glass (50–70%), YbF3 (1–20%) | 10 |
Fill-Up! | Coltene, Altstätten, Switzerland | Dual-Curing Bulk Fill Composite | TEGDMA, TMPTMA, bis-GMA, zinc-oxide-coated dental glass, dibenzoyl peroxide, benzoyl peroxide, amorphous silicic acid | 10 |
StarFill 2B | Denville Materials, Carlsbad, CA, USA | Dual-Curing micro hybrid flowable composite | Bis-GMA, barium glass (61% filler) | 20 |
Filtek Bulk Fill Posterior | 3M ESPE, St. Paul, MN, USA | Bulk Fill Composite | Bis-GMA, bis-EMA, UDMA, and Procrylat; zirconia/silica with a particle size range of 0.01–3.5 microns (average: 0.6 microns), and ytterbium trifluoride particles with a size range of 0.1–5 microns: 64 wt.%/42.5 vol.% | 20 |
G-aenial Universal Flo | GC Corporation, Toriimatsu-cho, Japan | Followable composite | UDMA, bis-MePP, TEGDMA silicon dioxide (16 nm), strontium glass (200 nm) 50 vol.% | 10 |
Charisma Classic | Heraeus, Hanau, Germany | Universal hybrid composite | Bis-GMA, barium aluminum fluoride glass, 0.005–10 μm, pre-polymerized filler 61 vol.% | 20 |
Depth of Cure [µm] | Microhardness [GPa] | ||||||||
---|---|---|---|---|---|---|---|---|---|
Activa Bioactive-Restorative | Rebilda DC | MultiCore Flow | Bulk EZ | Fill Up! | StarFill 2B | Filtek Bulk Fill Posterior | G-aenial Universal Flo | Charisma Classic | |
0 | 0.32 ± 0.02 | 0.25 ± 0.01 | 0.09 ± 0.03 | 0.05 ± 0.02 | 0.02 ± 0.01 | 0.54 ± 0.04 | 0.73 ± 0.03 | 0.50 ± 0.02 | 0.52 ± 0.05 |
675 | 0.60 ± 0.10 | 0.46 ± 0.09 | 0.68 ± 0.15 | 0.42 ± 0.07 | 0.61 ± 0.10 | 0.89 ± 0.04 | 1.5 ± 0.25 | 0.98 ± 0.08 | 1.10 ± 0.22 |
1250 | 0.93 ± 0.11 | 0.66 ± 0.01 | 0.98 ± 0.02 | 1.18 ± 0.11 | 0.69 ± 0.09 | 0.95 ± 0.10 | 0.97 ± 0.16 | 1.13 ± 0.04 | 1.35 ± 0.20 |
1925 | 0.33 ± 0.08 | 0.49 ± 0.05 | 0.62 ± 0.03 | 0.86 ± 0.11 | 0.82 ± 0.08 | 0.88 ± 0.09 | 0.87 ± 0.02 | 0.94 ± 0.15 | 1.05 ± 0.19 |
3000 | 0.17 ± 0.02 | 0.04 ± 0.01 | 0.31 ± 0.04 | 0.08 ± 0.01 | 0.07 ± 0.01 | 0.37 ± 015 | 0.62 ± 0.06 | 0.37 ± 0.03 | 0.50 ± 0.05 |
Depth of Cure [µm] | Reduced Young’s Modulus [GPa] | ||||||||
---|---|---|---|---|---|---|---|---|---|
Activa Bioactive-Restorative | Rebilda DC | MultiCore Flow | Bulk EZ | Fill Up! | StarFill 2B | Filtek Bulk Fill Posterior | G-aenial Universal Flo | Charisma Classic | |
0 | 5.83 ± 1.41 | 3.64 ± 1.33 | 3.94 ± 0.95 | 1.33 ± 0.72 | 1.36 ± 0.17 | 8.29 ± 0.23 | 9.86 ± 0.35 | 8.14 ± 0.05 | 7.95 ± 0.19 |
675 | 7.70 ± 1.39 | 7.40 ± 1.44 | 10.73 ± 0.17 | 8.49 ± 1.33 | 8.47 ± 0.36 | 11.22 ± 0.72 | 13.43 ± 1.24 | 13.85 ± 0.76 | 15.21 ± 1.56 |
1250 | 14.09 ± 2.60 | 8.08 ± 1.28 | 14.44 ± 1.21 | 16.10 ± 1.03 | 9.34 ± 0.67 | 12.30 ± 0.63 | 11.22 ± 1.03 | 13.51 ± 0.67 | 18.88 ± 1.18 |
1925 | 5.72 ± 0.05 | 5.57 ± 0.78 | 13.75 ± 1.73 | 14.39 ± 2.18 | 11.52 ± 0.80 | 11.58 ± 0.61 | 11.47 ± 0.01 | 13.45 ± 0.71 | 17.22 ± 1.32 |
3000 | 3.75 ± 0.23 | 0.72 ± 0.11 | 6.33 ± 1.09 | 2.56 ± 0.25 | 2.71 ± 0.22 | 7.47 ± 0.56 | 7.69 ± 0.19 | 5.98 ± 0.34 | 6.80 ± 0.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domarecka, M.; Szczesio-Wlodarczyk, A.; Krasowski, M.; Fronczek, M.; Gozdek, T.; Sokolowski, J.; Bociong, K. A Comparative Study of the Mechanical Properties of Selected Dental Composites with a Dual-Curing System with Light-Curing Composites. Coatings 2021, 11, 1255. https://doi.org/10.3390/coatings11101255
Domarecka M, Szczesio-Wlodarczyk A, Krasowski M, Fronczek M, Gozdek T, Sokolowski J, Bociong K. A Comparative Study of the Mechanical Properties of Selected Dental Composites with a Dual-Curing System with Light-Curing Composites. Coatings. 2021; 11(10):1255. https://doi.org/10.3390/coatings11101255
Chicago/Turabian StyleDomarecka, Monika, Agata Szczesio-Wlodarczyk, Michał Krasowski, Magdalena Fronczek, Tomasz Gozdek, Jerzy Sokolowski, and Kinga Bociong. 2021. "A Comparative Study of the Mechanical Properties of Selected Dental Composites with a Dual-Curing System with Light-Curing Composites" Coatings 11, no. 10: 1255. https://doi.org/10.3390/coatings11101255
APA StyleDomarecka, M., Szczesio-Wlodarczyk, A., Krasowski, M., Fronczek, M., Gozdek, T., Sokolowski, J., & Bociong, K. (2021). A Comparative Study of the Mechanical Properties of Selected Dental Composites with a Dual-Curing System with Light-Curing Composites. Coatings, 11(10), 1255. https://doi.org/10.3390/coatings11101255